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The goal of representation theory is to study abstract Lie algebras by map-
ping them to matrix Lie algebras, where we can apply Linear Algebra tech-
niques to study the image and gain information about the abstract Lie alge-
bra.

1. Weyl’s Theorem

Lemma 1.1. Let φ : L → gl(V ) be a representation of a semisimple Lie
algebra L. Then φ(L) ⊂ sl(V ). In particular, L acts trivially on any one
dimensional L-module.

Proof. Since L = [L,L] and [gl(V ), gl(V )] = sl(V ), we have

φ(L) = φ([L,L]) = [φ(L), φ(L)] ⊂ [gl(V ), gl(V )] = sl(V ).

The second claim follows from the fact that a 1× 1-matrix with trace zero is
identically zero. �

Let Hom(V,W ) be the vector space of linear maps from V to W . If V and
W are L-modules, then L acts naturally on Hom(V,W ) as follows: for x ∈ L
and f ∈ Hom(V,W ), let (x.f)(v) := x.f(v)− f(x.v)

Theorem 1.2 (Weyl’s Theorem). Let φ : L→ gl(V ) be a finite dimensional
representation of a semisimple Lie algebra. Then φ is completely reducible.

Proof. First we prove that an L-submodule W of codimension one has a com-
plementary submodule in V . Now L acts trivially on the one dimensional
module V/W , by the lemma. We denote this module by F . Then the se-
quence 0→ W → V → F → 0 is an exact sequence of L-modules.

By induction on the dimension of W we will reduce to the case that W
is irreducible. Suppose that W ′ is a proper non-zero submodule of W , then
0 → W/W ′ → V/W ′ → F → 0 is an exact sequence of L-modules. By
induction, this sequence “splits”, that is, there exists a one dimensional sub-
module of V/W ′ which is complementary to W/W ′, call it W̃/W ′. Then
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V/W ′ = W/W ′ ⊕ W̃/W ′, and 0 → W ′ → W̃ → F → 0 is exact. By
induction there is a one dimensional submodule X complementary to W ′

in W̃ , so that W̃ = W ′ ⊕ X. Then V = W ⊕ X since W ∩ X = 0 and
dimW + dimX = dimV .

Now we may assume that W is irreducible. (We may assume without loss
of generality that L acts faithfully on V via φ, by replacing L with L′, where
L = L′⊕ ker φ.) Let cφ be the Casimir element of φ. Since c = cφ commutes
with φ(L), c is an L-module endomorphism of V . So c(W ) ⊂ W , and ker c
is an L-submodule of V . Since L acts trivially on V/W , c must also act
trivially since it is a linear combination of products of φ(x) with x ∈ L. So
c has trace zero on V/W . By Schur’s Lemma, c acts by a scalar on the irre-
ducible submodule W , which cannot also be zero since Tr

V
(c) = dimL 6= 0.

Hence, the kernel of c is a one dimensional L-submodule which intersects W
trivially. Hence, V = W ⊕ ker c.

Now we handle the general case. Let W be a proper non-zero submodule
of V . Then 0 → W → V → V/W → 0 is exact. Let Hom(V,W ) be the
space of linear maps from V to W , viewed as an L-module. Let V be the
subspace of Hom(V,W ) consisting of the maps whose restriction to W is just
scalar multiplication. Then V is a submodule. Suppose f |

W
= a · 1

W
, then

for x ∈ L, w ∈ W , (x.f)(w) = x.f(w) − f(x.w) = a(x.w) − a(x.w) = 0.
Thus (x.f) |

W
= 0. Let W be the subspace of V consisting of the maps

whose restriction of W is zero. By the previous calculation, W is also a
submodule. Also, V/W has dimension one, since each f ∈ V is determined
modulo W by the scalar f |

W
. So we have an exact sequence of L-modules

0→W → V → F → 0.

By the first part of the proof, W has a one dimensional complement sub-
module in V . Let f : V → W span this submodule, and after multiplying
by a scalar we may assume that f |

W
= 1

W
. Since this spans a one dimen-

sional submodule, L acts trivially. So for all x ∈ L and v ∈ V , we have
0 = (x.f)(v) = x.f(v) − f(x.v). Hence, f is an L-module homomorphism
from V to W . Hence, ker f is an L-submodule of V . Since f maps V into
W and acts by 1

W
on W , we conclude that V = W ⊕ ker f . �
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2. sl2(F) is simple

Let V be a finite dimensional vector space over a field F, and f ∈ End V .
We call f semisimple if the roots of its minimal polynomial are all distinct.
When F is algebraically closed, this is equivalent to the condition that f is
diagonalizable (i.e. there exists a basis for V in which f is a diagonal matrix).
If f is diagonalizable, then V = ⊕λ∈SVλ, where Vλ = {x ∈ V | f(x) = λx} is
the eigenspace of the eigenvalue λ, and S is the set of eigenvalues of f .

Lemma 2.1. Let f ∈ End(V ) be diagonalizable and let W be an f -invariant
subspace of V (i.e. f(W ) ⊂ W ). Then

W = ⊕λ∈SWλ where Wλ = W ∩ Vλ.
Proof. Clearly ⊕λ∈SWλ ⊂ W . Now let x ∈ W . Then x =

∑
λ∈S xλ with

xλ ∈ Vλ. We need to show that xλ ∈ W for each λ ∈ S. Now fk(x) ∈ W for
each k, so ∑

λ∈S

λkxλ =
∑
λ∈S

fk(xλ) = fk(x) ∈ W.

Let T = {λ ∈ S | xλ 6= 0} and t = |T |, so that T = {λ1, . . . , λt}. Then
1 1 . . . 1
λ1 λ2 . . . λt
...

... . . .
...

λt−1
1 λt−1

2 . . . λt−1
t



xλ1

xλ2

...
xλt

 =


x

f(x)
...

f t−1(x)

 .

The determinant of the Vandermonde matrix is

Πi<j(λi − λj) 6= 0,

and hence it is invertible. Therefore, each xλ can be expressed as a linear
combination of the elements x, f(x), . . . , fk−1(x) ∈ W . �

Lemma 2.2. The Lie algebra sl2(F) is simple.

Proof. We now have two ways to see that sl2(F) is simple. The first method
is to use the 4th homework problem from the third assignment, which states
that a 3-dimensional Lie algebra L with L = [L,L] is simple. The second
method is to prove it directly using the above lemma. Let {e, h, f} be the
standard basis for sl2(F). This is an eigenbasis of L for adh ∈ gl(L). In
particular, adh is diagonalizable. An ideal I of L (a submodule of the adjoint
action) should thus be spanned by a subset of {e, h, f}. It is easy to check
that it not possible to have a non-empty proper subset span an ideal. �
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3. Representation theory of sl2(C)

By Weyl’s Theorem, all finite dimensional representations of sl2(C) are
completely reducible. So we only need to study the irreducible representa-
tions of sl2(C) to describe all finite dimensional representations.

Let e, h, f be the standard basis of sl2(C). Then [h, x] = 2x, [h, y] = −2y,
and [xy] = h. A (non-zero) vector v of an sl2-module V is called a weight
vector if h.v ∈ Cv. The vector v is said to be of weight λ (λ ∈ C) if h.v = λv.
The vector v is called primitive if e.v = 0.

Lemma 3.1. If v ∈ Vλ, then e.v ∈ Vλ+2 and f.v ∈ Vλ−2.

Proof. We have that h.(e.v) = [h, e].v + e.(h.v) = 2e.v + λe.v = (λ + 2)e.v,
and h.(f.v) = [h, f ].v + f.(h.v) = −2f.v + λf.v = (λ− 2)f.v. �

Lemma 3.2. A finite dimensional sl2-module has a primitive vector.

Proof. Let V be an finite dimensional sl2-module. Then the endomorphism
h : V → V has a (non-zero) eigenvector v ∈ Vλ for some λ ∈ C. By the above
lemma, ek.v ∈ Vλ+2k. Since V is finite dimensional and nonzero eigenvectors
are linearly independent, we must have that ek.v = 0 for some k. Choose
k ∈ N such that ek.v 6= 0 but ek+1.v = 0. Then ek.v is a primitive vector for
the module V . �

Let V be an irreducible finite dimensional sl2-module, and let v0 be a
primitive vector. Set vn = fn.v0.

Lemma 3.3. For n ≥ 0,
(a) h.vn = (λ− 2n)vn,
(b) f.vn = vn+1,
(c) e.vn = n(λ+ 1− n)vn−1.

Proof. Part (a) follows from simple induction using Lemma 3.1, and (b) is
true by definition. Now e.v0 = 0 since v0 is a primitive vector. Now suppose
that e.vn−1 = (n− 1)(λ+ 1− (n− 1))vn−2. Then

e.vn = e.f.vn−1

= [e, f ].vn−1 + f.e.vn−1

= h.vn−1 + (n− 1)(λ+ 1− (n− 1))f.vn−2

= (λ− 2(n− 1))vn−1 + (n− 1)(λ− (n− 2))vn−1

= n(λ+ 1− n)vn−1.
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Claim 3.4. V = span{v0, v1, . . . , vm}

By part (a), the nonzero vectors vn are linearly independent. Since V is fi-
nite dimensional, there is an integer m such that vm 6= 0 and vm+1 = 0. Then
the subspace of V with basis {v0, v1, . . . , vm} is a non-zero L-submodule of
V . Since V is irreducible, this subspace must be all of V .

Claim 3.5. λ = m for some m ∈ Z.

Now by part (c) of the previous lemma,

0 = e.vm+1 = (m+ 1)(λ+ 1− (m+ 1))vm,

which implies that λ = m ∈ N. Thus, h.v0 = mv0 where m is a non-negative
integer. The weight of the maximal vector is called the highest weight of V .
Thus, V = V−m⊕V−m+2⊕· · ·⊕Vm−2⊕Vm, where each weight space has dimen-
sion one. The module V is determined uniquely by m since dimV = m+ 1.

Claim 3.6. V is irreducible

The action of sl2(C) on V is determined by the formulas given above.
The fact that this module is irreducible follows from Lemma 2.1. Since h is
diagonalizable on V , it is also diagonalizable on a submodule. So a submodule
must be spanned by a subset of the vn, but this is impossible for a proper
subset. Hence, we have proven:

Theorem 3.7. Let V be an irreducible finite dimensional representation of
sl2(C), and let v0 be a primitive vector of weight λ. Then λ ∈ N. The set
{v0, v1, . . . , vm} is a vector space basis of V , so dimV = λ + 1. The module
structure of V is given by the above formulas.

It remains to check whether there exists an irreducible sl2(C)-module of
each possible highest weight m = 0, 1, 2, . . .. It suffices to show that the
equations above define an sl2(C)-module structure on the vector space V (m)
with basis {v0, v1, . . . , vm}. For this one should check that the matrices de-
fined by these equations satisfy the structural equations for sl2(C).
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Claim 3.8. If V is a finite dimensional sl2-module, then the eigenvalues of
h are all integers and dimVµ = dimV−µ. Moreover,the number of irreducible
summands is dimV0+dimV1. For each m ∈ N, the multiplicity of each V (m)
in V is equal to dimVm − dimVm+2.

By Weyl’s Theorem V is a direct sum of irreducible modules as described
above. Suppose W is an irreducible module with highest weight m for
some nonnegative integer m. Then eigenspaces of W are all integers and
W = W−m ⊕W−m+2 ⊕ · · · ⊕Wm−2 ⊕Wm.

Notation: We have shown that the irreducible sl2(C)-module V (m) has
a basis {v0, v1, . . . , vm} with the action of sl2(C) defined by the equations in
Lemma 3.3. Denote V = V (m). We have also shown that V = V−m⊕V−m+2⊕
· · · ⊕ Vm−2⊕ Vm, so it is convenient to relabel this basis so that vk ∈ Vk with
k ∈ {−m,−m+ 2, . . . ,m− 2,m}. Then the equations in Lemma 3.3 become

(a) h.vk = kvk

(b) f.vk = vk−2

(c) e.vk =

(
m− k

2

)(
m+ k + 2

2

)
vk+2.

Example 3.9. We will compute the irreducible submodules of the sl2(C)-
module M := V (1)⊗ V (1). Since {v1, v−1} is a basis for V (1), we have that
{v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, v−1 ⊗ v−1} is a basis for M . Now

h.(vi ⊗ vj) = h.vi ⊗ vj + vi ⊗ h.vj = (i+ j)(vi ⊗ vj).
Thus M = M−2 ⊕M0 ⊕M2, with M−2 = span{v−1 ⊗ v−1}, M0 = span{v1 ⊗
v−1, v−1 ⊗ v1}, and M2 = span{v1 ⊗ v1}. Hence,

V (1)⊗ V (1) = V (2)⊕ V (0).

One can check that in this decomposition V (0) = span{v1 ⊗ v−1 − v−1 ⊗ v1}
and V (2) = span{v1 ⊗ v1, v1 ⊗ v−1 + v1 ⊗ v−1, v−1 ⊗ v−1}.
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4. Construction of irreducible sl2-modules

Finally, we construct a natural irreducible representation of sl2(C), V (m),
of dimensionm+1, for eachm ∈ N. Now sl2(C) ⊂ gl2(C) = 〈E11, E12, E21, E22〉,
where Eij denotes the matrix whose only non-zero entry is 1 in the ij position.
Then

e = E12, h = E11 − E22, f = E21.

Let C[x, y] be the polynomial algebra in two variables, and define an action
of gl2(C) on C[x, y] as follows:

E11(p) = xp′x, E22(p) = yp′y, E12(p) = xp′y, E21 = yp′x,

where p′x and p′y is the partial derivative with respect to x and y, respectively.

Lemma 4.1. These formulas define a gl2(C)-module structure on C[x, y].

Proof. This can be checked by direct calculation. Alternatively, note that a
derivation of C[x, y] is determined by its value on x and y. If d(x) = p and
d(y) = q, then d(f) = pf ′x + qf ′y. So it suffices to check that the brackets on
x and y. But when we restrict to 〈x, y〉, this is the natural representation of
gl2(C), which is well-defined. �

The set of homogeneous polynomials of degree m is an gl2(C)-submodule
and an sl2(C)-submodule. Denote this submodule by W (m). Then we have
that W (m) = span{xm, xm−1y, xm−2y2, . . . , xym−1, ym}. One can check that
this module is simple by using Lemma 2.1.
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