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1. Modules

Let L be a Lie algebra. A vector space V with an operation

L× V → V

(x, v) 7→ x.v

is called an L-module if for all x, y ∈ L, v, w ∈ V , a, b ∈ F the following
conditions hold:

(1) (ax + by).v = a(x.v) + b(y.v)
(2) x.(av + bw) = a(x.v) + b(x.w)
(3) [xy].v = x.y.v - y.x.v.

Example 1.1. If φ : L → gl(V ) is a representation of L, then V is an L-
module via the action x.v = φ(x)v. Conversely, if V is an L-module then
φ(x)v = x.v defines a representation.

Fix a Lie algebra L, and let V and W be L-modules. An L-module homo-
morphism is a linear map f : V → W such that f(x.v) = x.f(v) for all x ∈ L
and v ∈ V . The kernel of this map is an L-submodule of V .

If f : V → W is an L-module homomorphism and is an isomorphism of
vector spaces, then f−1 : W → V is also an L-module homomorphism. In
this case, we call f an isomorphism of L-modules, and the modules V and
W are called equivalent representations of L.

An L-module V is called irreducible (or simple) if it has precisely two L-
submodules: itself and 0. A direct sum of L-modules V1, . . . , Vt is a direct
sum of vector spaces V1 ⊕ · · · ⊕ Vt, with the action of L defined:

x.(v1, v2, . . . , vt) = (x.v1, x.v2, . . . , x.vt).
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An L-module V is called completely reducible (or semisimple) if V is a direct
sum of irreducible of L-submodules. If V is finite dimensional, then this is
equivalent to the condition that each L-submodule W of V has a compliment
submodule W ′ such that V = W ⊕W ′.

Example 1.2. If L is a one dimensional Lie algebra, say L = Fx. Then the
module V given by the representation φ : L→ gl2 with

φ(x) =

(
0 1
0 0

)
is not completely reducible. Indeed, let {v1, v2} be a basis for the vector
space V . Then v1 is an eigenvector for φ(x) with eigenvalue 0. So Fv1 is
an L-submodule of V . Now suppose M = F(av1 + bv2) is the 1-dimensional
compliment submodule to Fv1, so that V = Fv1 ⊕ M is a direct sum of
modules. Then b 6= 0, since {v1, (av1 + bv2)} is a vector space basis for V .
But φ(x)(av1 + bv2) = bv1, so M is not a submodule. Hence, the module V
is not completely reducible.

Example 1.3. Two representations φ1 : L→ gl(V ) and φ2 : L→ gl(W ) are
equivalent if there exists a linear isomorphism f : V → W such that f(x.v) =
x.f(v) for all v ∈ V , or equivalently, such that f(φ1(x)v) = φ2(x)f(v) for all
x ∈ L, v ∈ V . Thus, the representations φ1 and φ2 are equivalent if and only
if there exists a linear isomorphism f : V → W such that fφ1(x)f−1 = φ2(x)
for all x ∈ L. So two representations are equivalent when one is obtained
from the other by conjugation, i.e. a change a basis if V = W as vector spaces.

Let L be a one dimensional Lie algebra, say L = Fx. Then a representa-
tion φ : L→ gl(V ) is determined by the image of x, i.e. it is determined by
the endomorphism φ(x) ∈ gl(V ). Hence, the classification of n-dimensional
representations is equivalent to the classification of square matrices up to
conjugation. When the base field F is algebraically closed, there is a bi-
jection between isomorphism classes of n-dimensional representations and
n× n-matrices in Jordan normal form. In this case, simple modules are one
dimensional and finite dimensional modules are not completely reducible.
Why? Because, an upper triangular matrix preserves a flag of submodules,
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so a module can only be simple if it is one dimensional. Also, not all fi-
nite dimensional modules are completely reducible, since not all matrices are
diagonalizable.

Example 1.4. Let L be a solvable Lie algebra over a field F which is al-
gebraically closed and has characteristic zero. Then all irreducible finite di-
mensional representations of L are 1-dimensional. This follows immediately
by applying Lie’s Theorem to the image of the representation, φ(L) ⊂ gln.
If n 6= 1, then we have a non-trivial flag of submodules.

Denote by HomL(V,W ) the collection of all L-module homomorphisms
from V to W . This is a vector space over F, since if a ∈ F, f, g ∈ HomL(V,W )
then af, f + g ∈ HomL(V,W ), where (f + g)(v) := f(v) + g(v).

Lemma 1.5 (Schur’s Lemma). Suppose that the base field F is algebraically
closed. Let V be a simple finite dimensional module over a Lie algebra L.
Then HomL(V, V ) = F · id. Thus, the only endomorphisms of V commuting
with φ(L) are the scalars.

Proof. Let f ∈ HomL(V, V ). For any c ∈ F the linear operator (f−c·id) is an
L-module homomorphism. It must be either injective or zero, since the kernel
is a submodule of V . If f : V → V is injective then it is an isomorphism,
since V is finite dimensional. Thus, (f − c · id) is either an isomorphism or
zero. If c is an eigenvalue of f , then (f−c·id) has a non-zero kernel, implying
(f − c · id) = 0. Hence, f = c · id for some c ∈ F, since F is algebraically
closed. If f : V → V is an endomorphism of the simple module V such that
f ◦ φ(x) = φ(x) ◦ f for all x ∈ L, then f = c · id for some c ∈ F. �

Given an L-module V we construct the dual module using the dual vector
space V ∗. We define an action of L on V ∗ as follows: for f ∈ V ∗, x ∈ L, v ∈ V ,
let (x.f)(v) = −f(x.v). One can check that ([xy].f)(v) = ((x.y − y.x).f)(v).
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2. Casimir element

Let L be a semisimple Lie algebra, and let φ : L→ gl(V ) be a representa-
tion. Define a symmetric invariant bilinear form β(x, y) = Tr(φ(x)φ(y)) on
L, called the trace form. The kernel of β(x, y), denote Ker β, is a ideal in
L. If φ is a faithful representation, then β(x, y) is nondegenerate. Indeed,
by Cartan’s Criterion, φ(Ker β) is a solvable ideal in φ(L). If φ is a faithful
representation, so that L ∼= φ(L) ⊂ gl(V ), then Ker β (∼= φ(Ker β)) is a
solvable ideal in L (∼= φ(L)). Since L is semisimple this implies Ker β = 0.

Let L be a Lie algebra, and let β be a nondegenerate symmetric invariant
bilinear form on L. Let {x1, . . . , xn} be a basis of L, and let {y1, . . . , yn}
be dual basis relative to β, i.e. β(xi, yj) = δij. The dual basis exists when
β(x, y) is symmetric nondegenerate, because the corresponding matrix MB

is invertible, so we can solve the following system for the vectors yi:


xT1
xT2
...
xTn

MB

(
y1 y2 · · · yn

)
= I.

For each x ∈ L, we can write [x, xi] =
∑

j aijxj and [x, yi] =
∑

j bijyj. Then
we can show that aik = −bki using the fact that β is invariant.

aik =
∑
j

aijδjk =
∑
j

aijβ(xj, yk)

= β([x, xi], yk) = −β([xi, x], yk) = −β(xi, [x, yk])

= −
∑
j

bkjβ(xi, yj) = −bki

Let φ : L→ gl(V ) be a representation of L, and let

cφ(β) =
∑
i

φ(xi)φ(yi) ∈ End (V ).
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Now if x, y, z ∈ gl(V ), then [x, yz] = [x, y]z + y[x, z]. So

[φ(x), cφ(β)] =
∑
i

[φ(x), φ(xi)]φ(yi) +
∑
i

φ(xi)[φ(x), φ(yi)]

=
∑
i,j

aijφ(xj)φ(yi) +
∑
i,j

bijφ(xi)φ(yj)

= 0.

Thus, cφ(β) is an endomorphism of V which commutes with φ(L).

Now suppose φ : L → gl(V ) is a faithful representation, so that the trace
form β(x, y) = Tr(φ(x), φ(y)) is nondegenerate. Fix a basis {x1, . . . , xn}.
Then cφ is called the Casimir element of φ, and

Tr(cφ) =
∑
i

Tr(φ(xi)φ(yi)) =
∑
i

β(xi, yi) = dimL.

If φ is an irreducible representation, then by Schur’s Lemma, cφ is a scalar
(equal to dimL/ dimV ), and so is independent of the choice of basis.

Example 2.1. Let L = sl2(F) and consider the natural representation φ :
L→ gl(V ), dimV = 2. The dual basis with respect to the trace form of the

standard basis {e, h, f} is: {f, h/2, e}. So cφ = ef + 1
2hh+ fe =

( 3
2 0
0 3

2

)
.

If L is semisimple but φ : L → gl(V ) is not faithful, then L = ker φ ⊕ L′.
Then the restriction of φ to L′ is a faithful representation with φ(L) = φ(L′).
The Casimir element cφ of φ : L→ gl(V ) is defined to be the Casimir element
of φ : L′ → gl(V ). It commutes with φ(L) since φ(L) = φ(L′).
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