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CRYSTAL HOYT

1. BASES

A subset II of A is called a base if 11 is a basis for E and each root g € A
can be (uniquely) written as 5 = ) .y koo with integral coeflicients k,, and
all non-negative or all non-positive. Elements of II are called simple roots.

We define the height of 3 to be ht(3) = >y ka. If ko > 0 (resp. kq < 0)
we call § positive (resp. negative) and write 8 > 0 (resp. § < 0). We denote
by A" (resp. A~) the collection of positive (resp. negative) roots. This
defines a partial order on E by A > p if and only if A — p is a sum of positive
roots. Note that A~ = —A™.

Now we prove the existence of a base for a root system A. For each o € A,
let P, ={v e E| (a,v) =0}. Choose a vector v € E — UyenP,. Then for
all @ € A we have that o« ¢ P,. Let AT (v) = {a € A | (v,a) > 0}. Then
A=AT(v)U(=AT(v)).

Call o € A*(v) decomposable if « = ) + (35 for some [y, G2 € A*(v), and
indecomposable otherwise. Let I1(r) be the set of indecomposable elements.

Lemma 1.1. Fach element of A*(v) is a linear combination, with non-
negative integer coefficients, of elements of I1(v).

Proof. Let I be the set of @« € A*(rv) which cannon be written as such.
If I is non-empty, choose o € [ with (v,«) minimal. The element « is
decomposable, since otherwise it would belong to II(v). Write a = 31 + (o
with £y, B € AT(v). Then (v, ) = (v, 51) + (v, 52) and 0 < (v, By), (v, B2) <
(v, &), which implies 3y, B2 & I. This implies a ¢ I, which is a contradiction.

H

We know that the set II(r) spans F, since A spans E. To conclude that
II(v) is a base for A it only remains to be shown that the set is linearly

independent. This will follows from the next two lemmas.
1



Lemma 1.2. If o, € II(v) with o # G, then (a, 5) < 0.

Proof. Otherwise y© = o — (3 would be a root, by a lemma from last lecture.
If w € A*(v), then @ = u+ 3 would be decomposable. If —u € A*(v), then
8 = a — i would be decomposable. ]

Lemma 1.3. Let v € E and suppose that S C E such that: (v,a) > 0 for
ala € S, and (a, ) <0 for all a # (B in S. Then the elements of S are
linearly independent.

Proof. Each relation between elements of S can be written in the form

Zaaoz = Zbgﬁ

where the coefficients a, and bz are non-negative, and where a and 3 range
over disjoint finite subsets of S. Let A = > a,a. Then

(A A) = aabs(a, B)

implying that (A, A) < 0. Hence, A = 0 since (-,-) is positive definite. But

we also have that
0= (X =Y an(v.a)

which implies that all the coefficients a, must be zero. Similarly, the coeffi-
cients bg must be zero. [

Lemma 1.4. Each base I1 for A has the form Il(v) for some v € E.

Proof. Choose v € F such that (v,a) > 0 for a € II. This is possible since
the intersection of “positive” open half-spaces associated with a basis is non-
empty. Then AT C A*(v) and A~ C A~ (v). Hence, equality holds and
IT=TI(v). ]

The hyperplanes P, with o € A partition the vector space E into finitely
many regions. The connected components of £ — Uyea P, are called Weyl
chambers. Now v and p belong to the same Weyl chamber if and only if
A*(v) = A*(u), equivalently I1(v) = II(u). Hence, there is a one-one corre-
spondence between Weyl chambers and bases.
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2. THE WEYL GROUP

The Weyl group, denoted by W is the subgroup of GL(E) generated by
the reflections o, for « € A. Now W permutes the finite set A. Since A
spans E, we can identify W with a subgroup of the symmetric group on the
set A. Hence, W is finite.

Let II be a fixed base for A.
Lemma 2.1. If 5 is a simple root, then oz permutes the set A™\ {5}.

Proof. Let p € A*\{#}. Then p =), koa with k, € Z>. Since p is not
proportional to 3, there is some simple root o’ # (3 such that k., > 0. Now

o(p) = p— (1. B)B = ket — {1, 3)8,

acell

so the coefficient of o' in og(p) is also equal to k. which is positive. Hence,
os(p) € A™. O

Lemma 2.2. Let a1,...,a; € II, not necessarily distinct. Let o; = 0g,.
If o1---0¢(cy) is positive, then for some indexr 1 < s < t, we have that
O'lc-co-t:0'100-0'8_10'8+1oo00't_1-

Proof. Now o(a) = —ay, 80 01 -+ - 0¢(ay) = —01 - 04_1(y) . Write

@' = 0441 Ut—l(Oét)-

Since By < 0 and ;1 > 0, we can find the smallest index s for which
Bs > 0. Then o4(8s) = Bs—1 < 0. By the previous lemma, s = «y, hence
ay = s = 0g11---0—1(y). Recall that o,,) = 00,0~ '. Therefore, o5 =
(011 -01-1)0¢(04_1 -+ 0s41), and substitution yields the result. O

Let W' be the subgroup of W generated by reflections o, with a € II. We
will show that W = W',

Lemma 2.3. If 5 € A then there exists 0 € W' such that o(3) € II. Hence,
A =W(II).

Proof. Let 8 € A, we will show that there exists an o € II and 0 € W'

such that o(8) = a. It suffices to prove this for § € AT, since if o(f) = «
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with o € TI, 0 € W', then o,0(—() = a with 0,0 € W’. Now we assume
B € AT, and we prove the lemma by induction on the height of 3. Recall
that if 3 =) ke, then ht(58) = > oy k. If ht(B) = 1, then § is simple
and we are done.

So suppose now that ht(3) > 2. Then by Lemma 1.3, there is some p € II
such that (4, 1) > 0, since otherwise IIU{5} would be a linearly independent
set in E. Then (B,u) = % € Z>1. Then o,(8) = 6 — (B, ) and
ht(o,(6)) = ht(8) — (B, ) < ht(F). By induction hypothesis, there exists
ao € W and a € II such that o(0,(5)) = . Since oo, € W', we are
done. ]

Lemma 2.4. The Weyl group is generated by reflections of simple roots, ie.
by o, for a € II.

Proof. Clearly, W' is a subgroup of W. For equality, we need to show that
og € W' for each § € A. Let f € A and find 0 € W' such that o(8) =
a € II. Then o, = 0,3 = oogot. Hence, o3 = 0 'o,0 € W'. Therefore,

W' =Ww. [

If o € W is written as o4, - - - 04, (o; € II) with ¢ minimal, then the expres-
sion is called reduced and t is called the length of o, denoted (o).

Proposition 2.5. If II' is another base of A, then there exists o € W such
that o(Il') = I1. If o € W such that o(11) = II, then o = 1. Thus, the Weyl
group acts simply transitively on the set of bases of A.

Proof. This statement is equivalent to the assertion that the Weyl group acts
simply transitively on the set of decompositions of A into A = AT LA™,
First, we will show that W acts transitively on this set. Let A = AT LA~
be a decomposition of A, and A = A" LUA’™ be another decomposition. We
will show that there exists some o € W such that o(A'") = A™.

We prove this by induction on the number of roots in A" which are not
contained in A", This number is finite, since A is a finite set. If this
number is zero, then AT C A" and A~ = —AT ¢ —A'" = A’~ implies that
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AT = A", If this number is non-zero, then there exists a simple root o € A™
which is not in A", We claim that the number of roots in A* N o, (A'")

is strictly greater than the number of roots in A* N A’". Indeed, since o,
permutes the set AT\ {a} and (A" NAT) C AT\ {a} we have that

oo (AYNAT Do (AT NAT)U{a} =0, (AT NAT) U {—a}).

Hence, |AT N o, (A™)] > |AT N A™|. The induction hypothesis applies to
oo(A) to give the existence of a ¢ € W such that oo, (A™") = AT, Thus,
the Weyl group acts transitively.

Suppose 0 € W such that o(II) = II, but ¢ # 1. Let 0 = 01...0; be a
reduced expression for o. But then by a Lemma 2.2, o(ca;) € A™, which is a
contradiction. O

Corollary 2.6. The Weyl group acts simply transitively on the Weyl cham-
bers.



