LIE ALGEBRAS: LECTURE 7 11 May 2010

CRYSTAL HOYT

1. $\mathfrak{sl}_n(\mathbb{F})$ is simple

Let \mathbb{F} be an algebraically closed field with characteristic zero. Let V be a finite dimensional vector space. Recall, that $f \in \text{End}(V)$ is said to be diagonalizable if V has a basis of eigenvectors for f. This is equivalent to $V = \bigoplus_{\lambda \in \text{Spec } f} V_{\lambda}$, where $V_{\lambda} = \{x \in V \mid f(x) = \lambda x\}$.

Lemma 1.1. Let V be a finite dimensional vector space over \mathbb{F} , and let $f_1, \ldots, f_k \in End(V)$ be diagonalizable endomorphisms. Then they pairwise commute if and only if they are simultaneously diagonalizable.

Proof. " \Leftarrow " If f_1, \ldots, f_k are simultaneously diagonalizable, then there exists a basis in which they are diagonal matrices. Since diagonal matrices commute, the f_i pairwise commute.

" \Rightarrow " Suppose that f_1, \ldots, f_k pairwise commute. We proceed by induction on k, with the case k = 1 being trivial. Now for any $\lambda \in \text{Spec } f_k$, the equalities $f_k f_j = f_j f_k$ imply that $f_j(V_\lambda) \subset V_\lambda$ for $j = 1, \ldots, k - 1$. Indeed, if $v_\lambda \in V_\lambda$ then $f_k(f_j(v_\lambda)) = f_j(f_k(v_\lambda)) = \lambda(f_j(v_\lambda))$. By induction on k, we have that f_1, \ldots, f_{k-1} have a common eigenbasis in V_λ for each $\lambda \in \text{Spec } f_k$. This is a common eigenbasis for f_1, \ldots, f_k since $f_k(v_\lambda) = \lambda v_\lambda$ for all $v_\lambda \in V_\lambda$. Since $V = \bigoplus_{\lambda \in \text{Spec} f_k} V_\lambda$, this implies the existence of a common eigenbasis in V. \Box

If v is an eigenvector for $\vec{f} = (f_1 \dots, f_k)$, then the (generalized) eigenvalue is denoted $\vec{\lambda} = (\lambda_1, \dots, \lambda_k)$, where λ_i is the eigenvalue of f_i .

Lemma 1.2. Let V be a finite dimensional vector space over \mathbb{F} , and let $f_1, \ldots, f_k \in End(V)$ be diagonalizable pair-wise commuting endomorphisms. Suppose that W is a subspace of V such that $f_i(W) \subset W$ for $i = 1, \ldots, k$. Then

$$W = \bigoplus_{\vec{\lambda}} W_{\vec{\lambda}}, \text{ where } W_{\vec{\lambda}} = W \cap V_{\vec{\lambda}}.$$

Proof. We proceed by induction on k. The case k = 1 was proven last lecture. Write

$$V = \bigoplus_{\mu \in \operatorname{Spec} f_k} V_{\mu}.$$

Then by the lemma from last lecture, we have that

 $W = \bigoplus_{\mu} W_{\mu}$, where $W_{\mu} := W \cap V_{\mu}$.

As shown before, each eigenspace V_{μ} is invariant with respect to $f_1 \dots, f_{k-1}$. Thus,

$$V_{\mu} = \bigoplus_{\vec{\lambda}:\lambda_k = \mu} V_{\lambda}$$

By applying induction to $f_1 \ldots, f_{k-1}$ on the vector space V_{μ} , we have that

$$W_{\mu} = \bigoplus_{\vec{\lambda}:\lambda_k=\mu} W_{\vec{\lambda}}$$
, where $W_{\vec{\lambda}} = W \cap V_{\vec{\lambda}}$ with $\lambda_k = \mu$.

Therefore,

$$W = \oplus_{\vec{\lambda}} W_{\vec{\lambda}}.$$

Let $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{F})$. Let $\mathfrak{h} = \sum \mathbb{F}E_{ii}$ be the set of diagonal matrices. Then \mathfrak{h} consists of ad-diagonalizable elements (i.e. for $x \in \mathfrak{h}$, ad x is diagonal with respect to the natural basis of \mathfrak{gl}_n), and $[\operatorname{ad} x, \operatorname{ad} y] = \operatorname{ad} [x, y] = 0$ for any $x, y \in \mathfrak{h}$. Set $\phi_i = \operatorname{ad} E_{ii} \in \operatorname{End}(\mathfrak{gl}_n)$. Then the eigenspaces of $\{\phi_i\}_{i=1}^n$ are: \mathfrak{h} (with generalized eigenvalue $\vec{0}$) and $\mathbb{F}E_{ij}$ with $i \neq j$.

We can view each generalized eigenvalue $(\lambda_1, \ldots, \lambda_n)$ as an element of \mathfrak{h}^* by defining $\alpha \in \mathfrak{h}^*$ to be $\alpha(E_{ii}) := \lambda_i$. Then write

 $\mathfrak{gl}_n = \oplus_{\alpha \in S} \mathfrak{g}_\alpha$

where $S \subset \mathfrak{h}^*$. We will explicitly describe the set S.

Choose a basis $\varepsilon_1, \ldots, \varepsilon_n$ in \mathfrak{h}^* which is dual to the basis $\{E_{ii}\}_{i=1}^n$ in \mathfrak{h} , so that $\varepsilon_j(E_{ii}) = \delta_{ij}$. Then

$$S = \{0, \varepsilon_i - \varepsilon_j \mid i \neq j\}$$

and

$$\mathfrak{g}_0 = \mathfrak{h}, \qquad \mathfrak{g}_{\varepsilon_i - \varepsilon_j} = \mathbb{F} E_{ij}$$

Note that $\alpha \in S$ implies $-\alpha \in S$, and that \mathfrak{g}_{α} are one dimensional for $\alpha \neq 0$.

Lemma 1.3. The Lie algebra $\mathfrak{sl}_n(\mathbb{F})$ is simple.

Proof. Since $\mathfrak{gl}_n = \mathfrak{sl}_n \times \mathbb{F}$ id, it suffices to show the \mathfrak{sl}_n and \mathbb{F} id (scalar matrices) are the only non-trivial ideals in \mathfrak{gl}_n . Let I be an ideal in \mathfrak{gl}_n with $I \neq 0$, \mathbb{F} id. We will show that $\mathfrak{sl}_n \subset I$. Since the ideal I is ad \mathfrak{h} -invariant, by Lemma 1.2, either I contains E_{ij} for some $i \neq j$ or $I \cap \mathfrak{h} \neq 0$, \mathbb{F} id. In the second case, take $x \in I \cap \mathfrak{h}, x \notin \mathbb{F}$ id. Then $x = \sum a_i E_{ii}$ where $a_i \neq a_j$ for some i, j. Then I contains E_{ij} , since $[x, E_{ij}] = (a_i - a_j)E_{ij} \neq 0$. Thus in both cases I contains E_{ij} for some $i \neq j$. Now if $k \neq i$ then $E_{ik} = [E_{ij}, E_{jk}] \in I$. Thus for all $k \neq i$, $E_{ii} - E_{kk} = [E_{ik}, E_{ki}] \in I$. The elements $E_{ii} - E_{kk}$ span $\mathfrak{h} \cap \mathfrak{sl}_n = \{\sum b_r E_{rr} \mid \sum b_r = 0\}$. Finally, for any $1 \leq r, s \leq n$ with $r \neq s$ we have $2E_{rs} = [E_{rr} - E_{ss}, E_{rs}] \in I$. Thus, $E_{rs} \in I$ for $r \neq s$. Hence, $\mathfrak{sl}_n \subset I$. \Box

2. Cartan subalgebra and the root space decomposition

Let \mathfrak{g} be a Lie algebra. A Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is a nilpotent subalgebra which equals its normalizer (i.e. $N(\mathfrak{h}) = \mathfrak{h}, N(\mathfrak{h}) = \{x \in \mathfrak{g} \mid [x, \mathfrak{h}] \subset \mathfrak{h}\}$). The existence of a Cartan subalgebra for an algebra \mathfrak{g} is proven in Humphreys Section 15. Moreover, it is shown in Section 16 that all Cartan subalgebras are conjugate. This means that if $\mathfrak{h}, \mathfrak{h}'$ are Cartan subalgebras, then there exists an (inner) automorphism $\psi : \mathfrak{g} \to \mathfrak{g}$ with $\psi(\mathfrak{h}) = \mathfrak{h}'$.

An element $x \in \mathfrak{g}$ is called *semisimple* if ad x is a semisimple endomorphism, i.e. diagonalizable when \mathbb{F} is algebraically closed.

Theorem 2.1. Let \mathfrak{h} be a Cartan subalgebra of a semisimple Lie algebra \mathfrak{g} . Then

- (1) \mathfrak{h} is abelian;
- (2) the centralizer of \mathfrak{h} is \mathfrak{h} ;
- (3) every element of \mathfrak{h} is semisimple.

Remark 2.2. In fact, if \mathfrak{g} is semisimple then the Cartan subalgebras of \mathfrak{g} are precisely the maximal abelian subalgebras which consist of semisimple elements.

Let \mathfrak{g} be a semisimple Lie algebra, and let \mathfrak{h} be a Cartan subalgebra with basis $\{h_1, \ldots, h_n\}$. By the theorem, the endomorphisms ad h_i are diagonalizable and they pairwise commute, hence they are simultaneously diagonalizable. Thus, we have proven that \mathfrak{g} decomposes into a direct sum of eigenspaces $\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} \mid [h, x] = \alpha(h)x \text{ for } h \in \mathfrak{h}\}$ with $\alpha \in \mathfrak{h}^*$. Note that $\mathfrak{g}_0 = \mathfrak{h}$. An element $\alpha \in \mathfrak{h}^*$ is called a *root* if $\alpha \neq 0$ and $\mathfrak{g}_{\alpha} \neq 0$. Let Δ denote the set of roots. Hence, we have a *root space decomposition*

$$\mathfrak{g} = \mathfrak{h} \oplus (\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}).$$

Lemma 2.3. Let \mathfrak{g} be a semisimple Lie algebra, and let \mathfrak{h} be a Cartan subalgebra. For all $\alpha, \beta \in \mathfrak{h}^*$, $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$. If $x \in \mathfrak{g}_{\alpha}$ with $\alpha \neq 0$, then ad xis nilpotent. If $\alpha, \beta \in \mathfrak{h}^*$, and $\alpha + \beta \neq 0$, then \mathfrak{g}_{α} is orthogonal to \mathfrak{g}_{β} relative to the Killing form of \mathfrak{g} .

Proof. Let $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{\beta}$. Then by the Jacobi identity:

$$h, [x, y]] = [[h, x], y] + [x, [h, y]]$$

= $\alpha(h)[x, y] + \beta(h)[x, y]$
= $(\alpha + \beta)(h)[x, y].$

For the second statement, let $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{\beta}$. Then $(\operatorname{ad} x)^{n}(y) \in \mathfrak{g}_{n\alpha+\beta}$. The nonzero vectors of the form $(\operatorname{ad} x)^{n}(y)$ with $n \in \mathbb{N}$ are linearly independent. Since \mathfrak{g} finite dimensional, there exists an n such that $(\operatorname{ad} x)^{n}(y) = 0$. Since $\operatorname{ad} x$ is nilpotent on a basis for \mathfrak{g} and \mathfrak{g} is finite dimensional, there exists some $N \in \mathbb{N}$ such that $(\operatorname{ad} x)^{N} = 0$ on \mathfrak{g} . Finally, let $h \in \mathfrak{h}$ such that $(\alpha + \beta)(h) \neq 0$. Then for $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$,

$$\alpha(h)\kappa(x,y) = \kappa([h,x],y) = -\kappa([x,h],y)$$
$$= -\kappa(x,[h,y]) = -\beta(h)\kappa(x,y).$$

Hence, $(\alpha + \beta)(h)\kappa(x, y) = 0$ implies that $\kappa(x, y) = 0$.

Corollary 2.4. If $\alpha \in \Delta$, then $-\alpha \in \Delta$.

Corollary 2.5. The restriction of the Killing form of \mathfrak{g} to \mathfrak{h} is non-degenerate.

We may identify \mathfrak{h} with \mathfrak{h}^* as follows. To each $\phi \in \mathfrak{h}^*$ there corresponds a unique $t_{\phi} \in \mathfrak{h}$ such that $\phi(h) = \kappa(t_{\phi}, h)$ for all $h \in \mathfrak{h}$.

Proposition 2.6. Let \mathfrak{g} be a semisimple Lie algebra, and \mathfrak{h} a Cartan subalgebra of \mathfrak{g} . Let Δ be the corresponding set of roots. Then:

(1) Δ is finite, spans \mathfrak{h}^* and $0 \notin \Delta$.

- (2) If $\alpha \in \Delta$, $x \in \mathfrak{g}_{\alpha}$, $y \in \mathfrak{g}_{-\alpha}$, then $[x, y] = \kappa(x, y)t_{\alpha}$. Hence, $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ is one dimensional.
- (3) $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0.$
- (4) If $\alpha \in \Delta$ and x_{α} is any non-zero element of \mathfrak{g}_{α} , then there exists $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $x_{\alpha}, y_{\alpha}, h_{\alpha} = [x_{\alpha}, y_{\alpha}]$ span a three dimensional simple subalgebra of \mathfrak{g} isomorphic to $\mathfrak{sl}(2)$.

(5)
$$h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}; h_{\alpha} = -h_{-\alpha}$$

- Proof. (1) It is clear that Δ is finite, and $0 \notin \Delta$. Suppose Δ does not span \mathfrak{h}^* . Then there exists an $h \in \mathfrak{h}$ such that $\alpha(h) = 0$ for all $\alpha \in \Delta$. Then $[h, \mathfrak{g}_{\alpha}] = 0$ for all $\alpha \in \Delta$, which implies $h \in Z(\mathfrak{g})$. Contradiction.
 - (2) For all $h \in \mathfrak{h} \kappa(h, [x, y]) = \kappa([h, x], y) = \alpha(h)\kappa(x, y) = \kappa(t_{\alpha}, h)\kappa(x, y) = \kappa(\kappa(x, y)t_{\alpha}, h) = \kappa(h, \kappa(x, y)t_{\alpha})$. Since κ is non-degenerate, $[x, y] = \kappa(x, y)t_{\alpha}$.
 - (3) Suppose $\alpha(t_{\alpha}) = 0$. Choose $x \in \mathfrak{g}_{\alpha}$ and $y \in \mathfrak{g}_{-\alpha}$ such that $\kappa(x, y) = 1$. Then x, y, t_{α} form a solvable subalgebra, since $[t_{\alpha}, x] = 0$ and $[t_{\alpha}, y] = 0$. Now $S \cong \mathrm{ad}_{\mathfrak{g}} S \subset \mathfrak{gl}(\mathfrak{g})$. Hence, for any $s \in [S, S]$ we have that $\mathrm{ad}_{\mathfrak{g}} s$ is nilpotent. Since $\mathrm{ad}_{\mathfrak{g}} t_{\alpha}$ is also semisimple, this implies $\mathrm{ad}_{\mathfrak{g}} t_{\alpha} = 0$ and $t_{\alpha} \in Z(\mathfrak{g})$. Contradiction.
 - (4) Choose $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $\kappa(x_{\alpha}, y_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}$. Let $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$. Then $x_{\alpha}, y_{\alpha}, h_{\alpha}$ is isomorphic to $\mathfrak{sl}(2)$.
 - (5) Since t_{α} is defined by $\kappa(t_{\alpha}, h) = \alpha(h)$ we have that $\kappa(-t_{\alpha}, h) = -\alpha(h) = \kappa(t_{-\alpha}, h).$

Since the Killing form is nondegenerate, we have that $t_{\alpha} = -t_{-\alpha}$.