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1. sln(F) is simple

Let F be an algebraically closed field with characteristic zero. Let V be
a finite dimensional vector space. Recall, that f ∈ End(V ) is said to be
diagonalizable if V has a basis of eigenvectors for f . This is equivalent to
V = ⊕λ∈SpecfVλ, where Vλ = {x ∈ V | f(x) = λx}.

Lemma 1.1. Let V be a finite dimensional vector space over F, and let
f1, . . . , fk ∈ End(V ) be diagonalizable endomorphisms. Then they pairwise
commute if and only if they are simultaneously diagonalizable.

Proof. “⇐” If f1, . . . , fk are simultaneously diagonalizable, then there exists a
basis in which they are diagonal matrices. Since diagonal matrices commute,
the fi pairwise commute.
“⇒” Suppose that f1, . . . , fk pairwise commute. We proceed by induction on
k, with the case k = 1 being trivial. Now for any λ ∈ Spec fk, the equalities
fkfj = fjfk imply that fj(Vλ) ⊂ Vλ for j = 1, . . . , k − 1. Indeed, if vλ ∈ Vλ
then fk(fj(vλ)) = fj(fk(vλ)) = λ(fj(vλ)). By induction on k, we have that
f1, . . . , fk−1 have a common eigenbasis in Vλ for each λ ∈ Spec fk. This is
a common eigenbasis for f1, . . . , fk since fk(vλ) = λvλ for all vλ ∈ Vλ. Since
V = ⊕λ∈SpecfkVλ, this implies the existence of a common eigenbasis in V . �

If v is an eigenvector for ~f = (f1 . . . , fk), then the (generalized) eigenvalue

is denoted ~λ = (λ1, . . . , λk), where λi is the eigenvalue of fi.

Lemma 1.2. Let V be a finite dimensional vector space over F, and let
f1, . . . , fk ∈ End(V ) be diagonalizable pair-wise commuting endomorphisms.
Suppose that W is a subspace of V such that fi(W ) ⊂ W for i = 1, . . . , k.
Then

W = ⊕~λW~λ, where W~λ = W ∩ V~λ.
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Proof. We proceed by induction on k. The case k = 1 was proven last lecture.
Write

V = ⊕µ∈SpecfkVµ.

Then by the lemma from last lecture, we have that

W = ⊕µWµ, where Wµ := W ∩ Vµ.
As shown before, each eigenspace Vµ is invariant with respect to f1 . . . , fk−1.
Thus,

Vµ = ⊕~λ:λk=µVλ.

By applying induction to f1 . . . , fk−1 on the vector space Vµ, we have that

Wµ = ⊕~λ:λk=µW~λ, where W~λ = W ∩ V~λ with λk = µ.

Therefore,
W = ⊕~λW~λ.

�

Let g = gln(F). Let h =
∑

FEii be the set of diagonal matrices. Then h
consists of ad-diagonalizable elements (i.e. for x ∈ h, adx is diagonal with
respect to the natural basis of gln), and [ad x, ad y] = ad [x, y] = 0 for any
x, y ∈ h. Set φi = ad Eii ∈ End(gln). Then the eigenspaces of {φi}ni=1 are: h

(with generalized eigenvalue ~0) and FEij with i 6= j.

We can view each generalized eigenvalue (λ1, . . . , λn) as an element of h∗

by defining α ∈ h∗ to be α(Eii) := λi. Then write

gln = ⊕α∈Sgα
where S ⊂ h∗. We will explicitly describe the set S.

Choose a basis ε1, . . . , εn in h∗ which is dual to the basis {Eii}ni=1 in h, so
that εj(Eii) = δij. Then

S = {0, εi − εj | i 6= j}
and

g0 = h, gεi−εj = FEij.

Note that α ∈ S implies−α ∈ S, and that gα are one dimensional for α 6= 0.
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Lemma 1.3. The Lie algebra sln(F) is simple.

Proof. Since gln = sln × Fid, it suffices to show the sln and Fid (scalar ma-
trices) are the only non-trivial ideals in gln. Let I be an ideal in gln with
I 6= 0,Fid. We will show that sln ⊂ I. Since the ideal I is ad h-invariant,
by Lemma 1.2, either I contains Eij for some i 6= j or I ∩ h 6= 0,Fid. In the
second case, take x ∈ I ∩ h, x 6∈ Fid. Then x =

∑
aiEii where ai 6= aj for

some i, j. Then I contains Eij, since [x,Eij] = (ai−aj)Eij 6= 0. Thus in both
cases I contains Eij for some i 6= j. Now if k 6= i then Eik = [Eij, Ejk] ∈ I.
Thus for all k 6= i, Eii − Ekk = [Eik, Eki] ∈ I. The elements Eii − Ekk span
h ∩ sln = {

∑
brErr |

∑
br = 0}. Finally, for any 1 ≤ r, s ≤ n with r 6= s we

have 2Ers = [Err−Ess, Ers] ∈ I. Thus, Ers ∈ I for r 6= s. Hence, sln ⊂ I. �

2. Cartan subalgebra and the root space decomposition

Let g be a Lie algebra. A Cartan subalgebra h ⊂ g is a nilpotent subalgebra
which equals its normalizer (i.e. N(h) = h, N(h) = {x ∈ g | [x, h] ⊂ h}). The
existence of a Cartan subalgebra for an algebra g is proven in Humphreys
Section 15. Moreover, it is shown in Section 16 that all Cartan subalgebras
are conjugate. This means that if h, h′ are Cartan subalgebras, then there
exists an (inner) automorphism ψ : g→ g with ψ(h) = h′.

An element x ∈ g is called semisimple if ad x is a semisimple endomor-
phism, i.e. diagonalizable when F is algebraically closed.

Theorem 2.1. Let h be a Cartan subalgebra of a semisimple Lie algebra g.
Then

(1) h is abelian;
(2) the centralizer of h is h;
(3) every element of h is semisimple.

Remark 2.2. In fact, if g is semisimple then the Cartan subalgebras of g
are precisely the maximal abelian subalgebras which consist of semisimple
elements.
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Let g be a semisimple Lie algebra, and let h be a Cartan subalgebra with
basis {h1, . . . , hn}. By the theorem, the endomorphisms ad hi are diago-
nalizable and they pairwise commute, hence they are simultaneously diag-
onalizable. Thus, we have proven that g decomposes into a direct sum of
eigenspaces gα := {x ∈ g | [h, x] = α(h)x for h ∈ h} with α ∈ h∗. Note that
g0 = h. An element α ∈ h∗ is called a root if α 6= 0 and gα 6= 0. Let ∆ denote
the set of roots. Hence, we have a root space decomposition

g = h⊕ (⊕α∈∆gα).

Lemma 2.3. Let g be a semisimple Lie algebra, and let h be a Cartan sub-
algebra. For all α, β ∈ h∗, [gα, gβ] ⊂ gα+β. If x ∈ gα with α 6= 0, then ad x
is nilpotent. If α, β ∈ h∗, and α+ β 6= 0, then gα is orthogonal to gβ relative
to the Killing form of g.

Proof. Let x ∈ gα and y ∈ gβ. Then by the Jacobi identity:

[h, [x, y]] = [[h, x], y] + [x, [h, y]]

= α(h)[x, y] + β(h)[x, y]

= (α + β)(h)[x, y].

For the second statement, let x ∈ gα and y ∈ gβ. Then (ad x)n(y) ∈ gnα+β.
The nonzero vectors of the form (ad x)n(y) with n ∈ N are linearly indepen-
dent. Since g finite dimensional, there exists an n such that (ad x)n(y) = 0.
Since ad x is nilpotent on a basis for g and g is finite dimensional, there
exists some N ∈ N such that (ad x)N = 0 on g. Finally, let h ∈ h such that
(α + β)(h) 6= 0. Then for x ∈ gα, y ∈ gβ,

α(h)κ(x, y) = κ([h, x], y) = −κ([x, h], y)

= −κ(x, [h, y]) = −β(h)κ(x, y).

Hence, (α + β)(h)κ(x, y) = 0 implies that κ(x, y) = 0. �

Corollary 2.4. If α ∈ ∆, then −α ∈ ∆.

Corollary 2.5. The restriction of the Killing form of g to h is non-degenerate.

We may identify h with h∗ as follows. To each φ ∈ h∗ there corresponds a
unique tφ ∈ h such that φ(h) = κ(tφ, h) for all h ∈ h.
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Proposition 2.6. Let g be a semisimple Lie algebra, and h a Cartan subal-
gebra of g. Let ∆ be the corresponding set of roots. Then:

(1) ∆ is finite, spans h∗ and 0 6∈ ∆.

(2) If α ∈ ∆, x ∈ gα, y ∈ g−α, then [x, y] = κ(x, y)tα.
Hence, [gα, g−α] is one dimensional.

(3) α(tα) = κ(tα, tα) 6= 0.

(4) If α ∈ ∆ and xα is any non-zero element of gα, then there exists
yα ∈ g−α such that xα, yα, hα = [xα, yα] span a three dimensional sim-
ple subalgebra of g isomorphic to sl(2).

(5) hα = 2tα
κ(tα,tα); hα = −h−α.

Proof. (1) It is clear that ∆ is finite, and 0 6∈ ∆. Suppose ∆ does not span
h∗. Then there exists an h ∈ h such that α(h) = 0 for all α ∈ ∆. Then
[h, gα] = 0 for all α ∈ ∆, which implies h ∈ Z(g). Contradiction.

(2) For all h ∈ h κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y) =
κ(κ(x, y)tα, h) = κ(h, κ(x, y)tα). Since κ is non-degenerate, [x, y] =
κ(x, y)tα.

(3) Suppose α(tα) = 0. Choose x ∈ gα and y ∈ g−α such that κ(x, y) = 1.
Then x, y, tα form a solvable subalgebra, since [tα, x] = 0 and [tα, y] =
0. Now S ∼= adg S ⊂ gl(g). Hence, for any s ∈ [S, S] we have that adg s
is nilpotent. Since adg tα is also semisimple, this implies adg tα = 0 and
tα ∈ Z(g). Contradiction.

(4) Choose xα ∈ gα, yα ∈ g−α such that κ(xα, yα) = 2
κ(tα,tα) . Let hα =

2tα
κ(tα,tα) . Then xα, yα, hα is isomorphic to sl(2).

(5) Since tα is defined by κ(tα, h) = α(h) we have that

κ(−tα, h) = −α(h) = κ(t−α, h).

Since the Killing form is nondegenerate, we have that tα = −t−α.
�
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