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1. Bases

A subset Π of ∆ is called a base if Π is a basis for E and each root β ∈ ∆
can be (uniquely) written as β =

∑
α∈Π kαα with integral coefficients kα, and

all non-negative or all non-positive. Elements of Π are called simple roots.
We define the height of β to be ht(β) =

∑
α∈Π kα. If kα > 0 (resp. kα < 0)

we call β positive (resp. negative) and write β > 0 (resp. β < 0). We denote
by ∆+ (resp. ∆−) the collection of positive (resp. negative) roots. This
defines a partial order on E by λ > µ if and only if λ−µ is a sum of positive
roots. Note that ∆− = −∆+.

Now we prove the existence of a base for a root system ∆. For each α ∈ ∆,
let Pα = {v ∈ E | (α, v) = 0}. Choose a vector ν ∈ E − ∪α∈∆Pα. Then for
all α ∈ ∆ we have that α 6∈ Pν. Let ∆+(ν) = {α ∈ ∆ | (ν, α) > 0}. Then
∆ = ∆+(ν) ∪ (−∆+(ν)).

Call α ∈ ∆+(ν) decomposable if α = β1 + β2 for some β1, β2 ∈ ∆+(ν), and
indecomposable otherwise. Let Π(ν) be the set of indecomposable elements.

Lemma 1.1. Each element of ∆+(ν) is a linear combination, with non-
negative integer coefficients, of elements of Π(ν).

Proof. Let I be the set of α ∈ ∆+(ν) which cannon be written as such.
If I is non-empty, choose α ∈ I with (ν, α) minimal. The element α is
decomposable, since otherwise it would belong to Π(ν). Write α = β1 + β2
with β1, β2 ∈ ∆+(ν). Then (ν, α) = (ν, β1) + (ν, β2) and 0 < (ν, β1), (ν, β2) <
(ν, α), which implies β1, β2 6∈ I. This implies α 6∈ I, which is a contradiction.

�

We know that the set Π(ν) spans E, since ∆ spans E. To conclude that
Π(ν) is a base for ∆ it only remains to be shown that the set is linearly
independent. This will follows from the next two lemmas.
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Lemma 1.2. If α, β ∈ Π(ν) with α 6= β, then (α, β) ≤ 0.

Proof. Otherwise µ = α − β would be a root, by a lemma from last lecture.
If µ ∈ ∆+(ν), then α = µ+ β would be decomposable. If −µ ∈ ∆+(ν), then
β = α− µ would be decomposable. �

Lemma 1.3. Let ν ∈ E and suppose that S ⊂ E such that: (ν, α) > 0 for
all α ∈ S, and (α, β) ≤ 0 for all α 6= β in S. Then the elements of S are
linearly independent.

Proof. Each relation between elements of S can be written in the form∑
aαα =

∑
bββ

where the coefficients aα and bβ are non-negative, and where α and β range
over disjoint finite subsets of S. Let λ =

∑
aαα. Then

(λ, λ) =
∑

aαbβ(α, β)

implying that (λ, λ) ≤ 0. Hence, λ = 0 since (·, ·) is positive definite. But
we also have that

0 = (ν, λ) =
∑

aα(ν, α)

which implies that all the coefficients aα must be zero. Similarly, the coeffi-
cients bβ must be zero. �

Lemma 1.4. Each base Π for ∆ has the form Π(ν) for some ν ∈ E.

Proof. Choose ν ∈ E such that (ν, α) > 0 for α ∈ Π. This is possible since
the intersection of “positive” open half-spaces associated with a basis is non-
empty. Then ∆+ ⊂ ∆+(ν) and ∆− ⊂ ∆−(ν). Hence, equality holds and
Π = Π(ν). �

The hyperplanes Pα with α ∈ ∆ partition the vector space E into finitely
many regions. The connected components of E − ∪α∈∆Pα are called Weyl
chambers. Now ν and µ belong to the same Weyl chamber if and only if
∆+(ν) = ∆+(µ), equivalently Π(ν) = Π(µ). Hence, there is a one-one corre-
spondence between Weyl chambers and bases.
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2. The Weyl group

The Weyl group, denoted by W , is the subgroup of GL(E) generated by
the reflections σα for α ∈ ∆. Now W permutes the finite set ∆. Since ∆
spans E, we can identify W with a subgroup of the symmetric group on the
set ∆. Hence, W is finite.

Let Π be a fixed base for ∆.

Lemma 2.1. If β is a simple root, then σβ permutes the set ∆+ \ {β}.

Proof. Let µ ∈ ∆+ \ {β}. Then µ =
∑

α∈Π kαα with kα ∈ Z≥0. Since µ is not
proportional to β, there is some simple root α′ 6= β such that kα′ > 0. Now

σβ(µ) = µ− 〈µ, β〉β =
∑
α∈Π

kαα− 〈µ, β〉β,

so the coefficient of α′ in σβ(µ) is also equal to kα′ which is positive. Hence,
σβ(µ) ∈ ∆+. �

Lemma 2.2. Let α1, . . . , αt ∈ Π, not necessarily distinct. Let σi = σαi
.

If σ1 · · ·σt(αt) is positive, then for some index 1 ≤ s < t, we have that
σ1 · · ·σt = σ1 · · ·σs−1σs+1 · · ·σt−1.

Proof. Now σt(αt) = −αt, so σ1 · · ·σt(αt) = −σ1 · · · σt−1(αt) . Write

βi = σi+1 · · ·σt−1(αt).

Since β0 < 0 and βt−1 > 0, we can find the smallest index s for which
βs > 0. Then σs(βs) = βs−1 < 0. By the previous lemma, βs = αs, hence
αs = βs = σs+1 · · ·σt−1(αt). Recall that σσ(α) = σσασ

−1. Therefore, σs =
(σs+1 · · ·σt−1)σt(σt−1 · · ·σs+1), and substitution yields the result. �

Let W ′ be the subgroup of W generated by reflections σα with α ∈ Π. We
will show that W = W ′.

Lemma 2.3. If β ∈ ∆ then there exists σ ∈ W ′ such that σ(β) ∈ Π. Hence,
∆ = W (Π).

Proof. Let β ∈ ∆, we will show that there exists an α ∈ Π and σ ∈ W ′

such that σ(β) = α. It suffices to prove this for β ∈ ∆+, since if σ(β) = α
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with α ∈ Π, σ ∈ W ′, then σασ(−β) = α with σασ ∈ W ′. Now we assume
β ∈ ∆+, and we prove the lemma by induction on the height of β. Recall
that if β =

∑
α∈Π kαα, then ht(β) =

∑
α∈Π kα. If ht(β) = 1, then β is simple

and we are done.

So suppose now that ht(β) ≥ 2. Then by Lemma 1.3, there is some µ ∈ Π
such that (β, µ) > 0, since otherwise Π∪{β} would be a linearly independent

set in E. Then 〈β, µ〉 = 2(β,µ)
(µ,µ) ∈ Z≥1. Then σµ(β) = β − 〈β, µ〉µ and

ht(σµ(β)) = ht(β) − 〈β, µ〉 < ht(β). By induction hypothesis, there exists
a σ ∈ W ′ and α ∈ Π such that σ(σµ(β)) = α. Since σσµ ∈ W ′, we are
done. �

Lemma 2.4. The Weyl group is generated by reflections of simple roots, ie.
by σα for α ∈ Π.

Proof. Clearly, W ′ is a subgroup of W . For equality, we need to show that
σβ ∈ W ′ for each β ∈ ∆. Let β ∈ ∆ and find σ ∈ W ′ such that σ(β) =
α ∈ Π. Then σα = σσ(β) = σσβσ

−1. Hence, σβ = σ−1σασ ∈ W ′. Therefore,
W ′ = W . �

If σ ∈ W is written as σα1
· · ·σαt

(αi ∈ Π) with t minimal, then the expres-
sion is called reduced and t is called the length of σ, denoted l(σ).

Proposition 2.5. If Π′ is another base of ∆, then there exists σ ∈ W such
that σ(Π′) = Π. If σ ∈ W such that σ(Π) = Π, then σ = 1. Thus, the Weyl
group acts simply transitively on the set of bases of ∆.

Proof. This statement is equivalent to the assertion that the Weyl group acts
simply transitively on the set of decompositions of ∆ into ∆ = ∆+ t ∆−.
First, we will show that W acts transitively on this set. Let ∆ = ∆+ t∆−

be a decomposition of ∆, and ∆ = ∆′+ t∆′− be another decomposition. We
will show that there exists some σ ∈ W such that σ(∆′+) = ∆+.

We prove this by induction on the number of roots in ∆+ which are not
contained in ∆′+. This number is finite, since ∆ is a finite set. If this
number is zero, then ∆+ ⊂ ∆′+ and ∆− = −∆+ ⊂ −∆′+ = ∆′− implies that
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∆+ = ∆′+. If this number is non-zero, then there exists a simple root α ∈ ∆+

which is not in ∆′+. We claim that the number of roots in ∆+ ∩ σα(∆′+)
is strictly greater than the number of roots in ∆+ ∩ ∆′+. Indeed, since σα
permutes the set ∆+ \ {α} and (∆′+ ∩∆+) ⊂ ∆+ \ {α} we have that

σα(∆′+) ∩∆+ ⊃ σα(∆′+ ∩∆+) t {α} = σα((∆′+ ∩∆+) t {−α}).
Hence, |∆+ ∩ σα(∆′+)| > |∆+ ∩ ∆′+|. The induction hypothesis applies to
σα(∆′+) to give the existence of a σ ∈ W such that σσα(∆′+) = ∆+. Thus,
the Weyl group acts transitively.

Suppose σ ∈ W such that σ(Π) = Π, but σ 6= 1. Let σ = σ1 . . . σt be a
reduced expression for σ. But then by a Lemma 2.2, σ(αt) ∈ ∆−, which is a
contradiction. �

Corollary 2.6. The Weyl group acts simply transitively on the Weyl cham-
bers.
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