LIE ALGEBRAS: LECTURE 13 29 June 2010

CRYSTAL HOYT

1. Modules and weight spaces

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{lpha \in \Delta} \mathfrak{g}_{lpha})$$

be the corresponding root space decomposition. Choose a set of simple roots Π and corresponding decomposition $\Delta = \Delta^+ \coprod \Delta^-$. Then one has a triangular decomposition, $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, where $\mathfrak{n}^+ = \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}$, $\mathfrak{n}^- = \sum_{\alpha \in \Delta^-} \mathfrak{g}_{\alpha}$. Set

$$Q := \sum_{\alpha \in \Pi} \mathbb{Z} \alpha$$

Q is called the *root lattice*. Let $Q^+ = \sum_{\alpha \in \Pi} \mathbb{Z}_{\geq 0} \alpha$. Define a partial order on \mathfrak{h}^* by $\lambda \geq \nu$ if $\lambda - \nu \in Q^+$.

Since \mathfrak{h} acts diagonally on \mathfrak{g} (via the adjoint action), \mathfrak{h} acts diagonally on $\mathcal{U}(\mathfrak{g})$. Indeed, take an ordered eigenbasis a_1, \ldots, a_r in \mathfrak{g} with respect to \mathfrak{h} . Then the corresponding PBW basis of $\mathcal{U}(\mathfrak{g})$ is an eigenbasis with respect to \mathfrak{h} . If a_i has weight μ_i for $1 \leq i \leq r$, then $a_1^{k_1} \cdots a_r^{k_r}$ has weight $\sum_{i=1}^r k_i \mu_i$.

Let V be a \mathfrak{g} -module. We do not assume that V is finite dimensional. Let $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v, \text{ for all } h \in \mathfrak{h}\}$. If $V_{\lambda} \neq 0$, then V_{λ} is called a *weight space* and λ is called a *weight* of V. Set

$$V' = \sum_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$

Lemma 1.1.

- (1) $\mathfrak{g}_{\alpha}V_{\lambda} \subseteq V_{\lambda+\alpha}$, (i.e. \mathfrak{g}_{α} maps V_{λ} into $V_{\lambda+\alpha}$).
- (2) The sum $V' = \sum_{\lambda \in \mathfrak{h}} V_{\lambda}$ is direct, and V' is a \mathfrak{g} -submodule of V.
- (3) If dim $V < \infty$, then V = V', (i.e. \mathfrak{h} acts diagonally on V).

Proof.

- (1) Let $x \in \mathfrak{g}_{\alpha}$ and $v \in V_{\lambda}$. Then $h(xv) = x(hv) + [h, x]v = \lambda(h)xv \alpha(h)xv = (\lambda + \alpha)(h)xv$. Thus, $xv \in V_{\lambda+\alpha}$. Therefore, V' is stable under the action of \mathfrak{g} .
- (2) The sum is direct because eigenvectors in different eigenspaces are linearly independent. By (1), V' is stable under the action of \mathfrak{g} .
- (3) By Weyl's Theorem, every finite dimensional \mathfrak{g} -module is a direct sum of simple modules. So it suffices to consider the case when V is a simple \mathfrak{g} -module. Since V is finite dimensional, it contains a non-zero vector v which is an eigenvector for the action of \mathfrak{h} , by Lie's Theorem (since \mathfrak{h} is solvable). Since V is simple, $V = \mathcal{U}(\mathfrak{g})v$. Since \mathfrak{h} acts diagonally on $\mathcal{U}(\mathfrak{g})$, the lemma follows.

A \mathfrak{g} -module V is called a *weight module* if V = V'. A \mathfrak{g} -module V is called a *highest weight module* with *highest weight* μ , if there is a $\mu \in \mathfrak{h}^*$ such that $V_{\mu} \neq 0$ and

$$V = \bigoplus_{\lambda \in \mathfrak{h}^* : \lambda \le \mu} V_{\lambda}.$$

A non-zero vector $v^+ \in V_{\lambda}$ (for some $\lambda \in \mathfrak{h}^*$) of a \mathfrak{g} -module V is called a maximal vector (of weight λ) if it is killed by \mathfrak{g}_{α} for all $\alpha > 0$, (i.e. $\mathcal{U}(\mathfrak{n}^+)v^+ = 0$). If V is a highest weight module with highest weight μ , then each non-zero vector $v \in V_{\mu}$ is a maximal vector. If a \mathfrak{g} -module V is generated by a maximal vector $v^+ \in V_{\lambda}$ (i.e. $V = \mathcal{U}(\mathfrak{g})v^+$), then V is called a standard cyclic module and v^+ is a cyclic vector.

2. Verma modules

Let $I(\lambda)$ be the left ideal in $\mathcal{U}(\mathfrak{g})$ generated by \mathfrak{n}^+ and by the elements of the form $h - \lambda(h)1$ with $h \in \mathfrak{h}$. Then

$$M(\lambda) := \mathcal{U}(\mathfrak{g})/I(\lambda)$$

is the Verma module of highest weight λ . The quotient map $\phi : \mathcal{U}(\mathfrak{g}) \twoheadrightarrow M(\lambda)$ is a \mathfrak{g} -module homomorphism. Let $v_{\lambda} = \phi(1)$, where 1 is the identity element of $\mathcal{U}(\mathfrak{g})$. The Verma module $M(\lambda)$ is a standard cyclic module with cyclic vector v_{λ} . Indeed, $\mathfrak{n}^+v_{\lambda} = 0$ and v_{λ} has weight λ , since $(h - \lambda(h))v_{\lambda} = 0$ for all $h \in \mathfrak{h}$. The restriction of this map to $\mathcal{U}(\mathfrak{n}^-)$ is a $\mathcal{U}(\mathfrak{n}^-)$ -module homomorphism. By the PBW theorem, this map $\mathcal{U}(\mathfrak{n}^-) \to M(\lambda)$ given by $u \mapsto uv_{\lambda}$ is bijective. Thus, $\mathcal{U}(\mathfrak{n}^-) \cong M(\lambda)$ as $\mathcal{U}(\mathfrak{n}^-)$ -modules.

Lemma 2.1. Any standard cyclic module is the quotient of a Verma module.

Proof. Let V be a standard cyclic module with cyclic vector $v^+ \in V_{\lambda}$. Then $\mathfrak{n}^+v^+ = 0$ and $(h - \lambda(h))v^+ = 0$ for $h \in \mathfrak{h}$. So $I(\lambda)$ is in the kernel of the map $\mathcal{U}(\mathfrak{g}) \to V$ given by $u \mapsto uv^+$. Hence, this map factors through $M(\lambda)$. Since v^+ generates V, the induced map $M(\lambda) \to V$ is surjective. \Box

Lemma 2.2. Let V be a standard cyclic \mathfrak{g} -module, with cyclic vector $v^+ \in V_{\lambda}$. Let $\Delta^+ = \{\beta_1, \ldots, \beta_m\}$ and choose nonzero vectors $y_{\beta_i} \in \mathfrak{g}_{-\beta_i}$. Then:

- (1) V is spanned by the vectors $y_{\beta_1}^{k_1} \cdots y_{\beta_m}^{k_m} v^+$ $(k_i \in \mathbb{Z}_{\geq 0})$. In particular, V is a highest weight module.
- (2) The weights of V are of the form $\nu = \lambda \sum_{i=1}^{n} c_i \alpha_i$ $(c_i \in \mathbb{Z}_{\geq 0})$, where $\Pi = \{\alpha_1, \ldots, \alpha_n\}$. Hence, all weights satisfy $\nu \leq \lambda$.
- (3) For each $\nu \in \mathfrak{h}^*$, dim $V_{\nu} < \infty$, and dim $V_{\lambda} = 1$.
- (4) Each submodule is a direct sum of its weight spaces.
- (5) V is an indecomposable \mathfrak{g} -module, with a unique maximal submodule and a corresponding unique irreducible quotient.

Proof. Now V is the quotient of the Verma module $M(\lambda)$, where $M(\lambda) \twoheadrightarrow V$ defined by $v_{\lambda} \mapsto v^+$ extended by the action of \mathfrak{g} . Thus (1), (2), and (3) follow from the fact that $\mathcal{U}(\mathfrak{n}^-) \cong M(\lambda)$ as $\mathcal{U}(\mathfrak{n}^-)$ -modules, where $\mathcal{U}(\mathfrak{n}^-) \to M(\lambda)$ is defined by $u \mapsto uv_{\lambda}$. If $u \in \mathcal{U}(\mathfrak{n}^-)$ has weight $\sum_{\alpha_i \in \Pi} -c_i \alpha_i, c_i \in \mathbb{Z}_{\geq 0}$, then uv^+ has weight $\lambda - \sum_{\alpha_i \in \Pi} c_i \alpha_i$. Now (4) holds because eigenvectors in different eigenspaces are linearly independent. For (5), let S be the sum of the all the proper submodules of $M(\lambda)$. Then S is clearly unique and maximal, but we must show that it is a proper submodule. Now each submodule is a direct sum of its weight spaces, and the sum of weight modules is again a weight module, with weight spaces $(\sum_{i \in I} V^{(i)})_{\mu} = \sum_{i \in I} V^{(i)}_{\mu}$. To see that S is a proper submodule, observe that $v^+ \notin P$ for any proper submodule P implying $P_{\lambda} = 0$. Hence, $S_{\lambda} = 0$. It follows that V is indecomposable, since if $V = M_1 \oplus M_2$ where M_1 and M_2 are proper submodules, then $M_1, M_2 \subset S$ implies V = S.

Corollary 2.3. Let V be an irreducible standard cyclic \mathfrak{g} -module, with maximal vector $v^+ \in V_{\lambda}$. Then v^+ is the unique maximal vector in V, up to non-zero scalar multiples.

Proof. Suppose $w^+ \in V_{\lambda'}$ is another maximal vector. Since V is irreducible, $V = \mathcal{U}(\mathfrak{g})w^+$ implying that w^+ is also a cyclic vector. Then the second part of the lemma applies to both λ and λ' . Hence $\lambda' \leq \lambda$ and $\lambda \leq \lambda'$ implies that $\lambda' = \lambda$. Since dim $V_{\lambda} = 1$, we conclude that w^+ is proportional to v^+ . \Box

Corollary 2.4. Let $\overline{M}(\lambda)$ be the unique maximal submodule of the Verma module $M(\lambda)$. Then $V(\lambda) := M(\lambda)/\overline{M}(\lambda)$ is the unique simple quotient of $M(\lambda)$.

Corollary 2.5. If V is a finite dimensional simple module, the $V \cong V(\lambda)$ for some $\lambda \in \mathfrak{h}^*$.

Proof. The set of weights of V is finite and so it contains a maximal element λ under the partial ordering. Let v' be a non-zero element of V_{λ} . Since λ is a maximal weight, Lemma 1.1 implies that $\mathfrak{n}^+v' = 0$. Hence, v' is a maximal vector. Thus the map $\phi : M(\lambda) \to V$ given by $v_{\lambda} \mapsto v'$ is a $\mathcal{U}(\mathfrak{g})$ -module homomorphism. Since V is simple, this map is surjective. Thus $V \cong M(\lambda)/\ker \phi$. Since $V(\lambda)$ is the unique simple quotient of $M(\lambda)$, we conclude that $V \cong V(\lambda)$.

Let $\alpha \in \Delta$, and take $S_{\alpha} \cong \mathfrak{sl}(2)$ with generators $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha},$ $h_{\alpha} = [x_{\alpha}, y_{\alpha}] \in \mathfrak{h}^*$. Recall that $\langle \lambda, \alpha \rangle = \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} = \lambda(h_{\alpha})$.

Theorem 2.6. If V is a finite dimensional irreducible \mathfrak{g} -module of highest weight λ , then $\langle \lambda, \alpha \rangle \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in \Delta^+$.

Proof. Let $\alpha \in \Delta^+$. Then V is a finite dimensional S_{α} -module, with a maximal vector v_{λ} of weight λ . Since $S_{\alpha} \cong \mathfrak{sl}_2$ is simple, we have by Weyl's Theorem that V decomposes into a direct sum of irreducible S_{α} -modules. The maximal weight of the irreducible S_{α} -submodule M that v_{λ} generates must be a non-negative integer. Now $x_{\alpha}v_{\lambda} = 0$ and $h_{\alpha}v_{\lambda} = \lambda(h_{\alpha})v_{\lambda}$. So the maximal weight of the S_{α} -submodule M is $\lambda(h_{\alpha})$. Thus, $\lambda(h_{\alpha}) \in \mathbb{Z}_{\geq 0}$. Since $\alpha \in \Delta^+$ was chosen arbitrarily, we conclude that $< \lambda, \alpha > \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in \Delta^+$.

Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be the set of simple roots. Define the *weight lattice* to be

$$P(\Pi) := \{ \lambda \in \mathfrak{h}^* \mid < \lambda, \alpha > \in \mathbb{Z} \text{ for all } \alpha \in \Delta^+ \}$$
$$= \{ \lambda \in \mathfrak{h}^* \mid < \lambda, \alpha > \in \mathbb{Z} \text{ for all } \alpha \in \Pi \}.$$

Elements of $P(\Pi)$ are called *integral weights*. The *dominant integral weights* are the following:

$$P^+(\Pi) = \{ \lambda \in \mathfrak{h}^* \mid <\lambda, \alpha > \in \mathbb{Z}_{\geq 0} \text{ for all } \alpha \in \Pi \}.$$