LIE ALGEBRAS: LECTURE 14 6 July 2010

CRYSTAL HOYT

1. FINITE DIMENSIONAL MODULES

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$$

be the corresponding root space decomposition. Choose a set of simple roots Π and corresponding decomposition $\Delta = \Delta^+ \coprod \Delta^-$. Then one has a triangular decomposition, $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, where $\mathfrak{n}^+ = \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}$, $\mathfrak{n}^- = \sum_{\alpha \in \Delta^-} \mathfrak{g}_{\alpha}$. Set

$$Q := \sum_{\alpha \in \Pi} \mathbb{Z}\alpha.$$

Q is called the *root lattice*. Let $Q^+ = \sum_{\alpha \in \Pi} \mathbb{Z}_{\geq 0} \alpha$. Define a partial order on \mathfrak{h}^* by $\lambda \geq \nu$ if $\lambda - \nu \in Q^+$.

Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be the set of simple roots. Define the *weight lattice* to be

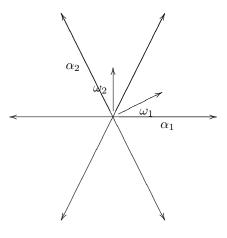
$$P(\Pi) := \{ \lambda \in \mathfrak{h}^* \mid <\lambda, \alpha > \in \mathbb{Z} \text{ for all } \alpha \in \Delta^+ \}$$
$$= \{ \lambda \in \mathfrak{h}^* \mid <\lambda, \alpha > \in \mathbb{Z} \text{ for all } \alpha \in \Pi \}.$$

Elements of $P(\Pi)$ are called *integral weights*. The *dominant integral weights* are the following:

$$P^+(\Pi) = \{ \lambda \in \mathfrak{h}^* \mid <\lambda, \alpha > \in \mathbb{Z}_{\geq 0} \text{ for all } \alpha \in \Pi \}.$$

Note that $\Delta \subset P(\Pi)$. Define the fundamental weights $\omega_1, \ldots, \omega_n \in \mathfrak{h}^*$ by the condition $\langle \omega_i, \alpha_j \rangle = \delta_{ij}$. Then $P^+(\Pi) = \sum_{i=1}^n \mathbb{Z}_{\geq 0} \omega_i$.

Example 1.1. Fundamental weights $\{\omega_1, \omega_2\}$ for \mathfrak{sl}_3 with $\Pi = \{\alpha_1, \alpha_2\}$:



Example 1.2. If $\mathfrak{g} = \mathfrak{sl}_n$, then $\Pi = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n\}$, where by ε_i we mean the image of ε_i in $(\sum_{j=1}^n \mathbb{C}\varepsilon_j)/\mathbb{C}(\sum_{j=1}^n \varepsilon)$. Then $\omega_1 = \varepsilon_1, \omega_2 = \varepsilon_1 + \varepsilon_2$, and $\omega_k = \sum_{i=1}^k \varepsilon_i$ for $1 \le r \le n-1$.

Let W be the Weyl group of \mathfrak{g} . For $\alpha \in \Pi$ and $\lambda \in \mathfrak{h}^*$ define

$$\sigma_{\alpha}(\lambda) := \lambda - \lambda(h_{\alpha})\alpha.$$

Since W is generated by simple reflections, this defines an action of W on \mathfrak{h}^* . Lemma 1.3. If $w \in W$ and $\lambda \in P(\Pi)$, then $w(\lambda) \in P(\Pi)$.

Proof. It suffices to prove this for a simple reflection σ_{α} . Let $\beta \in \Delta^+$, then

$$\langle \sigma_{\alpha}(\lambda), \beta \rangle = \langle \lambda, \beta \rangle - \lambda(h_{\alpha}) \langle \alpha, \beta \rangle \in \mathbb{Z}.$$

Theorem 1.4. $V(\lambda)$ is finite dimensional if and only if $\lambda \in P^+(\Pi)$. If $\lambda \in P^+(\Pi)$, then the set of weights of $V(\lambda)$ is permuted by W, with dim $V_{\mu} = \dim V_{\sigma(\mu)}$ for $\sigma \in W$.

We have already proven that if $V(\lambda)$ is finite dimensional then $\lambda \in P^+(\Pi)$. This theorem has the following important corollary.

Corollary 1.5. The map $\lambda \to V(\lambda)$ induces a one-one correspondence between $P^+(\Pi)$ and the isomorphism classes of finite dimensional irreducible \mathfrak{g} -modules. Outline of proof for Theorem 1.4. The idea is to show that the set of weights of $V(\lambda)$ is permuted by the Weyl group W, and hence is finite. Suppose now that $\lambda \in P^+(\Pi)$. Fix a maximal vector v^+ of $V = V(\lambda)$ and set $m_i = \langle \lambda, \alpha_i \rangle$ for $\alpha_i \in \Pi$. For each simple root α_i $(1 \leq i \leq n)$ we have a subalgebra S_i isomorphic to $\mathfrak{sl}(2)$, with generators x_i, y_i, h_i . Denote the representation on V by $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$.

- (1) $y_i^{m_i+1}v^+ = 0$. (For $j \neq i$, $x_j y_i^{m_i+1}v^+ = 0$. Set $e_k = \frac{1}{k!} y_i^k v^+$. Then $x_i e_k = (\lambda + 1 k) e_{k-1}$. So $y_i^{m_i+1}v^+$ is a maximal vector, and hence zero.)
- (2) For $1 \leq i \leq n$, V contains a non-zero finite dimensional S_i -module. (The subspace spanned by $y_i^k v^+$ for $1 \leq k \leq m_i$.)
- (3) V is the sum of finite dimensional S_i -submodules. (Let T_i be the set of finite dimensional S_i -submodules, and E_i be their sum. One can check that if $F \in T_i$, then $gF \in T_i$ for all $g \in \mathfrak{g}$. Then E_i is a non-zero submodule. Since V is irreducible, $E_i = V$.)
- (4) For $1 \leq i \leq n$, $\phi(x_i)$ and $\phi(y_i)$ are locally nilpotent endomorphisms of V (An element $v \in V$ lies in a finite sum of finite dimensional S_i submodules, and here $\phi(x_i)$ and $\phi(y_i)$ are nilpotent.)
- (5) $s_i = \exp \phi(x_i) \exp \phi(-y_i) \exp \phi(x_i)$ is a well-defined automorphism of V. ($\exp \phi(x_i)$) is defined on each finite dimensional S_i -submodule, and agrees on intersections.)
- (6) If μ is any weight of V, then $s_i(V_{\mu}) = V_{\sigma_i(\mu)}$ (where σ_i is the reflection relative to α_i). (In a finite dimensional submodule, s_i is the reflection with respect to the root α_i .)
- (7) The set of weights of V is stable under W, and dim $V_{\mu} = \dim V_{\sigma(\mu)}$ for $\sigma \in W$. (This follows since W is generated by simple reflections.)
- (8) The set of weights of V is finite. We can reflect any weight to the dominant Weyl chamber and its image must be $\leq \lambda$ in order for the

weight space to be non-zero. (The set of dominant integral weights $\mu \leq \lambda$ is finite. Since W is finite, the set of W conjugates of this set is finite. The set of weights of V is included in this set, and hence finite.)

(9) dim V is finite. (The set of weights is finite by the argument above, and the dimension of each weight space is finite by a lemma from the previous lecture about cyclic modules.)

2. CHARACTERS

Let \mathfrak{g} be a semisimple Lie algebra and let \mathfrak{h} be a Cartan subalgebra. Let V be a finite dimensional \mathfrak{g} -module. A finite dimensional \mathfrak{g} -module V is a weight module, i.e. $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$. (It follows from Weyl's Theorem and a lemma from last lecture that $V = \bigoplus_{\mu \in \mathfrak{h}^*} V(\mu)^{\bigoplus n_{\mu}}$, and each $V(\mu)$ is a weight module by the proposition on cyclic modules.)

Define the *character* of V to be the formal sum:

$$\operatorname{ch}(V) := \sum_{\lambda \in \mathfrak{h}^*} m_{\lambda} e^{\lambda}$$

where $m_{\lambda} = \dim V_{\lambda}$. The elements e^{λ} belong to a multiplicative group isomorphic to \mathfrak{h}^* where multiplication is given by $e^{\lambda}e^{\mu} = e^{\lambda+\mu}$.

Example 2.1. Let V be the adjoint module of \mathfrak{sl}_2 . Here $\Delta = \{\alpha, -\alpha\}$. The weight spaces of V have dimension 1. The character of V is

$$e^{\alpha} + e^{0} + e^{-\alpha}$$

Lemma 2.2. Let V and W be finite dimensional \mathfrak{g} -modules. Then (1) $\operatorname{ch}(V \oplus W) = \operatorname{ch}(V) + \operatorname{ch}(W)$

(2) $\operatorname{ch}(V \otimes W) = \operatorname{ch}(V) \cdot \operatorname{ch}(W)$

Proof. The first statement follows from the fact that $(V \oplus W)_{\lambda} = V_{\lambda} \oplus W_{\lambda}$. The second statement follows from exercise 3 on homework 13. Define an action of W on ch(V) by:

$$w \operatorname{ch}(V) := \sum_{\lambda \in \mathfrak{h}^*} m_{\lambda} e^{w(\lambda)}.$$

Proposition 2.3. Let \mathfrak{g} be a semisimple Lie algebra. If V is a finite dimensional \mathfrak{g} -module, then ch(V) is W invariant: w ch(V) = ch(V).

Proof. By Weyl's Theorem, it suffices to prove this statement for irreducible modules since $ch(V \oplus W) = ch(V) + ch(W)$. We already proved this claim for irreducible finite dimensional modules while proving Theorem 1.4. \Box

Proposition 2.4. Let \mathfrak{g} be a semsimple Lie algebra. If V and W are finite dimensional \mathfrak{g} -modules with $\operatorname{ch}(V) = \operatorname{ch}(W)$, then $V \cong W$.

Proof. Note that

ch
$$V(\lambda) = e^{\lambda} + \sum_{\mu < \lambda} m_{\mu} e^{\mu}.$$

Since V is finite dimensional, we have by Weyl's Theorem that

 $V = \oplus V(\lambda_i)^{\oplus n_i}$

for some set $\{\lambda_i\}$ with multiplicities n_i . Choose λ_1 to be a maximal element in this set. Then dim $V_{\lambda_1} = n_{\lambda_1}$ and λ_1 is a maximal weight of V. Since $\operatorname{ch}(V) = \operatorname{ch}(W)$, λ_1 is also a maximal weight of W. Thus, W contains a submodule isomorphic to $V(\lambda_1)^{\oplus n_1}$. This follows from Weyl's Theorem and from the fact that an irreducible finite dimensional module is determine up to isomorphism by its highest weight. Thus,

$$V = L \oplus V(\lambda_1)^{\oplus n_1}, \ W = M \oplus V(\lambda_1)^{\oplus n_1}.$$

Thus ch(L) = ch(M). Since dim $L < \dim V$, the result follows by induction on dimension.

3. Weyl Character Formula

The Weyl character formula allows one to calculate the character of an irreducible \mathfrak{g} -module as a function of its highest weight. Before stating the theorem, we will introduce some notation.

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let Π be a base for Δ . Let

$$\rho = \frac{1}{2} \sum_{\beta \in \Delta^+} \beta.$$

One can show that $\rho(h_{\alpha}) = 1$ for $\alpha \in \Pi$, so that $\rho \in P^+(\Pi)$.

Theorem 3.1. For $\lambda \in P^+(\Pi)$ one has that

$$\operatorname{ch} V(\lambda) = \frac{\sum_{w \in W} (-1)^{l(w)} e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in \Delta^+} (1-e^{\alpha})}.$$

For $\lambda = 0$, it follows that

$$1 = \operatorname{ch} V(0) = \frac{\sum_{w \in W} (-1)^{l(w)} e^{w(0+\rho)-\rho}}{\prod_{\alpha \in \Delta^+} (1-e^{\alpha})}.$$

Hence,

$$\prod_{\alpha \in \Delta^+} (1 - e^{\alpha}) = \sum_{w \in W} (-1)^{l(w)} e^{w(\rho) - \rho}.$$

Corollary 3.2. For $\lambda \in P^+(\Pi)$ one has that

$$\operatorname{ch} V(\lambda) = \frac{\sum_{w \in W} (-1)^{l(w)} e^{w(\lambda+\rho)}}{\sum_{w \in W} (-1)^{l(w)} e^{w(\rho)}}.$$