## LIE ALGEBRAS: LECTURE 11 15 June 2010

CRYSTAL HOYT

#### 1. Tensor algebra and symmetric algebra

An algebra  $\mathcal{A}$  is called *graded* if  $\mathcal{A} = \bigoplus_{i=1}^{\infty} A^i$  such that if  $x \in A^j$  and  $y \in A^k$ then  $xy \in A^{j+k}$ . An algebra  $\mathcal{A}$  is called *filtered* if there is a sequence of vector subspaces  $\{A_i\}_{i=0}^{\infty}$  such that  $A_i \subset A_{i+1}, A = \bigcup_{i=0}^{\infty} A_i$  and  $A_j A_k \subset A_{j+k}$  for all  $j, k \in \mathbb{N}$ .

**Example 1.1.** The polynomial algebra  $\mathcal{A} = \mathbb{F}[x_1, \ldots, x_n]$  has a natural grading  $\mathcal{A} = \bigoplus_{m=1}^{\infty} A^m$  given by letting  $A^m$  be the set of all homogeneous polynomials of degree m. It has a natural filtration  $\{A_i\}_{i=0}^{\infty}$  given by letting  $A_m$  be the set of all polynomials with degree less than or equal to m.

If  $\mathcal{A}$  is a graded algebra  $\mathcal{A} = \bigoplus_{i=1}^{\infty} A^i$ , then we can define a filtration  $\{A_m\}_{m=0}^{\infty}$  by letting  $A_m = A^0 \oplus A^1 \oplus \cdots \oplus A^m$ . Conversely, if  $\mathcal{A}$  is a filtered algebra  $\{A_i\}_{i=0}^{\infty}$ , then we can define the associated graded algebra  $\mathrm{Gr}(A) := \bigoplus_{i=0}^{\infty} G^i$  where  $G^i := A_i/A_{i-1}$   $(A_{-1} = 0)$ .

Fix a finite dimensional vector space V over  $\mathbb{F}$ . Let

$$T^{0} = \mathbb{F} \qquad T^{2} = V \otimes V$$
  

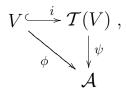
$$T^{1} = V \qquad T^{m} = V \otimes \cdots \otimes V \text{ (m times)}.$$

Define the *tensor algebra* on V to be  $\mathcal{T}(V) := \bigoplus_{i=0}^{\infty} T^i V$ , where multiplication is defined by concatenation, i.e.

$$(x_1 \otimes \cdots \otimes x_j)(y_1 \otimes \cdots \otimes y_k) = x_1 \otimes \cdots \otimes x_j \otimes y_1 \otimes \cdots \otimes y_k.$$

Then  $\mathcal{T}(V)$  is an associative graded algebra with identity.

The tensor algebra  $\mathcal{T}(V)$  is the universal associative algebra with n generators (dim V = n). This means that given any linear map  $\phi : V \to \mathcal{A}$ , with  $\mathcal{A}$  an associative algebra, there exists a unique homomorphism of algebras  $\psi: \mathcal{T}(V) \to \mathcal{A}$  such that  $\psi(1) = 1$  and the following diagram commutes:



where  $i: V \hookrightarrow \mathcal{T}(V)$  is the inclusion map defined by sending V to  $T^1V$ .

Next let I be the two sided ideal in  $\mathcal{T}(V)$  generated by all  $x \otimes y - y \otimes x$ with  $x, y \in V$ . Define the symmetric algebra on V to be  $\mathcal{S}(V) := \mathcal{T}(V)/I$ . Since I is generated by homogeneous elements  $x \otimes y - y \otimes x \in T^2V$ , I is a graded ideal. Hence,  $\mathcal{S}(V)$  is a graded algebra, so  $\mathcal{S}(V) = \bigoplus_{i=0}^{\infty} S^m$ . Since  $I \cap T^0 = I \cap T^1 = \emptyset$ , we have that  $S^0 = \mathbb{F}$  and  $S^1 = V$ .

The symmetric algebra  $\mathcal{S}(V)$  is a commutative algebra, and is canonically isomorphic to the polynomial algebra  $\mathbb{F}[x_1,\ldots,x_n]$ , where  $\{x_1,\ldots,x_n\}$  is a fixed basis of V.

### 2. Associative algebras

Let  $\mathcal{A}$  be an associative algebra. A module V over  $\mathcal{A}$  is a vector space V together with an algebra homomorphism  $f: \mathcal{A} \to \text{End}(V)$ .

Let  $\mathcal{A}$  be an associative algebra. A Lie algebra  $\mathcal{A}^{Lie}$  is defined to be the Lie algebra with the same underlying vector space as  $\mathcal{A}$  and the bracket defined by [a, b] : ab - ba.

# Example 2.1. End(V)<sup>Lie</sup> = $\mathfrak{gl}(V)$

Let L be a Lie algebra, and let  $\mathcal{A}$  be an associative algebra. Then a map  $\phi: L \to \mathcal{A}^{Lie}$  is a Lie algebra homomorphism if and only if  $\phi: L \to \mathcal{A}$  is a linear map of vector spaces satisfying  $\phi([xy]) = \phi(x)\phi(y) - \phi(y)\phi(x)$ .

### 3. Universal enveloping algebra

Let L be a Lie algebra. The universal enveloping algebra of L is an associative algebra  $\mathcal{U}$  with identity, together with a linear map  $i: L \to \mathcal{U}$ satisfying i([xy]) = i(x)i(y) - i(y)i(x) for all  $x, y \in L$ , and such that for any associative algebra  $\mathcal{A}$  with identity and linear map  $j: L \to \mathcal{A}$  satisfying j([xy]) = j(x)j(y)-j(y)j(x) there exists a unique homomorphism  $\psi: \mathcal{U} \to \mathcal{A}$  such that the following diagram commutes:



We will prove that the universal enveloping algebra exists and is unique, but first we will show that a Lie algebra and its universal enveloping algebra have the same modules.

Let L be a Lie algebra and let  $\mathcal{U}$  be the universal enveloping algebra of L with linear map  $i: L \to \mathcal{U}$ . Suppose V is a module over  $\mathcal{U}$  given by the algebra homomorphism  $f: \mathcal{U} \to \operatorname{End}(V)$ . Let  $f' = f \circ i$ . Then  $f': L \to \operatorname{End}(V)$  is a linear map satisfying, for all  $x, y \in L$ ,

$$f'(x)f'(y) - f'(y)f'(x) - f'([xy]) = f(i(x)i(y) - i(y)i(x) - i([xy]))$$
  
= f(0) = 0.

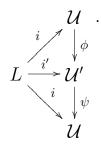
Hence,  $f': L \to \text{End}(V)^{Lie} = \mathfrak{gl}(V)$  is a Lie algebra homomorphism, and V is an L-module.

Conversely, suppose V is an L-module given by the Lie algebra homomorphism  $f': L \to \mathfrak{gl}(V) = \operatorname{End}(V)^{Lie}$ . Then  $f': L \to \operatorname{End}(V)$  is a linear map satisfying f'(x)f'(y) - f'(y)f'(x) = f'([xy]) for all  $x, y \in L$ . By definition of the universal enveloping algebra, there exists a unique algebra homomorphism  $f: \mathcal{U} \to \operatorname{End}(V)$  such that  $f' = f \circ i$ . Hence, V is a  $\mathcal{U}$ -module.

**Lemma 3.1.** Let L be a Lie algebra. The universal enveloping algebra of a Lie algebra is unique (up to isomorphism).

*Proof.* Let L be a Lie algebra. Suppose that both  $(\mathcal{U}, i)$  and  $(\mathcal{U}', i')$  are universal enveloping algebras of L. By the hypothesis, there exist homomorphisms

 $\phi: \mathcal{U} \to \mathcal{U}'$  and  $\psi: \mathcal{U}' \to \mathcal{U}$  such that the following diagram commutes:



By definition, there is a unique map  $\rho : \mathcal{U} \to \mathcal{U}$  such that the following diagram commutes



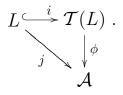
which is the identity map. Hence,  $\psi \circ \phi = id_{\mathcal{U}}$ . Similarly,  $\phi \circ \psi = id_{\mathcal{U}'}$ .  $\Box$ 

We prove the existence of the universal enveloping algebra for a Lie algebra by construction. Let L be a Lie algebra. Let  $\mathcal{T}(L)$  be the tensor algebra of L(where L is viewed as the underlying vector space of the Lie algebra). Let Jbe the two sided ideal in  $\mathcal{T}(L)$  generated by all elements  $x \otimes y - y \otimes x - [xy]$ with  $x, y \in L$ .

Define  $\mathcal{U}(L) := \mathcal{T}(L)/J$ , and let  $\pi : \mathcal{T}(L) \to \mathcal{U}(L)$  be the natural projection map. Define  $i : L \to \mathcal{U}(L)$  to be the restriction of the map  $\pi$  to L.

**Lemma 3.2.** The associative algebra  $\mathcal{U}(L)$  with the linear map  $i : L \to \mathcal{U}(L)$  is the universal enveloping algebra of L.

*Proof.* Suppose that  $\mathcal{A}$  is an associative algebra with a linear map  $j: L \to \mathcal{A}$  satisfying j([xy]) = j(x)j(y) - j(y)j(x) for all  $x, y \in L$ . Since the tensor algebra  $\mathcal{T}(L)$  is the universal associative algebra, there exists a unique algebra homomorphism  $\phi: \mathcal{T}(L) \to \mathcal{A}$  such that the following diagram commutes:



Since  $i: L \to \mathcal{T}(L)$  is an injective map and j([xy]) = j(x)j(y) - j(y)j(x) for all  $x, y \in L$ , we must have that  $x \otimes y - y \otimes x - [xy] \in \text{Ker } \phi$  for all  $x, y \in L$ .

Hence,  $J \subset \text{Ker } \phi$ . Thus  $\phi$  induces a homomorphism  $\psi : \mathcal{U}(L) \to \mathcal{A}$  such that  $j = \psi \circ i$ .

### **Example 3.3.** If L is abelian, then $\mathcal{U}(L)$ coincides with $\mathcal{S}(L)$ .

Now we examine the structure of  $\mathcal{U}(L)$ . The associative algebra  $\mathcal{U}(L)$  is not graded, but it is a filtered algebra, as follows. The tensor algebra  $\mathcal{T}(L)$ is graded by  $\mathcal{T}(L) = \bigoplus_{i=0}^{\infty} T^m$ , where  $T^m = L \otimes \cdots \otimes L$  (*m* times).

Define a filtration on  $\mathcal{T}(L)$  by  $T_m = T^0 \oplus T^1 \oplus \cdots \oplus T^m$ . Then  $T_m \subset T_{m+1}$ . Let  $\pi : \mathcal{T}(L) \to \mathcal{U}(L)$  be the natural projection map. Define  $U_m = \pi(T_m)$ . Then  $\{U_m\}_{m=0}^{\infty}$  is a filtration of  $\mathcal{U}(L)$ . The associated graded algebra is  $\operatorname{Gr}(\mathcal{U}(L)) = \bigoplus_{m=0}^{\infty} G^m$  where  $G^m = U_m/U_{m-1}$ . Define a map

$$\phi^m: T^m \to U_m \to U_m/U_{m-1} = G^m,$$

This map is surjective since  $\pi(T_m - T_{m-1}) = U_m - U_{m-1}$ . Thus, we have a surjective homomorphism  $\phi : \mathcal{T}(L) \to \operatorname{Gr}(\mathcal{U}(L))$  (defined component-wise by  $\phi^m : T^m \to G^m$ ).

**Lemma 3.4.**  $I = \langle x \otimes y - y \otimes x \mid x, y \in L \rangle \subset Ker \phi$ 

Proof. Now  $\pi(x \otimes y - y \otimes x) \in U_2$ , but also  $\pi(x \otimes y - y \otimes x) = \pi([xy]) \in U_1$ . Thus  $\phi(x \otimes y - y \otimes x) \in U_1/U_1 = 0$ .

Therefore,  $\phi$  induces a surjective map  $\psi : \mathcal{S}(L) \to \operatorname{Gr}(\mathcal{U}(L))$ .

**Theorem 3.5** (Poincare-Birkhoff-Witt Theorem (PBW Theorem)). The homomorphism  $\psi : \mathcal{S}(L) \to Gr(\mathcal{U}(L))$  is an isomorphism of algebras.

**Corollary 3.6.** Let  $\{x_1, \ldots, x_n\}$  be any ordered basis of L. The the elements  $\pi(x_{i_{(1)}} \otimes x_{i_{(2)}} \otimes \cdots \otimes x_{i_{(t)}})$  with  $t \in \mathbb{Z}^+$  and  $i_{(1)} \leq i_{(2)} \leq \cdots \leq i_{(t)}$  along with 1 form a basis of  $\mathcal{U}(L)$ .

**Corollary 3.7.** The map  $i: L \to \mathcal{U}(L)$  is injective, where *i* the restriction of the map  $\pi: \mathcal{T}(L) \to \mathcal{U}(L)$  to  $T^1 = L$ .