LIE ALGEBRAS: LECTURE 5 27 April 2010

CRYSTAL HOYT

1. MODULES

Let L be a Lie algebra. A vector space V with an operation

$$L \times V \to V$$
$$(x, v) \mapsto x.v$$

is called an *L*-module if for all $x, y \in L$, $v, w \in V$, $a, b \in \mathbb{F}$ the following conditions hold:

- (1) (ax + by).v = a(x.v) + b(y.v)
- (2) x.(av + bw) = a(x.v) + b(x.w)
- (3) [xy].v = x.y.v y.x.v.

Example 1.1. If $\phi : L \to \mathfrak{gl}(V)$ is a representation of L, then V is an L-module via the action $x.v = \phi(x)v$. Conversely, if V is an L-module then $\phi(x)v = x.v$ defines a representation.

Fix a Lie algebra L, and let V and W be L-modules. An L-module homomorphism is a linear map $f: V \to W$ such that f(x.v) = x.f(v) for all $x \in L$ and $v \in V$. The kernel of this map is an L-submodule of V.

If $f: V \to W$ is an *L*-module homomorphism and is an isomorphism of vector spaces, then $f^{-1}: W \to V$ is also an *L*-module homomorphism. In this case, we call f an *isomorphism* of *L*-modules, and the modules V and W are called *equivalent representations* of L.

An *L*-module *V* is called *irreducible* (or *simple*) if it has precisely two *L*-submodules: itself and 0. A *direct sum* of *L*-modules V_1, \ldots, V_t is a direct sum of vector spaces $V_1 \oplus \cdots \oplus V_t$, with the action of *L* defined:

$$x.(v_1, v_2, \dots, v_t) = (x.v_1, x.v_2, \dots, x.v_t).$$

An *L*-module *V* is called *completely reducible* (or *semisimple*) if *V* is a direct sum of irreducible of *L*-submodules. If *V* is finite dimensional, then this is equivalent to the condition that each *L*-submodule *W* of *V* has a complement submodule W' such that $V = W \oplus W'$.

Example 1.2. If *L* is a one dimensional Lie algebra, say $L = \mathbb{F}x$. Then the module *V* given by the representation $\phi : L \to \mathfrak{gl}_2$ with

$$\phi(x) = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

is not completely reducible. Indeed, let $\{v_1, v_2\}$ be a basis for the vector space V. Then v_1 is an eigenvector for $\phi(x)$ with eigenvalue 0. So $\mathbb{F}v_1$ is an L-submodule of V. Now suppose $M = \mathbb{F}(av_1 + bv_2)$ is the 1-dimensional compliment submodule to $\mathbb{F}v_1$, so that $V = \mathbb{F}v_1 \oplus M$ is a direct sum of modules. Then $b \neq 0$, since $\{v_1, (av_1 + bv_2)\}$ is a vector space basis for V. But $\phi(x)(av_1 + bv_2) = bv_1$, so M is not a submodule. Hence, the module V is not completely reducible.

Example 1.3. Two representations $\phi_1 : L \to \mathfrak{gl}(V)$ and $\phi_2 : L \to \mathfrak{gl}(W)$ are equivalent if there exists a linear isomorphism $f : V \to W$ such that f(x.v) = x.f(v) for all $v \in V$, or equivalently, such that $f(\phi_1(x)v) = \phi_2(x)f(v)$ for all $x \in L, v \in V$. Thus, the representations ϕ_1 and ϕ_2 are equivalent if and only if there exists a linear isomorphism $f : V \to W$ such that $f\phi_1(x)f^{-1} = \phi_2(x)$ for all $x \in L$. So two representations are equivalent when one is obtained from the other by conjugation, i.e. a change a basis if V = W as vector spaces.

Let L be a one dimensional Lie algebra, say $L = \mathbb{F}x$. Then a representation $\phi: L \to \mathfrak{gl}(V)$ is determined by the image of x, i.e. it is determined by the endomorphism $\phi(x) \in \mathfrak{gl}(V)$. Hence, the classification of n-dimensional representations is equivalent to the classification of square matrices up to conjugation. When the base field \mathbb{F} is algebraically closed, there is a bijection between isomorphism classes of n-dimensional representations and $n \times n$ -matrices in Jordan normal form. In this case, simple modules are one dimensional and finite dimensional modules are not completely reducible. Why? Because, an upper triangular matrix preserves a flag of submodules, so a module can only be simple if it is one dimensional. Also, not all finite dimensional modules are completely reducible, since not all matrices are diagonalizable.

Example 1.4. Let L be a solvable Lie algebra over a field \mathbb{F} which is algebraically closed and has characteristic zero. Then all irreducible finite dimensional representations of L are 1-dimensional. This follows immediately by applying Lie's Theorem to the image of the representation, $\phi(L) \subset \mathfrak{gl}_n$. If $n \neq 1$, then we have a non-trivial flag of submodules.

Denote by $\operatorname{Hom}_L(V, W)$ the collection of all *L*-module homomorphisms from *V* to *W*. This is a vector space over \mathbb{F} , since if $a \in \mathbb{F}$, $f, g \in \operatorname{Hom}_L(V, W)$ then $af, f + g \in \operatorname{Hom}_L(V, W)$, where (f + g)(v) := f(v) + g(v).

Lemma 1.5 (Schur's Lemma). Suppose that the base field \mathbb{F} is algebraically closed. Let V be a simple finite dimensional module over a Lie algebra L. Then $Hom_L(V, V) = \mathbb{F} \cdot id$. Thus, the only endomorphisms of V commuting with $\phi(L)$ are the scalars.

Proof. Let $f \in \text{Hom}_L(V, V)$. For any $c \in \mathbb{F}$ the linear operator $(f - c \cdot id)$ is an L-module homomorphism. It must be either injective or zero, since the kernel is a submodule of V. If $f: V \to V$ is injective then it is an isomorphism, since V is finite dimensional. Thus, $(f - c \cdot id)$ is either an isomorphism or zero. If c is an eigenvalue of f, then $(f - c \cdot id)$ has a non-zero kernel, implying $(f - c \cdot id) = 0$. Hence, $f = c \cdot id$ for some $c \in \mathbb{F}$, since \mathbb{F} is algebraically closed. If $f: V \to V$ is an endomorphism of the simple module V such that $f \circ \phi(x) = \phi(x) \circ f$ for all $x \in L$, then $f = c \cdot id$ for some $c \in \mathbb{F}$.

Given an *L*-module *V* we construct the *dual module* using the dual vector space V^* . We define an action of *L* on V^* as follows: for $f \in V^*$, $x \in L$, $v \in V$, let (x.f)(v) = -f(x.v). One can check that ([xy].f)(v) = ((x.y - y.x).f)(v).

2. Casimir element

Let L be a semisimple Lie algebra, and let $\phi: L \to \mathfrak{gl}(V)$ be a representation. Define a symmetric invariant bilinear form $\beta(x, y) = \operatorname{Tr}(\phi(x)\phi(y))$ on L, called the *trace form*. The kernel of $\beta(x, y)$, denote Ker β , is a ideal in L. If ϕ is a faithful representation, then $\beta(x, y)$ is nondegenerate. Indeed, by Cartan's Criterion, $\phi(\operatorname{Ker} \beta)$ is a solvable ideal in $\phi(L)$. If ϕ is a faithful representation, so that $L \cong \phi(L) \subset \mathfrak{gl}(V)$, then Ker $\beta (\cong \phi(\operatorname{Ker} \beta))$ is a solvable ideal in $L (\cong \phi(L))$. Since L is semisimple this implies Ker $\beta = 0$.

Let L be a Lie algebra, and let β be a nondegenerate symmetric invariant bilinear form on L. Let $\{x_1, \ldots, x_n\}$ be a basis of L, and let $\{y_1, \ldots, y_n\}$ be dual basis relative to β , i.e. $\beta(x_i, y_j) = \delta_{ij}$. The dual basis exists when $\beta(x, y)$ is symmetric nondegenerate, because the corresponding matrix M_B is invertible, so we can solve the following system for the vectors y_i :

$$\begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{pmatrix} M_B \begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix} = I.$$

For each $x \in L$, we can write $[x, x_i] = \sum_j a_{ij} x_j$ and $[x, y_i] = \sum_j b_{ij} y_j$. Then we can show that $a_{ik} = -b_{ki}$ using the fact that β is invariant.

$$a_{ik} = \sum_{j} a_{ij} \delta_{jk} = \sum_{j} a_{ij} \beta(x_j, y_k)$$

= $\beta([x, x_i], y_k) = -\beta([x_i, x], y_k) = -\beta(x_i, [x, y_k])$
= $-\sum_{j} b_{kj} \beta(x_i, y_j) = -b_{ki}$

Let $\phi: L \to \mathfrak{gl}(V)$ be a representation of L, and let

$$c_{\phi}(\beta) = \sum_{i} \phi(x_i)\phi(y_i) \in \text{End } (V).$$

Now if $x, y, z \in \mathfrak{gl}(V)$, then [x, yz] = [x, y]z + y[x, z]. So

$$[\phi(x), c_{\phi}(\beta)] = \sum_{i} [\phi(x), \phi(x_{i})]\phi(y_{i}) + \sum_{i} \phi(x_{i})[\phi(x), \phi(y_{i})]$$
$$= \sum_{i,j} a_{ij}\phi(x_{j})\phi(y_{i}) + \sum_{i,j} b_{ij}\phi(x_{i})\phi(y_{j})$$
$$= 0.$$

Thus, $c_{\phi}(\beta)$ is an endomorphism of V which commutes with $\phi(L)$.

Now suppose $\phi : L \to \mathfrak{gl}(V)$ is a faithful representation, so that the trace form $\beta(x, y) = \operatorname{Tr}(\phi(x), \phi(y))$ is nondegenerate. Fix a basis $\{x_1, \ldots, x_n\}$. Then c_{ϕ} is called the *Casimir element* of ϕ , and

$$\operatorname{Tr}(c_{\phi}) = \sum_{i} \operatorname{Tr}(\phi(x_i)\phi(y_i)) = \sum_{i} \beta(x_i, y_i) = \dim L.$$

If ϕ is an irreducible representation, then by Schur's Lemma, c_{ϕ} is a scalar (equal to dim $L/\dim V$), and so is independent of the choice of basis.

Example 2.1. Let $L = sl_2(\mathbb{F})$ and consider the natural representation ϕ : $L \to \mathfrak{gl}(V)$, dim V = 2. The dual basis with respect to the trace form of the standard basis $\{e, h, f\}$ is: $\{f, h/2, e\}$. So $c_{\phi} = ef + \frac{1}{2}hh + fe = \begin{pmatrix} \frac{3}{2} & 0\\ 0 & \frac{3}{2} \end{pmatrix}$.

If L is semisimple but $\phi : L \to \mathfrak{gl}(V)$ is not faithful, then $L = \ker \phi \oplus L'$. Then the restriction of ϕ to L' is a faithful representation with $\phi(L) = \phi(L')$. The Casimir element c_{ϕ} of $\phi : L \to \mathfrak{gl}(V)$ is defined to be the Casimir element of $\phi : L' \to \mathfrak{gl}(V)$. It commutes with $\phi(L)$ since $\phi(L) = \phi(L')$.