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CRYSTAL HOYT

1. TENSOR ALGEBRA AND SYMMETRIC ALGEBRA

An algebra A is called graded if A = ©5°, A’ such that if # € A7 and y € A*
then zy € A% An algebra A is called filtered if there is a sequence of vector
subspaces {A4;}, such that A; C A; 11, A =UX,A; and A;A; C Ajy, for all
J, k € N.

Example 1.1. The polynomial algebra A = Flz1, ..., z,] has a natural grad-
ing A= @>_;A™ given by letting A™ be the set of all homogeneous polyno-

mials of degree m. It has a natural filtration {A4;}3°, given by letting A,, be
the set of all polynomials with degree less than or equal to m.

If Ais a graded algebra A = ®°; A’ then we can define a filtration
{A,}5_, by letting A,, = A°® A'® --- & A™. Conversely, if A is a
filtered algebra {A;}:2,, then we can define the associated graded algebra
GI‘(A) = @;’iOGZ where GZ = Ai/Ai—l (A_l = O)

Fix a finite dimensional vector space V over [F. Let

T =T T’=VeV
TN =V T"=V ®---®V (m times).

Define the tensor algebra on V to be T (V) := &, TV, where multiplication
is defined by concatenation, i.e.

(21® Q)N QUp) =1 Q- QT QYL ® -+ @ Y.

Then 7 (V') is an associative graded algebra with identity.

The tensor algebra 7 (V') is the universal associative algebra with n gener-
ators (dim V' = n). This means that given any linear map ¢ : V' — A, with

A an associative algebra, there exists a unique homomorphism of algebras
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Y T(V) — A such that (1) = 1 and the following diagram commutes:
Ve—=-T(V),

N

where i : V — T(V) is the inclusion map defined by sending V to TV,

Next let I be the two sided ideal in 7 (V) generated by all z @ y —y @ x
with x,y € V. Define the symmetric algebra on V to be S(V) := T(V)/I.
Since I is generated by homogeneous elements r @y —y @z € T?V, [ is a
graded ideal. Hence, S(V) is a graded algebra, so S(V) = &2,S™. Since
INT=1INT'"= @, we have that S =F and S' = V.

The symmetric algebra S(V) is a commutative algebra, and is canonically
isomorphic to the polynomial algebra Flxy, ..., x,], where {z1,...,z,} is a
fixed basis of V.

2. ASSOCIATIVE ALGEBRAS

Let A be an associative algebra. A module V over A is a vector space V'
together with an algebra homomorphism f : A — End(V).

Let A be an associative algebra. A Lie algebra A% is defined to be the Lie
algebra with the same underlying vector space as A and the bracket defined
by [a,b] : ab — ba.

Example 2.1. End(V)%* = gl(V)

Let L be a Lie algebra, and let A be an associative algebra. Then a map
¢ : L — A is a Lie algebra homomorphism if and only if ¢ : L — A is a
linear map of vector spaces satisfying ¢([zy]) = o(z)d(y) — o(y)o(z).

3. UNIVERSAL ENVELOPING ALGEBRA

Let L be a Lie algebra. The universal enveloping algebra of L is an as-
sociative algebra U with identity, together with a linear map ¢ : L — U
satisfying i([zy]) = i(x)i(y) — i(y)i(x) for all z,y € L, and such that for
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any associative algebra A with identity and linear map j : L — A satisfying
J(lxy]) = j(x)j(y)—j(y)j(z) there exists a unique homomorphism ¢ : U — A
such that the following diagram commutes:

We will prove that the universal enveloping algebra exists and is unique,
but first we will show that a Lie algebra and its universal enveloping algebra
have the same modules.

Let L be a Lie algebra and let U be the universal enveloping algebra of
L with linear map ¢ : L — U. Suppose V' is a module over U given by the
algebra homomorphism f : U4 — End(V). Let f' = foi. Then f': L —
End(V) is a linear map satisfying, for all z,y € L,

F@F )~ PO @)~ (o) = F@)ily) - i(y)i) — i)
= J(0) = 0.

Hence, f': L — End(V)X = gl(V) is a Lie algebra homomorphism, and V/
is an L-module.

Conversely, suppose V' is an L-module given by the Lie algebra homomor-
phism f’': L — gl(V) = End(V)%%®. Then f': L — End(V) is a linear map
satisfying f/'(x)f'(y) — f'(y) f'(z) = f'([zy]) for all x,y € L. By definition
of the universal enveloping algebra, there exists a unique algebra homomor-
phism f:U — End(V) such that f' = f oi. Hence, V is a U-module.

Lemma 3.1. Let L be a Lie algebra. The universal enveloping algebra of a
Lie algebra is unique (up to isomorphism,).

Proof. Let L be a Lie algebra. Suppose that both (i, 4) and (U’, ') are univer-
sal enveloping algebras of L. By the hypothesis, there exist homomorphisms
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¢:U — U and ) : U' — U such that the following diagram commutes:

e

7

Lﬁbf’
N
U

By definition, there is a unique map p : U — U such that the following
diagram commutes

L—U ,
N
U
which is the identity map. Hence, ¥ o ¢ = idy,. Similarly, ¢ o =idyy. 0O

We prove the existence of the universal enveloping algebra for a Lie algebra
by construction. Let L be a Lie algebra. Let 7 (L) be the tensor algebra of L
(where L is viewed as the underlying vector space of the Lie algebra). Let J
be the two sided ideal in 7 (L) generated by all elements © @ y — y @ © — [zy]
with z,y € L.

DefineUd (L) :=T(L)/J,andlet m : T (L) — U(L) be the natural projection
map. Define i : L — U(L) to be the restriction of the map 7 to L.

Lemma 3.2. The associative algebra U(L) with the linear map i : L — U(L)
15 the universal enveloping algebra of L.

Proof. Suppose that A is an associative algebra with a linear map 7 : L — A
satisfying j([zy]) = j(x)j(y) — j(y)j(x) for all z,y € L. Since the tensor
algebra 7 (L) is the universal associative algebra, there exists a unique algebra
homomorphism ¢ : 7 (L) — A such that the following diagram commutes:

L—~T(L) .

N

Since i : L — 7T (L) is an injective map and j([zy]) = j(z)j(y) — j(y)j(x) for
all z,y € L, we must have that z @ y —y ® © — [zy] € Ker ¢ for all z,y € L.
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Hence, J C Ker ¢. Thus ¢ induces a homomorphism ¢ : U(L) — A such
that j = o1, [

Example 3.3. If L is abelian, then U(L) coincides with S(L).

Now we examine the structure of U(L). The associative algebra U(L) is
not graded, but it is a filtered algebra, as follows. The tensor algebra 7 (L)
is graded by 7 (L) = &°,1™, where T" = L ® --- ® L (m times).

Define a filtration on 7 (L) by T,,, = T°®T ' @ --®T™. Then T}, C Ty 1.
Let w : T(L) — U(L) be the natural projection map. Define U, = 7(T,).
Then {U,,}_, is a filtration of U(L). The associated graded algebra is
Gr(U(L)) = &X_,G™ where G™ = U,,/U,,—1. Define a map

" T — Uy — Uy /Uy = G™.
This map is surjective since 7(T,, — 1) = Uy — Upo1. Thus, we have a

surjective homomorphism ¢ : 7 (L) — Gr(U(L)) (defined component-wise by
" T — G™).

Lemma 3.4. | = (xQy—yQux|z,y € L) C Ker ¢

Proof. Now m(x @y —y®z) € Uy, but also m(x @ y —y @ x) = 7([zy]) € U;.
Thus ¢(z @y —y®@x) € Uy /U; = 0. O

Therefore, ¢ induces a surjective map ¢ : S(L) — Gr(U(L)).

Theorem 3.5 (Poincare-Birkhoff-Witt Theorem (PBW Theorem)). The ho-
momorphism ¢ : S(L) — Gr(U(L)) is an isomorphism of algebras.

Corollary 3.6. Let {x1,...,x,} be any ordered basis of L. The the elements
W(xiu) ® Tipy ® - @ xi(t)) witht € Z" and 1) Sty S Sy along with 1
form a basis of U(L).

Corollary 3.7. The map i : L — U(L) is injective, where i the restriction
of the map m: T(L) — U(L) to T* = L.
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