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1. Tensor algebra and symmetric algebra

An algebra A is called graded if A = ⊕∞i=1A
i such that if x ∈ Aj and y ∈ Ak

then xy ∈ Aj+k. An algebra A is called filtered if there is a sequence of vector
subspaces {Ai}∞i=0 such that Ai ⊂ Ai+1, A = ∪∞i=0Ai and AjAk ⊂ Aj+k for all
j, k ∈ N.

Example 1.1. The polynomial algebra A = F[x1, . . . , xn] has a natural grad-
ing A = ⊕∞m=1A

m given by letting Am be the set of all homogeneous polyno-
mials of degree m. It has a natural filtration {Ai}∞i=0 given by letting Am be
the set of all polynomials with degree less than or equal to m.

If A is a graded algebra A = ⊕∞i=1A
i, then we can define a filtration

{Am}∞m=0 by letting Am = A0 ⊕ A1 ⊕ · · · ⊕ Am. Conversely, if A is a
filtered algebra {Ai}∞i=0, then we can define the associated graded algebra
Gr(A) := ⊕∞i=0G

i where Gi := Ai/Ai−1 (A−1 = 0).

Fix a finite dimensional vector space V over F. Let

T 0 = F T 2 = V ⊗ V
T 1 = V Tm = V ⊗ · · · ⊗ V (m times).

Define the tensor algebra on V to be T (V ) := ⊕∞i=0T
iV , where multiplication

is defined by concatenation, i.e.

(x1 ⊗ · · · ⊗ xj)(y1 ⊗ · · · ⊗ yk) = x1 ⊗ · · · ⊗ xj ⊗ y1 ⊗ · · · ⊗ yk.

Then T (V ) is an associative graded algebra with identity.

The tensor algebra T (V ) is the universal associative algebra with n gener-
ators (dimV = n). This means that given any linear map φ : V → A, with
A an associative algebra, there exists a unique homomorphism of algebras
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ψ : T (V )→ A such that ψ(1) = 1 and the following diagram commutes:

V
� � i //

""EE
EE

EE
EE

EE
T (V )

ψ
��

A
φ

EEEEEEEEEE

,

where i : V ↪→ T (V ) is the inclusion map defined by sending V to T 1V .

Next let I be the two sided ideal in T (V ) generated by all x ⊗ y − y ⊗ x
with x, y ∈ V . Define the symmetric algebra on V to be S(V ) := T (V )/I.
Since I is generated by homogeneous elements x ⊗ y − y ⊗ x ∈ T 2V , I is a
graded ideal. Hence, S(V ) is a graded algebra, so S(V ) = ⊕∞i=0S

m. Since
I ∩ T 0 = I ∩ T 1 = ∅, we have that S0 = F and S1 = V .

The symmetric algebra S(V ) is a commutative algebra, and is canonically
isomorphic to the polynomial algebra F[x1, . . . , xn], where {x1, . . . , xn} is a
fixed basis of V .

2. Associative algebras

Let A be an associative algebra. A module V over A is a vector space V
together with an algebra homomorphism f : A → End(V ).

Let A be an associative algebra. A Lie algebra ALie is defined to be the Lie
algebra with the same underlying vector space as A and the bracket defined
by [a, b] : ab− ba.

Example 2.1. End(V )Lie = gl(V )

Let L be a Lie algebra, and let A be an associative algebra. Then a map
φ : L → ALie is a Lie algebra homomorphism if and only if φ : L → A is a
linear map of vector spaces satisfying φ([xy]) = φ(x)φ(y)− φ(y)φ(x).

3. Universal enveloping algebra

Let L be a Lie algebra. The universal enveloping algebra of L is an as-
sociative algebra U with identity, together with a linear map i : L → U
satisfying i([xy]) = i(x)i(y) − i(y)i(x) for all x, y ∈ L, and such that for
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any associative algebra A with identity and linear map j : L→ A satisfying
j([xy]) = j(x)j(y)−j(y)j(x) there exists a unique homomorphism ψ : U → A
such that the following diagram commutes:

L
i //

��@
@@

@@
@@
U
ψ

��

A
j

@@@@@@@

We will prove that the universal enveloping algebra exists and is unique,
but first we will show that a Lie algebra and its universal enveloping algebra
have the same modules.

Let L be a Lie algebra and let U be the universal enveloping algebra of
L with linear map i : L → U . Suppose V is a module over U given by the
algebra homomorphism f : U → End(V ). Let f ′ = f ◦ i. Then f ′ : L →
End(V ) is a linear map satisfying, for all x, y ∈ L,

f ′(x)f ′(y)− f ′(y)f ′(x)− f ′([xy]) = f(i(x)i(y)− i(y)i(x)− i([xy]))

= f(0) = 0.

Hence, f ′ : L → End(V )Lie = gl(V ) is a Lie algebra homomorphism, and V
is an L-module.

Conversely, suppose V is an L-module given by the Lie algebra homomor-
phism f ′ : L → gl(V ) = End(V )Lie. Then f ′ : L → End(V ) is a linear map
satisfying f ′(x)f ′(y) − f ′(y)f ′(x) = f ′([xy]) for all x, y ∈ L. By definition
of the universal enveloping algebra, there exists a unique algebra homomor-
phism f : U → End(V ) such that f ′ = f ◦ i. Hence, V is a U -module.

Lemma 3.1. Let L be a Lie algebra. The universal enveloping algebra of a
Lie algebra is unique (up to isomorphism).

Proof. Let L be a Lie algebra. Suppose that both (U , i) and (U ′, i′) are univer-
sal enveloping algebras of L. By the hypothesis, there exist homomorphisms
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φ : U → U ′ and ψ : U ′ → U such that the following diagram commutes:

U
φ

��

L

i
??~~~~~~~~ i′ //

i

��@
@@

@@
@@

@ U ′
ψ

��

U

.

By definition, there is a unique map ρ : U → U such that the following
diagram commutes

L
i //

��?
??

??
??
U
ρ

��

U
i

???????

,

which is the identity map. Hence, ψ ◦ φ = idU . Similarly, φ ◦ ψ = idU ′. �

We prove the existence of the universal enveloping algebra for a Lie algebra
by construction. Let L be a Lie algebra. Let T (L) be the tensor algebra of L
(where L is viewed as the underlying vector space of the Lie algebra). Let J
be the two sided ideal in T (L) generated by all elements x⊗ y− y⊗ x− [xy]
with x, y ∈ L.

Define U(L) := T (L)/J , and let π : T (L)→ U(L) be the natural projection
map. Define i : L→ U(L) to be the restriction of the map π to L.

Lemma 3.2. The associative algebra U(L) with the linear map i : L→ U(L)
is the universal enveloping algebra of L.

Proof. Suppose that A is an associative algebra with a linear map j : L→ A
satisfying j([xy]) = j(x)j(y) − j(y)j(x) for all x, y ∈ L. Since the tensor
algebra T (L) is the universal associative algebra, there exists a unique algebra
homomorphism φ : T (L)→ A such that the following diagram commutes:

L
� � i //

""DDDDDDDDD T (L)

φ
��

A
j

DDDDDDDDD

.

Since i : L→ T (L) is an injective map and j([xy]) = j(x)j(y)− j(y)j(x) for
all x, y ∈ L, we must have that x⊗ y − y ⊗ x− [xy] ∈ Ker φ for all x, y ∈ L.
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Hence, J ⊂ Ker φ. Thus φ induces a homomorphism ψ : U(L) → A such
that j = ψ ◦ i. �

Example 3.3. If L is abelian, then U(L) coincides with S(L).

Now we examine the structure of U(L). The associative algebra U(L) is
not graded, but it is a filtered algebra, as follows. The tensor algebra T (L)
is graded by T (L) = ⊕∞i=0T

m, where Tm = L⊗ · · · ⊗ L (m times).

Define a filtration on T (L) by Tm = T 0⊕T 1⊕ · · ·⊕Tm. Then Tm ⊂ Tm+1.
Let π : T (L) → U(L) be the natural projection map. Define Um = π(Tm).
Then {Um}∞m=0 is a filtration of U(L). The associated graded algebra is
Gr(U(L)) = ⊕∞m=0G

m where Gm = Um/Um−1. Define a map

φm : Tm → Um → Um/Um−1 = Gm.

This map is surjective since π(Tm − Tm−1) = Um − Um−1. Thus, we have a
surjective homomorphism φ : T (L)→ Gr(U(L)) (defined component-wise by
φm : Tm → Gm).

Lemma 3.4. I = 〈x⊗ y − y ⊗ x | x, y ∈ L〉 ⊂ Ker φ

Proof. Now π(x⊗ y− y⊗ x) ∈ U2, but also π(x⊗ y− y⊗ x) = π([xy]) ∈ U1.
Thus φ(x⊗ y − y ⊗ x) ∈ U1/U1 = 0. �

Therefore, φ induces a surjective map ψ : S(L)→ Gr(U(L)).

Theorem 3.5 (Poincare-Birkhoff-Witt Theorem (PBW Theorem)). The ho-
momorphism ψ : S(L)→ Gr(U(L)) is an isomorphism of algebras.

Corollary 3.6. Let {x1, . . . , xn} be any ordered basis of L. The the elements
π(xi(1) ⊗ xi(2) ⊗ · · · ⊗ xi(t)) with t ∈ Z+ and i(1) ≤ i(2) ≤ · · · ≤ i(t) along with 1
form a basis of U(L).

Corollary 3.7. The map i : L → U(L) is injective, where i the restriction
of the map π : T (L)→ U(L) to T 1 = L.
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