LIE ALGEBRAS: LECTURE 3 6 April 2010

CRYSTAL HOYT

1. SIMPLE 3-DIMENSIONAL LIE ALGEBRAS

Suppose L is a simple 3-dimensional Lie algebra over k, where k is algebraically closed. Then [L, L] = L, since otherwise either [L, L] would be a non-trivial ideal or L would be abelian. Also, L is not nilpotent, because otherwise Z(L) would be a non-trivial ideal in L. So, by Engel's Theorem, not every element of L is ad-nilpotent.

Choose $H \in L$ such that ad H is not nilpotent. Then ad H has a non-zero eigenvalue $\lambda \in k$ and a non-zero eigenvector $X \in L$, so that $[H, X] = \lambda X$. Since [H, H] = 0, H is an eigenvector of ad H with eigenvalue zero. Now $\operatorname{Tr}(\operatorname{ad} H) = 0$, because $H \in [L, L] = L$. We choose a basis for L such that $\operatorname{ad} H$ is in Jordan normal form. Using the fact that the dimension of L is 3, we see that the sum of the eigenvalues of ad H is zero. So there exists an eigenvector Y for ad H with eigenvalue $-\lambda$.

Since X, Y, H is an eigenbasis for the operator ad H, it is a basis for L. It remains for us to express [X, Y] in terms of this basis, say

$$[X, Y] = aX + bY + cH$$
, with $a, b, c \in k$.

Now by the Jacobi identity,

$$[H, [X, Y]] = [[H, X], Y] + [X, [H, Y]] = \lambda[X, Y] - \lambda[X, Y] = 0.$$

Also, $[H, [X, Y]] = [H, aX + bY + cH] = a\lambda X - b\lambda Y$, which implies that a, b = 0 and [X, Y] = cH. Since [L, L] = L, c must be non-zero. We may rescale H so that $\lambda = 2$, and we may then rescale X or Y so that c = 1. So we see that if k is algebraically closed, then the only simple 3 dimensional Lie algebra up to isomorphism is $\mathfrak{sl}_2(k)$.

If $k = \mathbb{R}$, then it is possible that the eigenvalue λ of $\mathrm{ad}H$ is not in k. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$, then the complex conjugates λ and $\overline{\lambda}$ would both be eigenvalues

of the real matrix ad H. Since $\operatorname{Tr}(\operatorname{ad} H) = 0$, we must have $\lambda = i$ and $\overline{\lambda} = -i$ (after rescaling H). So over \mathbb{C} ,

$$\mathrm{ad}H = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -i \end{array}\right)$$

Then over \mathbb{R} in some basis,

$$\mathrm{ad}H = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right).$$

So in some basis H, X, Y we have that [H, X] = Y and [H, Y] = -X. And as before, we obtain [X, Y] = cH for some non-zero $c \in \mathbb{R}$. Then by multiplying X and Y by an appropriate real scalar, we may assume that c is ± 1 .

If c = -1, then we are in the previous case, since

$$[Y, X + H] = X + H,$$

 $[Y, X - H] = -(X - H),$
 $[X + H, X - H] = 2Y.$

If c = 1, then we have

$$[H, X] = Y,$$
 $[X, Y] = H,$ $[Y, H] = X,$

which we recognize as the Lie algebra on \mathbb{R}^3 with [,] given by the vector product. This Lie algebra L is not isomorphic to \mathfrak{sl}_2 when $k = \mathbb{R}$, because there does not exist an $A \in L$ such that ad A has a real non-zero eigenvalue. Hence, when $k = \mathbb{R}$ we have two distinct simple 3-dimensional Lie algebras.

2. LEMMA

Lemma 2.1. Let A and B be ideals in a Lie algebra L. Then

$$[A, B] := \operatorname{span}\{[a, b] \mid a \in A, \ b \in B\}$$

is an ideal in L.

Proof. The set [A, B] is a vector subspace by definition, so we only need to check that $[L, [A, B]] \subseteq [A, B]$. Let $[x, [a, b]] \in [L, [A, B]]$, with $x \in L$, $a \in A$ and $b \in B$. By the Jacobi identity,

$$[x, [a, b]] = [[x, a], b] + [a, [x, b]].$$

Since A and B are ideals, we have that $[x, a] \in A$ and $[x, b] \in B$. Hence, $[x, [a, b]] \in [A, B]$. Since [L, [A, B]] is spanned by elements of this form, we conclude that $[L, [A, B]] \subseteq [A, B]$.

3. Solvable Lie Algebras

Define a sequence of ideals of L (the derived series) by

 $D^1L := [L, L], \qquad D^2L := [D^1L, D^1L], \qquad D^kL := [D^{k-1}L, D^{k-1}L].$ L is called solvable if $D^nL = 0$ for some n.

Example 3.1. Nilpotent Lie algebras are solvable, because $D^i L \subseteq D_i L$ for all *i*.

Example 3.2. The Lie algebra \mathfrak{b}_n of upper triangular matrices is solvable, but is not nilpotent. $\mathfrak{b}_n = \{a \in \mathfrak{gl}_n \mid a_{ij} = 0 \text{ for } i > j\}$

Observe that if [L, L] is solvable then L is solvable, since they share the same sequence of ideals. This statement is not true if we replace the word "solvable" with "nilpotent". A counter example is $[\mathfrak{b}_n, \mathfrak{b}_n] = \mathfrak{n}_n$ which is nilpotent, but \mathfrak{b}_n is not nilpotent.

Proposition 3.3. Let L be a Lie algebra.

- (1) If L is solvable, then so are all subalgebras and homomorphic images.
- (2) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.
- (3) If I, J are solvable ideals of L, then so is I + J.

Proof. (1) If K is a subalgebra of L, then $D^n K \subseteq D^n L$. If $\phi : L \to M$ is an epimorphism, then $\phi(D^n L) = D^n M$. This follows from $\phi([L, L]) = [\phi(L), \phi(L)]$ using induction.

(2) Suppose $D^n(L/I) = 0$. Let $\pi : L \to L/I$ be the canonical projection map. Then $\pi(D^nL) = 0$ implies $D^nL \subseteq I = \text{Ker }\pi$. Then if $D^mI = 0$ we conclude that $D^{m+n}L = D^m(D^nL) = 0$.

(3) If I, J are ideals, then one can check that $I+J := \{a+b \in L | a \in I, b \in J\}$ is an ideal. Note that $I, J \subset I + J$. By a standard isomorphism theorem

$$(I+J)/J \cong I/(I \cap J).$$

Suppose that I, J are solvable ideals of L. Then right hand side is solvable since it is a homomorphic image of I. Hence (I + J)/J is solvable, and by part (2) we conclude that I + J is solvable.

Corollary 3.4. A Lie algebra L is solvable (nilpotent) if and only if ad L is solvable (nilpotent).

Proof. " \Rightarrow " follows directly from part (1), since ad *L* is the image of the map ad. For " \Leftarrow ", observe that ad $L \cong L/\operatorname{Ker}(\operatorname{ad}) = L/Z(L)$. The claim then follows from part (2) and Proposition 2.2 (2), since the center Z(L) is abelian, and hence solvable.

The third part of this lemma yields the existence of a unique maximal solvable ideal, called the *radical* of L and denoted Rad L. If Rad L = 0, then L is called *semisimple*.

The quotient algebra $L/\operatorname{Rad} L$ is semisimple. A semisimple Lie algebra has a trivial center. Hence, the adjoint representation of a semisimple Lie algebra is faithful.

4. LIE'S THEOREM

In this course, we will now assume that our field \mathbb{F} is algebraically closed and has characteristic zero, unless explicitly stated otherwise. We saw an example illustrating the fact that working over \mathbb{R} is not the same as working over \mathbb{C} .

Theorem 4.1 (Lie's Theorem). Assume that the field \mathbb{F} is algebraically closed and has characteristic zero. Let L be a solvable subalgebra of $\mathfrak{gl}(V)$, with dim V = n where n is non-zero and finite. Then V contains a common eigenvector for all endomorphisms in L.

Thus, there exists a flag (V_i) in V which is stabilized by L, i.e. for all $x \in L$ we have hat $xV_i \subseteq V_i$ for all i. In other words, there exists a basis of V relative to which L is a subalgebra of \mathfrak{b}_n , where $n = \dim V$.

Proof. The second statement follows directly from the first. We prove the first statement by using induction on the dimension of L. If dim L = 1, then $L = \mathbb{F}x$. Since \mathbb{F} is algebraically closed and dim V is finite, x has an eigenvector v in V. Then v is an eigenvector for all elements of L. Now suppose

that assertion holds when $\dim L < m$.

First, we find an ideal of codimension 1. Since L is solvable, $[L, L] \neq L$. Now any subspace of L which contains [L, L] is an ideal in L. Hence, L has an ideal of codimension 1: $L = I \oplus \mathbb{F}Z$.

Now by induction hypothesis, there exists a common eigenvector $v \in V$ for all elements of I. So there is a linear function $\lambda : I \to \mathbb{F}$ such that for every $y \in I$ we have $y.v = \lambda(y)v$. Let

$$W = \{ w \in V \mid y.w = \lambda(y)w \text{ for all } y \in I \}.$$

Then $v \in W$, so $W \neq 0$. One can show that W is a vector subspace of L.

We will show that L stabilizes W. Fix $x \in L$ and $w \in W$. We need to prove that $x.w \in W$. In particular, we need to show that for all $y \in I$, $y.(x.w) = \lambda(y)x.w$. Now

$$y.(x.w) = x.(y.w) - [x,y].w = \lambda(y)x.w - \lambda([x,y])w,$$

since $[x, y] \in I$. Thus, we need to prove that $\lambda([x, y]) = 0$, for all $y \in I$. For each $k \in \mathbb{N}$, let W_k denote the span of $w, x.w, \ldots, x^{k-1}.w$. Set $W_0 = 0$. Let n > 0 be the smallest integer for which $W_n = W_{n+1}$. Then x maps W_n into W_n . Moreover dim $W_k = k$ for $k \leq n$.

We claim that for all $y \in I$,

$$y.x^k.w = \lambda(y)x^k.w \pmod{W_k},$$

and we prove this by induction on k. For k = 0, this follows from the definition of W. Suppose the claim holds for k - 1. Now

$$yx^{k}w = xyx^{k-1}w - [x, y]x^{k-1}w.$$

Since I is an ideal, we have $[x, y] \in I$. Then by induction hypothesis,

$$[x, y]x^{k-1}w = \lambda([x, y])x^{k-1}w \pmod{W_{k-1}}$$

and

$$yx^{k-1}w = \lambda(y)x^{k-1}w \pmod{W_{k-1}}.$$

So $[x, y]x^{k-1}w \in W^k$. Hence, the claim follows.

This proves that with respect to the basis $w, x.w, \ldots, x^{n-1}.w$, each $y \in I$ is an upper triangular matrix with diagonal entries all equal to $\lambda(y)$. In particular, $\operatorname{Tr} y = n\lambda(y)$. Now the commutator [x, y] has trace zero. Thus, $0 = \operatorname{Tr}[x, y] = n\lambda([x, y])$ implies that $\lambda([x, y]) = 0$ (since we assumed char $\mathbb{F} = 0$).

Finally, since L stabilizes W and \mathbb{F} is algebraically closed there exists an eigenvector $v_0 \in W$ for Z, where $L = I \oplus \mathbb{F}Z$. Thus v_0 is a common eigenvector for all of L.

Note . If L is a solvable finite dimensional Lie algebra and

 $\phi: L \to \mathfrak{gl}(V)$

is a finite dimensional representation, then Lie's Theorem applies to the image $\phi(L) \subseteq \mathfrak{gl}(V)$. In particular, Lie's Theorem provides us with information about the structure of a representation of a solvable Lie algebra.

Corollary 4.2. Let L be a solvable (finite dimensional) Lie algebra. Then there exists a chain of ideals of L

$$0 = L_0 \subset L_1 \subset \cdots \subset L_n = L,$$

such that $\dim L_i = i$.

Proof. Apply Lie's Theorem to the image of the adjoint representation. A subspace of L stable under the adjoint action is an ideal in L.

Corollary 4.3. If L is a solvable (finite dimensional) Lie algebra, then [L, L] is nilpotent.

Proof. Consider the adjoint representation $\operatorname{ad} : L \to \mathfrak{gl}(L)$. By Lie's Theorem, there exists a basis such that the image $\operatorname{ad}(L) \subseteq \mathfrak{b}_n$, where $n = \dim L$. Then $\operatorname{ad}([L, L]) = [\operatorname{ad}(L), \operatorname{ad}(L)] \subseteq \mathfrak{n}_n$. Hence, $\operatorname{ad} x$ is nilpotent for any $x \in [L, L]$. By Engel's theorem, we conclude that [L, L] is nilpotent. \Box