LIE ALGEBRAS: LECTURE 12 22 June 2010

CRYSTAL HOYT

1. Root systems

Lemma 1.1. Let Δ be a root system in a Euclidean space E and Π a base. If $\beta \in \Delta^+ \setminus \Pi$ then $\beta - \alpha \in \Delta^+$ for some $\alpha \in \Pi$

Proof. If $(\beta, \alpha) \leq 0$ for all $\alpha \in \Pi$, then $\Pi \cup \{\beta\}$ would be a linearly independent set. So $(\beta, \alpha) > 0$ for some $\alpha \in \Pi$, and hence by a previous lemma $\beta - \alpha \in \Delta$. Since β is not proportional to α and α is simple, we conclude that $\beta - \alpha \in \Delta^+$.

Corollary 1.2. If $\beta \in \Delta^+$, then there exist $\alpha_i \in \Pi$, $i = 1, \ldots s$, such that $\beta = \alpha_1 + \cdots + \alpha_s$ and each partial sum $\alpha_1 + \cdots + \alpha_k \in \Delta^+$, $(k \leq s)$.

Proof. This is proven by induction on the height of β , using the previous lemma.

2. Free Lie Algebras

Let L be a Lie algebra generated by a set X. We say that L is free on X if, given any mapping $\phi : X \to M$ with M a Lie algebra, there exists a unique homomorphism $\psi : L \to M$ extending ϕ . Uniqueness is simple to verify. For existence, let V be a vector space with basis X. Let $\mathcal{T}(V)$ be the tensor algebra on V viewed as a Lie algebra via the bracket operation $([x, y] := x \otimes y - y \otimes x \text{ for } x, y \in \mathcal{T}(V))$, and let L be the Lie subalgebra generated by X.

If L is a free Lie algebra on the set X, and K is an ideal of L generated by elements k_i $(i \in I)$, then we call the Lie algebra L/K the Lie algebra with generators x_j and relations $k_i = 0$, where x_j are the images of the elements of X in L/K.

3. Automorphisms

Let \mathfrak{g} be a semisimple Lie algebra. An automorphism of \mathfrak{g} is an isomorphism $\phi : \mathfrak{g} \to \mathfrak{g}$. An automorphism of the form

$$e^{\operatorname{ad}(x)} = \sum_{n=0}^{\infty} \frac{1}{n!} (\operatorname{ad}(x))^n,$$

 $x \in \mathfrak{g}$ is called *inner*, and the subgroup of $\operatorname{Aut}(\mathfrak{g})$ generated by these is denoted $\operatorname{Int}(\mathfrak{g})$ and its elements are called *inner automorphisms*. Note that $e^{\operatorname{ad}(x)}$ is well defined when $\operatorname{ad}(x)$ is nilpotent.

Let $\phi : \mathfrak{g} \to \mathfrak{g}$ be an isomorphism of \mathfrak{g} , and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with root system Δ . If $\phi(\mathfrak{h}) = \mathfrak{h}$, then ϕ induces an automorphism of the root system Δ .

Every element w of the Weyl group W is induced by an inner automorphism of \mathfrak{g} which leaves \mathfrak{h} invariant. In particular, the reflection $\sigma_{\alpha} \in W$, $\alpha \in \Delta$, is induced by the element

$$e^{\operatorname{ad}(x_{\alpha})}e^{-\operatorname{ad}(y_{\alpha})}e^{\operatorname{ad}(x_{\alpha})}$$

4. Borel subalgebras

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$$

be the corresponding root space decomposition. Choose a set of simple roots Π and corresponding decomposition $\Delta = \Delta^+ \prod \Delta^-$. Set

$$\mathfrak{n}^+ := \sum_{lpha \in \Delta^+} \mathfrak{g}_{lpha}, \qquad \mathfrak{n}^- := \sum_{lpha \in \Delta^-} \mathfrak{g}_{lpha}$$

Then one has a triangular decomposition of \mathfrak{g}

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+.$$

Also, \mathfrak{n}^+ and \mathfrak{n}^- are nilpotent subalgebras of \mathfrak{g} . Indeed, \mathfrak{n}^+ is a subalgebra, since $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$ and if $\alpha, \beta \in \Delta^+$ then either $\alpha + \beta \in \Delta_+$ or $\mathfrak{g}_{\alpha+\beta} = 0$.

To check nilpotence of \mathfrak{n}^+ recall that for $\alpha \in \Delta^+$ we have $\alpha = \sum_{\beta \in \Pi} r_{\beta\beta}$ with $r_{\beta} \in \mathbb{Z}_{\geq 0}$, and the height of α is $ht(\alpha) = \sum_{\beta \in \Pi} r_{\beta}$. Also, for $\alpha_1, \alpha_2 \in \Delta$ we have $\operatorname{ht}(\alpha_1 + \alpha_2) = \operatorname{ht}(\alpha_1) + \operatorname{ht}(\alpha_2)$. Set $\mathfrak{n}_1^+ := [\mathfrak{n}^+, \mathfrak{n}^+]$ and $\mathfrak{n}_{k+1}^+ := [\mathfrak{n}_k^+, \mathfrak{n}^+]$. Then

$$\mathfrak{n}_k^+ \subset \sum_{\alpha \in \Delta^+: \mathrm{ht}(\alpha) > k} \mathfrak{g}_\alpha$$

Since Δ^+ is finite, there exists an integer m such that $ht(\alpha) < m$ for all $\alpha \in \Delta^+$. Thus $\mathfrak{n}_m^+ = 0$.

Set

$$\mathfrak{b}^+:=\mathfrak{n}^+\oplus\mathfrak{h},\qquad\mathfrak{b}^-:=\mathfrak{n}^-\oplus\mathfrak{h}.$$

The subalgebra \mathfrak{b}^+ (resp. \mathfrak{b}^-) is solvable because $[\mathfrak{b}^+, \mathfrak{b}^+] = \mathfrak{n}^+$ (resp. $[\mathfrak{b}^-, \mathfrak{b}^-] = \mathfrak{n}^-$), which is nilpotent. The algebra \mathfrak{b}^+ (resp. \mathfrak{b}^-) is a *Borel subalgebra*: a maximal solvable subalgebra.

To see that \mathfrak{b}^+ is a maximal solvable subalgebra, first observe that if $S \supseteq \mathfrak{b}^+ \supset \mathfrak{h}$ is a subalgebra then \mathfrak{h} acts diagonally on S. Then $\mathfrak{g}_{-\alpha} \subset S$ for some $\alpha > 0$, implying that S contains a simple subalgebra isomorphic to \mathfrak{sl}_2 . Thus S is not solvable.

5. Generators and relations

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Fix a base $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ for the corresponding root system Δ . Recall that $\langle \alpha_j, \alpha_i \rangle = \frac{2(\alpha_j, \alpha_i)}{(\alpha_i, \alpha_i)} = \alpha_j(h_i)$, and the matrix A with entries $a_{ij} = \langle \alpha_j, \alpha_i \rangle$ is the Cartan matrix. For each $i = 1, \ldots, n$, choose $x_i \in \mathfrak{g}_{\alpha_i}, y_i \in \mathfrak{g}_{-\alpha_i}$ such that $[x_i, y_i] = h_i$.

Theorem 5.1. (a) \mathfrak{n}^+ is generated by the elements x_i , \mathfrak{n}^- is generated by the elements y_i , and \mathfrak{g} is generated by the elements x_i, y_i, h_i with $1 \leq i \leq n$.

(b) These elements satisfy the Weyl relations, $1 \le i, j \le n$:

(1) $[h_i, h_j] = 0;$ (2) $[x_i, y_j] = \delta_{ij}h_i;$ (3) $[h_i, x_j] = a_{ij}x_j, \ [h_i, y_j] = -a_{ij}y_j.$

(c) They also satisfy the Serre relations:

(1)
$$ad(x_i)^{-a_{ij}+1}x_j = 0$$
 $(i \neq j);$
(2) $ad(y_i)^{-a_{ij}+1}y_j = 0$ $(i \neq j).$

Proof. (a) It suffices to show that \mathbf{n}^+ is generated by the elements x_i . Let $\beta \in \Delta^+$. Write $\beta = \alpha_{i_1} + \cdots + \alpha_{i_s}$ such that partial sums $\alpha_{i_1} + \cdots + \alpha_{i_k}$ belong to Δ^+ for each $k \leq s$. Let $x_\beta = [x_{i_s}, [x_{i_{s-1}}, \dots [x_{i_2}, x_{i-1}]]]$. This is nonzero since for any $\beta_1, \beta_2 \in \Delta$, $[\mathbf{g}_{\beta_1}, \mathbf{g}_{\beta_2}] = \mathbf{g}_{\beta_1 + \beta_2}$ (follows from the proof of Proposition 1.2 in Lecture 8). Since dim $\mathbf{g}_\beta = 1$ for $\beta \in \Delta$, $\mathbf{g}_\beta = \mathbb{F}x_\beta$. Since \mathbf{n}^+ is the sum spaces \mathbf{g}_β with $\beta \in \Delta^+$, we conclude that \mathbf{n}^+ is generated by the elements x_i .

(b) Now $[x_i, y_j] = 0$ for $i \neq j$ since $\alpha_i - \alpha_j$ is not a root. Also, $[h_i, x_j] = \alpha_j(h_i)x_j = a_{ij}x_j$. The other relations are clear.

(c) Set $f_{ij} = \operatorname{ad}(x_i)^{-a_{ij}+1}x_j$. Then $f_{ij} \in \mathfrak{g}_{\alpha_j+\alpha_i-a_{ij}\alpha_i}$. But, $\alpha_j + (1-a_{ij})\alpha_i = \sigma_{\alpha_i}(\alpha_j - \alpha_i)$. Since $\alpha_j - \alpha_i$ is not a root, neither is $\sigma_{\alpha_i}(\alpha_j - \alpha_i)$. Hence, $f_{ij} = 0$. The other relation is proved in the same manner.

Theorem 5.2. The algebra \mathfrak{g} is defined by the generators x_i , y_i , h_i , with $1 \leq i \leq n$, along with the Weyl relations and Serre relations.

The proof of this theorem will be given at the end of the lesson.

6. EXISTENCE AND UNIQUENESS

To read about the existence of a Cartan subalgebra and the conjugacy theorem for Cartan subalgebras, see Serre "Complex Semisimple Lie Algebras" Chapter 3. It follows that the root system of a semisimple Lie algebra is independent (up to isomorphism) of the chosen Cartan subalgebra.

Theorem 6.1. Two semisimple Lie algebras with isomorphic root systems are isomorphic.

Proof. Let \mathfrak{g} (resp. \mathfrak{g}') be a semisimple Lie algebra, \mathfrak{h} (resp. \mathfrak{h}') a Cartan subalgebra of \mathfrak{g} (resp. \mathfrak{g}'), and Π (resp. Π') a base for the corresponding root system. Let $r : \Pi \to \Pi'$ be a bijection sending the Cartan matrix of Π to the Cartan matrix of Π' . For each $\alpha_i \in \Pi$ (resp. $\alpha'_j \in \Pi'$) let x_i (resp. x'_j) be a nonzero element of \mathfrak{g}_{α_i} (resp. $\mathfrak{g}'_{\alpha'_j}$). There is a a unique isomorphism $\phi : \mathfrak{g} \to \mathfrak{g}'$ sending h_i to $h'_{r(i)}$ and x_i to $x'_{r(i)}$ for all $\alpha_i \in \Pi$. Indeed, let y_i (resp. y'_j) be the element of $\mathfrak{g}_{-\alpha_i}$ (resp. $\mathfrak{g}_{-\alpha'_j}$) such that $[x_i, y_i] = h_i$ (resp. $[x'_j, y'_j] = h'_j$). Since $\Delta \cong \Delta'$, these generators satisfy the same relations. Hence, Theorem 5.2 provides a unique homomorphism $\phi : \mathfrak{g} \to \mathfrak{g}'$. This map is clearly surjective, since the generators of \mathfrak{g}' are in the image. And since $\dim \mathfrak{g} = \dim \mathfrak{g}'$, we conclude that ϕ is an isomorphism.

Theorem 6.2. Let Δ be a root system. Then there exists a semisimple Lie algebra \mathfrak{g} whose root system is isomorphic to Δ .

Proof. Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be a base for Δ , with Cartan matrix A where $a_{ij} = \langle \alpha_j, \alpha_i \rangle$. Let \mathfrak{g} be the Lie algebra defined by 3n generators x_i, y_i, h_i and by the Weyl and Serre relations. We will prove that this Lie algebra is finite dimensional, semisimple, and has root system isomorphic to Δ .

Corollary 6.3. For a semisimple Lie algebra \mathfrak{g} to be simple, it is necessary and sufficient that Δ should be irreducible.

Proof. We proved previously that a simple Lie algebra has an irreducible root system. Now suppose \mathfrak{g} is a semisimple Lie algebra containing a proper ideal \mathfrak{a} . Then \mathfrak{h} acts diagonally on \mathfrak{a} , so $\mathfrak{a} = \mathfrak{h}' \oplus (\bigoplus_{\alpha \in \Delta'} \mathfrak{g}_{\alpha})$, where $\mathfrak{h}' = \mathfrak{h} \cap \mathfrak{a}$ and $\Delta' = \{\alpha \in \Delta \mid \mathfrak{g}_{\alpha} \cap \mathfrak{a} \neq \{0\}\}$. Let \mathfrak{c} be the ideal of \mathfrak{g} which is complement to $\mathfrak{a}, \mathfrak{g} = \mathfrak{a} \oplus \mathfrak{c}$. Then $\mathfrak{c} = \mathfrak{h}'' \oplus (\bigoplus_{\alpha \in \Delta''} \mathfrak{g}_{\alpha})$, where $\mathfrak{h}'' = \mathfrak{h} \cap \mathfrak{c}$ and $\Delta'' = \Delta \setminus \Delta'$. Then $\Delta = \Delta' \cup \Delta''$ is a non-trivial decomposition of Δ into orthogonal sets. Indeed, let $\alpha \in \Delta'$ and $\beta \in \Delta''$. If $(\alpha, \beta) < 0$ then $\alpha + \beta \in \Delta$. But $\mathfrak{g}_{\alpha+\beta} = [\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{a} \cap \mathfrak{c} = \{0\}$. If $(\alpha, \beta) > 0$ then $\alpha - \beta \in \Delta$. But $\mathfrak{g}_{\alpha-\beta} = [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\beta}] \subset \mathfrak{a} \cap \mathfrak{c} = \{0\}$ Hence, $(\alpha, \beta) = 0$.

Now \mathfrak{g} is simple $\Leftrightarrow \Delta$ is irreducible $\Leftrightarrow \Pi$ is irreducible \Leftrightarrow the Dynkin diagram is irreducible \Leftrightarrow the Cartan matrix is irreducible. (A matrix A is *irreducible* if the index set I can not be non-trivially decomposed $I = I_1 \cup I_2$ such that $a_{ij} = a_{ji} = 0$ for all $i \in I_1, j \in I_2$.)

7. SERRE'S THEOREM

Let Δ be a root system in a Euclidean space E, with positive definite symmetric bilinear form (-, -). Let $\mathfrak{h} = E^*$, so that $E = \mathfrak{h}^*$. Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be a base for Δ , and define $h_1, \ldots, h_n \in \mathfrak{h}$ such that $\alpha_j(h_i) = \frac{2(\alpha_j, \alpha_i)}{(\alpha_i, \alpha_i)} = \langle \alpha_j, \alpha_i \rangle$ for $1 \leq i, j \leq n$. Let A be the Cartan matrix of Δ , $a_{ij} = \langle \alpha_j, \alpha_i \rangle$. **Theorem 7.1.** Let \mathfrak{g} be the Lie algebra defined by the 3n generators x_i, y_i, h_i , and by the relations $(1 \le i, h \le n)$:

W1: $[h_i, h_j] = 0;$ W2: $[x_i, y_j] = \delta_{ij}h_i;$ W3: $[h_i, x_j] = a_{ij}x_j,$ $[h_i, y_j] = -a_{ij}y_j;$ S1: $ad(x_i)^{-a_{ij}+1}x_j = 0$ $(i \neq j);$ S2: $ad(y_i)^{-a_{ij}+1}y_j = 0$ $(i \neq j).$

Then \mathfrak{g} is a finite dimensional semisimple Lie algebra, with a Cartan subalgebra \mathfrak{h} generated by the elements h_i , and its root system is Δ .

Proof. First consider the algebra \mathfrak{a} defined by the 3n generators x_i, y_i, h_i , and by the Weyl relations W1-W3. Then $\mathfrak{a} = \mathfrak{m}^- \oplus \mathfrak{h} \oplus \mathfrak{m}^+$, where \mathfrak{m}^+ (resp. \mathfrak{m}^-) is the free Lie algebra generated by x_i (resp. y_i), and \mathfrak{h} has the elements h_i as a basis. (For a proof of this statement, see Humphreys Section 18.)

Now let $f_{ij}^+ = \operatorname{ad}(x_i)^{-a_{ij}+1}x_j$ and $f_{ij}^- = \operatorname{ad}(y_i)^{-a_{ij}+1}y_j$. Then $f_{ij}^+ \in \mathfrak{m}^+$ and $f_{ij}^- \in \mathfrak{m}^-$. Let \mathfrak{u}^+ (resp. \mathfrak{u}^-) denote the ideal of \mathfrak{m}^+ (resp. \mathfrak{m}^-) generated by f_{ij}^+ (resp. f_{ij}^-).

(a): \mathfrak{u}^+ , \mathfrak{u}^- , and $\mathfrak{u}^+ \oplus \mathfrak{u}^-$ are ideals of \mathfrak{a} .

Let $\mathcal{U}(\mathfrak{a})$ be the universal enveloping algebra of \mathfrak{a} . The adjoint representation $\mathrm{ad} : \mathfrak{a} \to \mathrm{End}(\mathfrak{a})$ defines a $\mathcal{U}(\mathfrak{a})$ -module structure on \mathfrak{a} . The ideal u_{ij} of \mathfrak{a} generated by f_{ij}^+ is equal to the submodule $\mathcal{U}(\mathfrak{a}) \cdot f_{ij}^+$. By the PBW Theorem, u_{ij} is spanned by elements $XYH \cdot f_{ij}$ with $X \in \mathcal{U}(\mathfrak{m}^+), Y \in \mathcal{U}(\mathfrak{m}^-)$, and $H \in \mathcal{U}(\mathfrak{h})$. Since $\mathrm{ad}(h_t)(f_{ij}^+) = \beta(h_t)f_{ij}^+$ with $\beta = \alpha_i + (1 - a_{ij})\alpha_j$, we have that $H \cdot f_{ij}^+$ is proportional to f_{ij}^+ . A computation shows that $\mathrm{ad}(y_k)(f_{ij}^+) = 0$ for all k, thus $Y \cdot f_{ij}^+$ is proportional to f_{ij}^+ . Hence, u_{ij} is generated by the elements $X \cdot f_{ij}^+$, and therefore is contained in \mathfrak{u}^+ . Since $\mathfrak{u}^+ = \sum u_{ij}$ we conclude that \mathfrak{u}^+ is an ideal of \mathfrak{a} .

(b): $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ where $\mathfrak{n}^- = \mathfrak{m}^-/\mathfrak{u}^-$ and $\mathfrak{n}^+ = \mathfrak{m}^+/\mathfrak{u}^+$.

This is true since $\mathfrak{u}^+ \oplus \mathfrak{u}^-$ is the ideal generated by f_{ij}^- and f_{ij}^+ .

(c): The endomorphisms $\operatorname{ad}(x_i)$ and $\operatorname{ad}(y_i)$ of \mathfrak{g} are *locally nilpotent*: for each element $z \in \mathfrak{g}$ there exists $k \in \mathbb{Z}^+$ such that $\operatorname{ad}(x_i)^k(z) = 0$, $\operatorname{ad}(y_i)^k(z) = 0$.

Let V_i be set of all $z \in \mathfrak{g}$ such that $\operatorname{ad}(x_i)^k(z) = 0$ for some integer k. Then a computation shows that V_i is a Lie subalgebra of \mathfrak{g} . Now V_i contains y_j $(1 \leq j \leq n)$ by the Weyl relations and contains x_j $(1 \leq j \leq n)$ by the Serre relations, and hence V_i contains $h_j = [x_j, y_j]$ $(1 \leq j \leq n)$. Since these generate \mathfrak{g} , we conclude that $V_i = \mathfrak{g}$.

Now if $\lambda \in \mathfrak{h}^*$, denote by \mathfrak{a}_{λ} (resp. \mathfrak{g}_{λ}) the set of $z \in \mathfrak{a}$ (resp. $z \in \mathfrak{g}$) such that $\operatorname{ad}(h)z = \lambda(h)z$ for all $h \in \mathfrak{h}$. Then \mathfrak{a} is direct sum of the weight spaces \mathfrak{a}_{λ} , since \mathfrak{m}^+ and \mathfrak{m}^- are free Lie algebras and $\mathfrak{h} = \mathfrak{a}_0$. The ideal $\mathfrak{u}^+ \oplus \mathfrak{u}^-$ is generated by homogeneous elements, so the quotient Lie algebra $\mathfrak{g} = \mathfrak{a}/(\mathfrak{u}^+ \oplus \mathfrak{u}^-)$ is also a direct sum of weight spaces. Since $\mathfrak{a} = \mathfrak{m}^- \oplus \mathfrak{h} \oplus \mathfrak{m}^+$, we have that $\mathfrak{a}_{\lambda} \neq 0$ implies that λ is linear combination of simple roots with integer coefficients and all of the same sign. Thus the same is true for the quotient \mathfrak{g} . Then $\mathfrak{h} = \mathfrak{g}_0$, $\mathfrak{n}^+ = \bigoplus_{\lambda > 0} \mathfrak{g}_{\lambda}$ and $\mathfrak{n}^- = \bigoplus_{\lambda < 0} \mathfrak{g}_{\lambda}$. Next we want to find the dimension of each \mathfrak{g}_{λ} .

(d): If $\lambda, \mu \in \mathfrak{h}^*$ such that $\lambda = w(\mu)$ for some element w of the Weyl group W, then dim $\mathfrak{g}_{\lambda} = \dim \mathfrak{g}_{\mu}$.

It suffices to prove this when w is a simple reflection. For each $\alpha_i \in \Pi$, we define an automorphism of \mathfrak{g} by $\phi_i = e^{\operatorname{ad}(x_i)}e^{-\operatorname{ad}(y_i)}e^{\operatorname{ad}(x_i)}$. Then ϕ_i induces the simple reflection σ_{α_i} on Δ , so ϕ_i sends \mathfrak{g}_{μ} to \mathfrak{g}_{λ} if $\lambda = \sigma_{\alpha_i}(\mu)$ implying dim $\mathfrak{g}_{\lambda} = \dim \mathfrak{g}_{\mu}$.

(e): For $\alpha_i \in \Pi$, dim $\mathfrak{g}_{\alpha_i} = 1$ and dim $\mathfrak{g}_{m\alpha_i} = 0$ for $m \neq \pm 1, 0$.

This is clear for \mathfrak{a} , and since the ideal \mathfrak{u}^+ does not contain x_i , it is also true for \mathfrak{g} .

(f): If $\alpha \in \Delta$, then dim $\mathfrak{g}_{\alpha} = 1$.

For each $\alpha \in \Delta$ there exists $w \in W$ such that $w(\alpha) \in \Pi$. This claim then follows from (d) and (e).

- (g): Let λ be a linear combination of the simple roots α_i , with real coefficients, and suppose that λ is not a multiple of any root. Then there exists $w \in W$ such that $w(\lambda) = \sum t_i \alpha_i$ with some $t_i > 0$ and some $t_i < 0$. (This was a homework exercise.)
- (h): If λ is not a root and $\lambda \neq 0$, then $\mathfrak{g}_{\lambda} = 0$.

 λ is a linear combination of simple roots, since Π is a basis for E. If λ is a multiple of a root, then (h) follows from (d) and (e). Otherwise, there is some $w \in W$ such that $\mu = w(\lambda)$ is a linear combination of simple roots such that two coefficient have opposite signs. Then $\mathfrak{a}_{\mu} = 0$ implying $\mathfrak{g}_{\mu} = 0$. Applying (d) we have that $\mathfrak{g}_{\lambda} = 0$.

(i): The algebra \mathfrak{g} has finite dimension, equal to $n + |\Delta|$.

By (f) and (h), we have that $\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$ and for each $\alpha \in \Delta$ the dimension of \mathfrak{g}_{α} is one.

(j): If $\alpha \in \Delta$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{F}h_{\alpha}$ and the subalgebra \mathfrak{s}_{α} generated h_{α} , \mathfrak{g}_{α} , and $\mathfrak{g}_{-\alpha}$ is isomorphic to \mathfrak{sl}_2 .

This is clear for simple roots, and follows by applying the automorphisms ϕ_i .

(k): \mathfrak{g} is a semisimple Lie algebra.

Suppose that I is an abelian ideal in \mathfrak{g} . Then \mathfrak{h} act diagonally on I, so $I = (I \cap \mathfrak{h}) \oplus \sum_{\alpha \in \Delta} I \cap \mathfrak{g}_{\alpha}$. If $I \cap \mathfrak{g}_{\alpha} \neq 0$ for some $\alpha \in \Delta$, then $\mathfrak{s}_{\alpha} \subset I$ since $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_{2}$. But we assumed that I is abelian, thus $I \subset \mathfrak{h}$. But $[I, x_{j}] = 0$ for all j implies that $\alpha_{j}(I) = 0$ for all j. Hence, I = 0.

(1): \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and Δ is the corresponding root system.