Lipschitz properties of transport maps under a log-Lipschitz condition

Dan Mikulincer
MIT

Joint work with Max Fathi and Yair Shenfeld

Transportation of measure

Given probability measures ν and μ, for now in \mathbb{R}^{d}, we seek a transport map T from ν to μ with "good properties".

Drawing of a train leaving a high-dimensional city (DALLL•E)

Transportation of measure

Transportation: T transports ν to μ if

$$
\begin{aligned}
& X \sim \nu \quad \Rightarrow \quad T(X) \sim \mu \\
& \mu(A)=\nu\left(T^{-1}(A)\right)
\end{aligned}
$$

and in terms of densities

$$
d \nu(x)=d \mu(T(x))|\operatorname{det} D T(x)|
$$

Good properties: T should be L-Lipschitz:

$$
|T(x)-T(y)| \leq \| x-y \mid
$$

and in terms of derivatives

Transportation of measure

Transportation: T transports ν to μ if

$$
\begin{aligned}
& X \sim \nu \quad \Rightarrow \quad T(X) \sim \mu \\
& \mu(A)=\nu\left(T^{-1}(A)\right)
\end{aligned}
$$

and in terms of densities

$$
d \nu(x)=d \mu(T(x))|\operatorname{det} D T(x)|
$$

Good properties: T should be L-Lipschitz:

$$
|T(x)-T(y)| \leq L|x-y|
$$

and in terms of derivatives

$$
|\nabla T(x)| \leq L
$$

Transportation of functional inequalities

* log-Sobolev: $\int f^{2} \log (f) d \nu=: \operatorname{Ent}_{\nu}\left(f^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla f|^{2}\right]$

Claim

Suppose ν satisfies a log-Sobolev* inequality with constant $C_{L S}(\nu)$.

Transportation of functional inequalities

* log-Sobolev: $\int f^{2} \log (f) d \nu=: \operatorname{Ent}_{\nu}\left(f^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla f|^{2}\right]$

Claim

Suppose ν satisfies a log-Sobolev* inequality with constant $C_{L S}(\nu)$.
Suppose there exist an L-Lipschitz map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which transports ν to μ. Then, μ satisfies a log-Sobolev inequality with constant
$\operatorname{Ent}_{\mu}\left(f^{2}\right)=\operatorname{Ent}_{\nu}\left((f \circ T)^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla(f \circ T)|^{2}\right]$ $<C_{1} \varsigma(\nu) \mathbb{E}_{n,},\left[|D T|^{2}|\nabla f(T)|^{2}\right\rceil<C_{1 \varsigma}(\nu) L^{2} \mathbb{E}_{n},\left\lceil|\nabla f(T)|^{2}\right.$ $=C_{L S}(\nu) L^{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2}\right]$

Transportation of functional inequalities

* log-Sobolev: $\int f^{2} \log (f) d \nu=: \operatorname{Ent}_{\nu}\left(f^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla f|^{2}\right]$

Claim

Suppose ν satisfies a log-Sobolev* inequality with constant $C_{L S}(\nu)$.
Suppose there exist an L-Lipschitz map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which transports ν to μ. Then, μ satisfies a log-Sobolev inequality with constant

$$
C_{L S}(\mu) \leq C_{L S}(\nu) L^{2}
$$

$\operatorname{Ent}_{\mu}\left(f^{2}\right)=\operatorname{Ent}_{\nu}\left((f \circ T)^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla(f \circ T)|^{2}\right]$ $<C_{1 s}(\nu) \mathbb{E}_{,,},\left[|D T|^{2}|\nabla f(T)|^{2}\right\rceil \leq C_{1 s}(\nu) L^{2} \mathbb{E}_{n,}\left[|\nabla f(T)|^{2}\right.$ $=C_{L S}(\nu) L^{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2}\right]$

Transportation of functional inequalities

* log-Sobolev: $\int f^{2} \log (f) d \nu=: \operatorname{Ent}_{\nu}\left(f^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla f|^{2}\right]$

Claim

Suppose ν satisfies a log-Sobolev* inequality with constant $C_{L S}(\nu)$.
Suppose there exist an L-Lipschitz map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which transports ν to μ. Then, μ satisfies a log-Sobolev inequality with constant

$$
C_{L S}(\mu) \leq C_{L S}(\nu) L^{2}
$$

Proof.

$$
\begin{aligned}
\operatorname{Ent}_{\mu}\left(f^{2}\right) & =\operatorname{Ent}_{\nu}\left((f \circ T)^{2}\right) \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|\nabla(f \circ T)|^{2}\right] \\
& \leq C_{L S}(\nu) \mathbb{E}_{\nu}\left[|D T|^{2}|\nabla f(T)|^{2}\right] \leq C_{L S}(\nu) L^{2} \mathbb{E}_{\nu}\left[|\nabla f(T)|^{2}\right] \\
& =C_{L S}(\nu) L^{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2}\right]
\end{aligned}
$$

Optimal transport

Brenier 87': For reasonable μ, ν there exists an optimal transport map $\psi^{\text {opt }}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, satisfying:

$$
\psi^{\mathrm{opt}}=\arg \min _{\psi_{*} \nu=\mu} \mathbb{E}_{\nu}\left[\|\psi(x)-x\|^{2}\right] .
$$

Caffarelli 00': If $\nu=\gamma_{d}$ is the standard Gaussian and μ is more

 log-concave, $\psi^{\text {opt }}$ is 1 -Lipschitz.(strong log-concavity: $-\nabla^{2} \log \left(\frac{d \mu}{d x}(x)\right) \succeq$ Id.)

Optimal transport

Brenier 87': For reasonable μ, ν there exists an optimal transport map $\psi^{\text {opt }}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, satisfying:

$$
\psi^{\mathrm{opt}}=\arg \min _{\psi_{* \nu}=\mu} \mathbb{E}_{\nu}\left[\|\psi(x)-x\|^{2}\right] .
$$

Caffarelli 00': If $\nu=\gamma_{d}$ is the standard Gaussian and μ is more log-concave, $\psi^{\text {opt }}$ is 1 -Lipschitz.
(strong log-concavity: $-\nabla^{2} \log \left(\frac{d \mu}{d x}(x)\right) \succeq \mathrm{Id}$.)

Optimal transport

Brenier 87': For reasonable μ, ν there exists an optimal transport map $\psi^{\text {opt }}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, satisfying:

$$
\psi^{\mathrm{opt}}=\arg \min _{\psi_{* \nu}=\mu} \mathbb{E}_{\nu}\left[\|\psi(x)-x\|^{2}\right] .
$$

Caffarelli 00': If $\nu=\gamma_{d}$ is the standard Gaussian and μ is more log-concave, $\psi^{\text {opt }}$ is 1 -Lipschitz.

$$
\text { (strong log-concavity: }-\nabla^{2} \log \left(\frac{d \mu}{d x}(x)\right) \succeq \text { Id.) }
$$

Log-Sobolev inequalities

Gaussian log-Sobolev inequality (Gross 75'): For γ_{d} the standard Gaussian and any test function f,

$$
\operatorname{Ent}_{\gamma_{d}}\left(f^{2}\right) \leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla f\|^{2}\right]
$$

Log-Sobolev inequalities

Gaussian log-Sobolev inequality (Gross 75'): For γ_{d} the standard Gaussian and any test function f,

$$
\operatorname{Ent}_{\gamma_{d}}\left(f^{2}\right) \leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla f\|^{2}\right]
$$

Theorem (Bakry-Emery 85')

If μ is more more log-concave than γ_{d}, then $C_{L S}(\mu) \leq 1$.

Further results

Caffarelli's original result was extended in several directions, mostly when $\nu=\gamma_{d}$, and

- μ is a structured perturbation. Colombo, Figali, Jhaveri (2017), Colombo, Fathi (2019), and Neeman (2022)
- μ is log-concave with bounded support. Kolesnikov (2011) and M., Shenfeld (2021)
- u is a Gaussian mixture. M. Shenfeld (2021) and Klartag, Putterman (2021)
- μ is isotropic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev

inequalities.

Further results

Caffarelli's original result was extended in several directions, mostly when $\nu=\gamma_{d}$, and

- μ is a structured perturbation. Colombo, Figali, Jhaveri (2017), Colombo, Fathi (2019), and Neeman (2022)
- μ is log-concave with bounded support. Kolesnikov (2011) and M., Shenfeld (2021)
- μ is a Gaussian mixture. M., Shenfeld (2021) and Klartag, Putterman (2021)
- μ is isotronic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev
inequalities.

Further results

Caffarelli's original result was extended in several directions, mostly when $\nu=\gamma_{d}$, and

- μ is a structured perturbation. Colombo, Figali, Jhaveri (2017), Colombo, Fathi (2019), and Neeman (2022)
- μ is log-concave with bounded support. Kolesnikov (2011) and M., Shenfeld (2021)
- μ is a Gaussian mixture. M., Shenfeld (2021) and Klartag, Putterman (2021)
- μ is isotropic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev
inequalities.

Further results

Caffarelli's original result was extended in several directions, mostly when $\nu=\gamma_{d}$, and

- μ is a structured perturbation. Colombo, Figali, Jhaveri (2017), Colombo, Fathi (2019), and Neeman (2022)
- μ is log-concave with bounded support. Kolesnikov (2011) and M., Shenfeld (2021)
- μ is a Gaussian mixture. M., Shenfeld (2021) and Klartag, Putterman (2021)
- μ is isotropic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev
inequalities.

Further results

Caffarelli's original result was extended in several directions, mostly when $\nu=\gamma_{d}$, and

- μ is a structured perturbation. Colombo, Figali, Jhaveri (2017), Colombo, Fathi (2019), and Neeman (2022)
- μ is log-concave with bounded support. Kolesnikov (2011) and M., Shenfeld (2021)
- μ is a Gaussian mixture. M., Shenfeld (2021) and Klartag, Putterman (2021)
- μ is isotropic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev inequalities.

Beyond Euclidean spaces

If ν and μ are measures on a Riemannian manifold (M, d) much less is known.

McCann 2001': For reasonable μ, ν there exists an optimal
transport map $\psi^{\text {opt }}: M \rightarrow M$, satisfying:

Moreover, if μ, ν have full support, then $\psi^{\text {opt }}$ is Lipschitz.
Amestion
Is there an analogue of Caffarelli's theorem for manifolds?

Beyond Euclidean spaces

If ν and μ are measures on a Riemannian manifold (M, d) much less is known.

McCann 2001': For reasonable μ, ν there exists an optimal transport map $\psi^{\mathrm{opt}}: M \rightarrow M$, satisfying:

$$
\psi^{\mathrm{opt}}=\arg \min _{\psi_{* \nu} \nu \mu} \mathbb{E}_{\nu}\left[d(\psi(x), x)^{2}\right] .
$$

Moreover, if μ, ν have full support, then $\psi^{\text {opt }}$ is Lipschitz.
\square

Beyond Euclidean spaces

If ν and μ are measures on a Riemannian manifold (M, d) much less is known.

McCann 2001': For reasonable μ, ν there exists an optimal transport map $\psi^{\mathrm{opt}}: M \rightarrow M$, satisfying:

$$
\psi^{\mathrm{opt}}=\arg \min _{\psi_{*} \nu=\mu} \mathbb{E}_{\nu}\left[d(\psi(x), x)^{2}\right]
$$

Moreover, if μ, ν have full support, then $\psi^{\text {opt }}$ is Lipschitz.

Question

Is there an analogue of Caffarelli's theorem for manifolds?

Beyond Euclidean spaces - example

Consider M the round sphere with ν as its uniform probability measure. Let μ be uniform on a hemisphere, $\left\{\left(x_{1}, \ldots x_{d}\right) \in M \mid x_{1}>0\right\}$.

The optimal transport map should not be Lipschitz in this case.

Beyond Euclidean spaces - example

Consider M the round sphere with ν as its uniform probability measure. Let μ be uniform on a hemisphere, $\left\{\left(x_{1}, \ldots x_{d}\right) \in M \mid x_{1}>0\right\}$.

The optimal transport map should not be Lipschitz in this case.

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more

"concentrated" than the source measure ν

- μ is more log-concave than ν
- μ is supported on a smaller set than ν
- $"$ is a mivture of $"$
- μ is a bounded perturbation of ν
- , is a log-I inschitz nerturbation of V. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz)

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν
- μ is supported on a smaller set than ν
- 11 is a mixture of μ
- μ is a bounded perturbation of ν.
- μ is a log-Lipschitz perturbation of ν. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz).

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν.
- μ is supported on a smaller set than ν.
- μ is a mixture of ν.
- μ is a bounded perturbation of ν
- μ is a log-Lipschitz perturbation of ν. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz)

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν.
- μ is supported on a smaller set than ν.
- μ is a mixture of ν.
- μ is a bounded perturbation of ν
- μ is a log-Lipschitz perturbation of ν. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz)

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν.
- μ is supported on a smaller set than ν.
- μ is a mixture of ν.
- μ is a bounded perturbation of ν
- μ is a log-Lipschitz perturbation of ν. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz)

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν.
- μ is supported on a smaller set than ν.
- μ is a mixture of ν.
- μ is a bounded perturbation of ν.
- μ is a log-Lipschitz perturbation of ν. Today (i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz)

When should Lipschitz transport maps exist?

Question

For a given ν, for which target μ should we expect to have Lipschitz transport maps?

Rough intuition: the target measure μ should be more "concentrated" than the source measure ν.

- μ is more log-concave than ν.
- μ is supported on a smaller set than ν.
- μ is a mixture of ν.
- μ is a bounded perturbation of ν.
- μ is a log-Lipschitz perturbation of ν. Today
(i.e., $d \nu=e^{-W} d \mu$ with W Lipschitz).

What to expect?

Suppose that $\nu=\gamma_{d}$ and that $\frac{d \mu}{d \gamma_{d}}=e^{-W}$, with W L-Lipschitz.
Miclo's trick: μ satisfies a log-Sobolev inequality with constant $e^{\sqrt{d} L^{2}}$. The proof decomposes $W=$ bounded + concave and then invokes Holley-Stroock.

Lower bound: If $W(x)=L|x|$ is is straightforward to show that μ satisfies a log-Sobolev inequality with constant $e^{L^{2}}$.

What to expect?

Suppose that $\nu=\gamma_{d}$ and that $\frac{d \mu}{d \gamma_{d}}=e^{-W}$, with W L-Lipschitz.
Miclo's trick: μ satisfies a log-Sobolev inequality with constant $e^{\sqrt{d} L^{2}}$. The proof decomposes $W=$ bounded + concave and then invokes Holley-Stroock.

Lower bound: If $W(x)=L|x|$ is is straightforward to show that μ satisfies a log-Sobolev inequality with constant $e^{L^{2}}$.

Theorem

Theorem (informal)

Let ν and μ be two measures on a Riemannian manifold (M, d). Assume that (M, d, ν) satisfies an appropriate curvature assumption and that μ is an L-log-Lipschitz perturbation of ν. Then, there exists a transport with Lipschitz constant $e^{e^{L^{2}}}$.

Moreover, if $M \in\left\{\mathbb{R}^{d}, \mathbb{S}^{d}\right\}$ then the Lipschitz constant can be improved to $e^{L^{2}}$

Theorem (Improved Miclo's trick) Let $\because=$ Md and μ as abowe. Than, $C_{L S}(\mu) \leq e^{L^{2}}$

Theorem

Theorem (informal)

Let ν and μ be two measures on a Riemannian manifold (M, d). Assume that (M, d, ν) satisfies an appropriate curvature assumption and that μ is an L-log-Lipschitz perturbation of ν. Then, there exists a transport with Lipschitz constant $e^{\ell^{L^{2}}}$.

Moreover, if $M \in\left\{\mathbb{R}^{d}, \mathbb{S}^{d}\right\}$ then the Lipschitz constant can be improved to $e^{L^{2}}$.

Theorem (Improved Miclo's trick)
Let $\nu=\gamma_{d}$ and μ as above. Then, $C_{L S}(\mu) \leq e^{L^{2}}$

Theorem

Theorem (informal)

Let ν and μ be two measures on a Riemannian manifold (M, d). Assume that (M, d, ν) satisfies an appropriate curvature assumption and that μ is an L-log-Lipschitz perturbation of ν. Then, there exists a transport with Lipschitz constant $e^{\ell^{L^{2}}}$.

Moreover, if $M \in\left\{\mathbb{R}^{d}, \mathbb{S}^{d}\right\}$ then the Lipschitz constant can be improved to $e^{L^{2}}$.

Theorem (Improved Miclo's trick)

Let $\nu=\gamma_{d}$ and μ as above. Then, $C_{L S}(\mu) \leq e^{L^{2}}$.

Our approach - Transportation along Langevin dynamics

> Kim and E. Milman (2012) were the first to consider transportation along Langevin dynamics, building on the work of Otto, Villani (2000). In particular, they were the first to consider Lipschitz properties.

Rather than constructing the transport map at once as a solution to an optimization problem, the map is constructed infinitesimally along the Langevin dynamics.

Our approach - Transportation along Langevin dynamics

Kim and E. Milman (2012) were the first to consider transportation along Langevin dynamics, building on the work of Otto, Villani (2000). In particular, they were the first to consider Lipschitz properties.

Rather than constructing the transport map at once as a solution to an optimization problem, the map is constructed infinitesimally along the Langevin dynamics.

Our approach - Transportation along Langevin dynamics

Kim and E. Milman (2012) were the first to consider transportation along Langevin dynamics, building on the work of Otto, Villani (2000). In particular, they were the first to consider Lipschitz properties.

Rather than constructing the transport map at once as a solution to an optimization problem, the map is constructed infinitesimally along the Langevin dynamics.

Transportation along Langevin dynamics

Let $\left(X_{t}\right)_{t \geq 0}$ be the Langevin process:

$$
d X_{t}=\nabla \log \left(\frac{d \nu}{d x}\right)\left(X_{t}\right) d t+\sqrt{2} d B_{t}, \quad X_{0} \sim \mu
$$

with $\left(B_{t}\right)_{t \geq 0}$ a Brownian motion.

$$
P_{t} \eta(x):=E\left[\eta\left(X_{t}\right) \mid X_{0}=x\right] \quad \text { Langevin semigroup. }
$$

is a path of measures interpolating between $\rho_{0}=\mu$ to $\rho_{\infty}=\nu$.

Transportation along Langevin dynamics

Let $\left(X_{t}\right)_{t \geq 0}$ be the Langevin process:

$$
d X_{t}=\nabla \log \left(\frac{d \nu}{d x}\right)\left(X_{t}\right) d t+\sqrt{2} d B_{t}, \quad X_{0} \sim \mu
$$

with $\left(B_{t}\right)_{t \geq 0}$ a Brownian motion.

$$
P_{t} \eta(x):=E\left[\eta\left(X_{t}\right) \mid X_{0}=x\right] \quad \text { Langevin semigroup. }
$$

is a path of measures interpolating between $\rho_{0}=\mu$ to $\rho_{\infty}=\nu$.

Transportation along Langevin dynamics

Let $\left(X_{t}\right)_{t \geq 0}$ be the Langevin process:

$$
d X_{t}=\nabla \log \left(\frac{d \nu}{d x}\right)\left(X_{t}\right) d t+\sqrt{2} d B_{t}, \quad X_{0} \sim \mu
$$

with $\left(B_{t}\right)_{t \geq 0}$ a Brownian motion.

$$
\begin{gathered}
P_{t} \eta(x):=E\left[\eta\left(X_{t}\right) \mid X_{0}=x\right] \quad \text { Langevin semigroup. } \\
\rho_{t}:=P_{t}\left(\frac{d \mu}{d \nu}\right) d \nu=\operatorname{Law}\left(X_{t}\right)
\end{gathered}
$$

is a path of measures interpolating between $\rho_{0}=\mu$ to $\rho_{\infty}=\nu$.

The continuity equation

Recall

$$
\rho_{t}:=P_{t}\left(\frac{d \mu}{d \nu}\right) d \nu=\operatorname{Law}\left(X_{t}\right)
$$

The Langevin path $\left(\rho_{t}\right)$ satisfies the continuity equation

The continuity equation

Recall

$$
\rho_{t}:=P_{t}\left(\frac{d \mu}{d \nu}\right) d \nu=\operatorname{Law}\left(X_{t}\right)
$$

The Langevin path $\left(\rho_{t}\right)$ satisfies the continuity equation

$$
\begin{aligned}
& \partial_{t} \rho_{t}+\nabla \cdot\left(-V_{t} \rho_{t}\right)=0 . \\
& \partial_{t} \rho_{t}+\nabla \cdot(\underbrace{-\nabla \log P_{t}\left(\frac{d \mu}{d \nu}\right)}_{=V_{t}} \rho_{t})=0 .
\end{aligned}
$$

Transportation along Langevin dynamics

Define the family of diffeomorphisms $S_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

\square
S_{t} transports $\mu=\rho_{0}$ to ρ_{t} and $T_{t}:=S_{t}^{-1}$ transports ρ_{t} to $\rho_{0}=\mu$.

Transportation along Langevin dynamics

Define the family of diffeomorphisms $S_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

S_{t} transports $\mu=\rho_{0}$ to ρ_{t} and $T_{t}:=S_{t}^{-1}$ transports ρ_{t} to $\rho_{0}=\mu$.

The transport map along Langevin dynamics is

$$
T_{\mathrm{LVN}}:=\lim _{t \rightarrow \infty} T_{t} \quad \text { transporting } \nu=\rho_{\infty} \text { to } \rho_{0}=\mu
$$

Recall

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

SO

$$
\partial_{t} \nabla S_{t}(x)=\nabla V_{t}\left(S_{t}(x)\right) \nabla S_{t}(x)
$$

Lemma

The Lipschitz constant of TLVN is at most
$\exp \left(\int_{0}^{\infty} \sup _{x} \lambda_{\max }\left(-\nabla V_{t}\right) d t\right)$

Hence, the key point is to bound $-\nabla V_{t}=\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$

Lipschitz properties of $T_{\text {LVN }}$

Recall

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

Lemma

The Lipschitz constant of TLVN is at most
$\exp \left(\int_{0}^{\infty} \sup _{x} \lambda_{\max }\left(-\nabla V_{t}\right) d t\right)$

Hence, the key point is to bound $-\nabla V_{t}=\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$

Lipschitz properties of T_{LVN}

Recall

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

SO

$$
\partial_{t} \nabla S_{t}(x)=\nabla V_{t}\left(S_{t}(x)\right) \nabla S_{t}(x)
$$

Lemma
The Lincchitz constant of TLVN is at most $\exp \left(\int_{0}^{\infty} \sup _{x} \lambda_{\max }\left(-\nabla V_{t}\right) d t\right)$

Hence, the key point is to bound $-\nabla V_{t}=\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$

Lipschitz properties of T_{LVN}

Recall

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

SO

$$
\partial_{t} \nabla S_{t}(x)=\nabla V_{t}\left(S_{t}(x)\right) \nabla S_{t}(x)
$$

Lemma

The Lipschitz constant of $T_{\text {LVN }}$ is at most $\exp \left(\int_{0}^{\infty} \sup _{x} \lambda_{\max }\left(-\nabla V_{t}\right) d t\right)$.

Hence, the key point is to bound $-\nabla V_{t}=\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$

Lipschitz properties of $T_{\text {LVN }}$

Recall

$$
\partial_{t} S_{t}(x)=V_{t}\left(S_{t}(x)\right), \quad S_{0}(x)=x
$$

SO

$$
\partial_{t} \nabla S_{t}(x)=\nabla V_{t}\left(S_{t}(x)\right) \nabla S_{t}(x)
$$

Lemma

The Lipschitz constant of $T_{\text {LVN }}$ is at most
$\exp \left(\int_{0}^{\infty} \sup _{x} \lambda_{\max }\left(-\nabla V_{t}\right) d t\right)$.

Hence, the key point is to bound $-\nabla V_{t}=\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup (P_{t}) preserves
log-concavity.
- $\nu=$ Gaussian and $\mu=\log$-concave with compact support [M. Shenfeld (2022)]. $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \mu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact
support and one for log-concavity. Optimize bounds.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)$ preserves log-concavity.
- $\nu=$ Gaussian and $\mu=$ log-concave with compact support [M. Shenfeld (2022)]. $\nabla^{2} \log P_{+}\left(\frac{d \mu}{d \nu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact support and one for log-concavity. Optimize bounds.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)$ preserves log-concavity.
- $\nu=$ Gaussian and $\mu=\log$-concave with compact support [M., Shenfeld (2022)]. $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact support and one for log-concavity. Optimize bounds.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)$ preserves log-concavity.
- $\nu=$ Gaussian and $\mu=\log$-concave with compact support [M., Shenfeld (2022)]. $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact
support and one for log-concavity. Optimize bounds.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)$ preserves log-concavity.
- $\nu=$ Gaussian and $\mu=\log$-concave with compact support [M., Shenfeld (2022)]. $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact support and one for log-concavity.

Examples of upper bounds

Known bounds on $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$:

- μ is more log-concave than $\nu=$ Gaussian [Kim and E. Milman (2012)]. The Ornstein-Uhlenbeck semigroup $\left(P_{t}\right)$ preserves log-concavity.
- $\nu=$ Gaussian and $\mu=\log$-concave with compact support [M., Shenfeld (2022)]. $\nabla^{2} \log P_{t}\left(\frac{d \mu}{d \nu}(x)\right)$ can be written as a covariance matrix. Deduce two bounds: one for compact support and one for log-concavity. Optimize bounds.

Euclidean spaces

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on \mathbb{R}^{d}.
Assumptions for the source:

- Convexity: ν is $\kappa \log$-concave, $-\nabla^{2} \log \left(\frac{d \nu}{d x}\right) \geq \kappa$ Id.
- Third order regularitv: $\left|\nabla^{3} \log \left(\frac{d \nu}{d}\right)\right|<K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \mu}\right| \leq L$

Then: $T_{L V N}$ is $O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}\right)\right)$-Lipschitz.

Euclidean spaces

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on \mathbb{R}^{d}.

Assumptions for the source:

- Convexity: ν is $\kappa \log$-concave, $-\nabla^{2} \log \left(\frac{d \nu}{d x}\right) \geq \kappa \mathrm{Id}$.
- Third order regularity: $\left|\nabla^{3} \log \left(\frac{d \nu}{d x}\right)\right| \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$.

Then: $T_{L V N}$ is $O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}\right)\right)$-Lipschitz.

Euclidean spaces

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on \mathbb{R}^{d}.

Assumptions for the source:

- Convexity: ν is $\kappa \log$-concave, $-\nabla^{2} \log \left(\frac{d \nu}{d x}\right) \geq \kappa \mathrm{Id}$.
- Third order regularity: $\left|\nabla^{3} \log \left(\frac{d \nu}{d x}\right)\right| \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$.

Then: $T_{L V N}$ is $O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}\right)\right)$-Lipschitz.

Bismut's formula

For $f=\frac{d \mu}{d \nu}$, integration by parts on Wiener space (Malliavin calculus) \Rightarrow

where

Bismut's formula

For $f=\frac{d \mu}{d \nu}$, integration by parts on Wiener space (Malliavin calculus) \Rightarrow

$$
\begin{aligned}
\nabla^{2} P_{t} f(x)=\nabla^{2} \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s
\end{aligned}
$$

where

$$
\begin{gathered}
\nabla_{u} X_{t}^{x}:=\lim _{\varepsilon \downarrow 0} \frac{X_{t}^{x+\varepsilon u}-X_{t}^{x}}{\varepsilon} \in \mathbb{R}^{d}, \\
\nabla_{u, v}^{2} X_{t}^{x}:=\lim _{\varepsilon \downarrow 0} \frac{\nabla_{v} X_{t}^{x+\varepsilon u}-\nabla_{v} X_{t}^{x}}{\varepsilon} \in \mathbb{R}^{d} .
\end{gathered}
$$

Under the hood

We need to upper bound: $\nabla f\left(X_{t}^{x}\right), \nabla X_{t}^{x}, \nabla^{2} X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$.

Relative density $\nabla f\left(X_{t}^{\times}\right)$: Use L-log-Lipschitz assumption.

First variation ∇X_{s} : Use κ-log-concavity.

Second variation $\nabla^{2} X_{5}$: Use κ-log-concavity $+K$ bound on 3rd derivative of $\log \frac{d \nu}{d x}$.

Martingale $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$: The correct bound is the key for sharp result.

Under the hood

We need to upper bound: $\nabla f\left(X_{t}^{x}\right), \nabla X_{t}^{x}, \nabla^{2} X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$.

Relative density $\nabla f\left(X_{t}^{\times}\right)$: Use L-log-Lipschitz assumption.
First variation ∇X_{s} : Use κ-log-concavity.
Second variation $\nabla^{2} X_{s}$: Use κ-log-concavity $+K$ bound on 3rd derivative of $\log \frac{d \nu}{d x}$.

Martingale $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$: The correct bound is the key for sharp result.

Under the hood

We need to upper bound: $\nabla f\left(X_{t}^{x}\right), \nabla X_{t}^{x}, \nabla^{2} X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$.

Relative density $\nabla f\left(X_{t}^{x}\right)$: Use L-log-Lipschitz assumption.
First variation ∇X_{s} : Use κ-log-concavity.
Second variation $\nabla^{2} X_{s}$: Use κ-log-concavity $+K$ bound on 3rd derivative of $\log \frac{d \nu}{d x}$

Martingale $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$: The correct bound is the key for sharp result.

Under the hood

We need to upper bound: $\nabla f\left(X_{t}^{x}\right), \nabla X_{t}^{x}, \nabla^{2} X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$.

Relative density $\nabla f\left(X_{t}^{x}\right)$: Use L-log-Lipschitz assumption.
First variation ∇X_{s} : Use κ-log-concavity.
Second variation $\nabla^{2} X_{s}$: Use κ-log-concavity $+K$ bound on 3rd derivative of $\log \frac{d \nu}{d x}$.

Martingale $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$: The correct bound is the key for sharp result.

Under the hood

We need to upper bound: $\nabla f\left(X_{t}^{x}\right), \nabla X_{t}^{x}, \nabla^{2} X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$.

Relative density $\nabla f\left(X_{t}^{x}\right)$: Use L-log-Lipschitz assumption.
First variation ∇X_{s} : Use κ-log-concavity.
Second variation $\nabla^{2} X_{s}$: Use κ-log-concavity $+K$ bound on 3rd derivative of $\log \frac{d \nu}{d x}$.

Martingale $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$: The correct bound is the key for sharp result.

First variation

Recall

$$
d X_{t}^{x}=\nabla \log \left(\frac{d \nu}{d x}\right)\left(X_{t}^{x}\right) d t+\sqrt{2} d B_{t}, \quad X_{0}^{x}=x
$$

Differentiate to get

So, ∇X_{t}^{\times}can be controlled since $-\nabla^{2} \log \left(\frac{d \nu}{d x}\right) \geq \kappa$ Id.

First variation

Recall

$$
d X_{t}^{x}=\nabla \log \left(\frac{d \nu}{d x}\right)\left(X_{t}^{x}\right) d t+\sqrt{2} d B_{t}, \quad X_{0}^{x}=x
$$

Differentiate to get

$$
\frac{d}{d t} \nabla X_{t}^{x}=\nabla^{2} \log \left(\frac{d \nu}{d x}\right)\left(X_{t}^{x}\right) \nabla X_{t}^{x}, \quad \nabla X_{0}^{x}=\mathrm{Id}
$$

So, ∇X_{t}^{x} can be controlled since $-\nabla^{2} \log \left(\frac{d \nu}{d x}\right) \geq \kappa$ Id.

Second variation

Recall

$$
\frac{d}{d t} \nabla X_{t}^{x}=\nabla^{2} \log \left(\frac{d \nu}{d x}\right)\left(X_{t}^{x}\right) \nabla X_{t}^{x}, \quad \nabla X_{0}^{x}=\mathrm{Id}
$$

Differentiate to get

$$
\frac{d}{d t} \nabla^{2} X_{t}^{x}=\nabla^{3} \log \left(\frac{d \mu}{d x}\right)\left(X_{t}^{x}\right)\left(\nabla X_{t}^{x}, \nabla X_{t}^{x}\right)
$$

So, $\nabla^{2} X_{t}^{x}$ can be controlled since $\left|\nabla^{3} \log \left(\frac{d \mu}{d x}\right)\right| \leq K$ and

Second variation

Recall

$$
\frac{d}{d t} \nabla X_{t}^{x}=\nabla^{2} \log \left(\frac{d \nu}{d x}\right)\left(X_{t}^{x}\right) \nabla X_{t}^{x}, \quad \nabla X_{0}^{x}=\mathrm{Id}
$$

Differentiate to get

$$
\begin{aligned}
\frac{d}{d t} \nabla^{2} X_{t}^{x} & =\nabla^{3} \log \left(\frac{d \mu}{d x}\right)\left(X_{t}^{x}\right)\left(\nabla X_{t}^{x}, \nabla X_{t}^{x}\right) \\
& +\nabla^{2} \log \left(\frac{d \mu}{d x}\right)\left(X_{t}^{x}\right) \nabla^{2} X_{t}^{x} .
\end{aligned}
$$

So, $\nabla^{2} X_{t}^{x}$ can be controlled since $\left|\nabla^{3} \log \left(\frac{d \mu}{d x}\right)\right| \leq K$ and
$-\nabla^{2} \log \left(\frac{d \mu}{d x}\right) \geq \kappa \operatorname{Id}$.

The martingale

Recall Bismut's formula:

$$
\begin{aligned}
\nabla^{2} P_{t} f(x) & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s
\end{aligned}
$$

Need to control $\mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{\times} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right]$. If we control $\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{\times}$and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$ separately we get sub-optimal results. Instead, a more refined analysis is needed to get the sharp results.

The martingale

Recall Bismut's formula:

$$
\begin{aligned}
\nabla^{2} P_{t} f(x) & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s
\end{aligned}
$$

Need to control $\mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right]$. If we control $\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x}$ and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$ separately we get sub-optimal results. Instead, a more refined analysis is needed to get the sharp
results.

The martingale

Recall Bismut's formula:

$$
\begin{aligned}
\nabla^{2} P_{t} f(x) & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{\times}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s
\end{aligned}
$$

Need to control $\mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{\times} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right]$. If we control $\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{\times}$and $\int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle$ separately we get sub-optimal results. Instead, a more refined analysis is needed to get the sharp results.

Manifolds

Theorem (Fathi, M., Shenfeld (Work in progress))
Let ν and μ be two measures on a Riemannian manifold (M, d).
Assumptions for the source:

- Convexity: (M, d, ν) is $\mathrm{CD}(\kappa, \infty)$, $\operatorname{Ric}_{M}-\nabla^{2} \log \left(\frac{d \nu}{d / / \mathrm{ll}}\right) \geq \kappa \mathrm{Id}$.
- Third order regularity: $\left\lvert\, \nabla^{3} \log \left(\frac{d \nu}{d V o I}\right)+\right.$ curavture $\mid \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$

Then: $T_{L V N}$ is
$O\left(\operatorname{exn}\left(\frac{L^{2}}{2}+\frac{L}{\sqrt{n}}+\frac{L K}{R^{2}}+e^{\left.\left.\frac{L^{2}}{k} \| \text { Riem } \| \infty\right)\right)- \text { Lipschitz. }}\right.\right.$

Manifolds

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on a Riemannian manifold (M, d). Assumptions for the source:

- Convexity: (M, d, ν) is $\mathrm{CD}(\kappa, \infty)$, $\operatorname{Ric}_{M}-\nabla^{2} \log \left(\frac{d \nu}{d V o l}\right) \geq \kappa$ Id.
- Third order regularity: $\left\lvert\, \nabla^{3} \log \left(\frac{d \nu}{d V \mathrm{Vol}}\right)+\right.$ curavture $\mid \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$.

Then: TLVN is
$O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}+e^{\frac{L^{2}}{\kappa}} \|\right.\right.$ Riem $\left.\left.\|_{\infty}\right)\right)$-Lipschitz.

Manifolds

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on a Riemannian manifold (M, d). Assumptions for the source:

- Convexity: (M, d, ν) is $\mathrm{CD}(\kappa, \infty)$, $\operatorname{Ric}_{M}-\nabla^{2} \log \left(\frac{d \nu}{d V o l}\right) \geq \kappa$ Id.
- Third order regularity: $\left\lvert\, \nabla^{3} \log \left(\frac{d \nu}{d V \mathrm{Vol}}\right)+\right.$ curavture $\mid \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$.

Then: $T_{L V N}$ is
$O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}+e^{\frac{L^{2}}{\kappa}} \|\right.\right.$ Riem $\left.\left.\|_{\infty}\right)\right)$-Lipschitz.

Manifolds

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and μ be two measures on a Riemannian manifold (M, d). Assumptions for the source:

- Convexity: (M, d, ν) is $\mathrm{CD}(\kappa, \infty)$, $\operatorname{Ric}_{M}-\nabla^{2} \log \left(\frac{d \nu}{d V o l}\right) \geq \kappa$ Id.
- Third order regularity: $\left\lvert\, \nabla^{3} \log \left(\frac{d \nu}{d V \mathrm{Vol}}\right)+\right.$ curavture $\mid \leq K$

Assumptions for the target:

- Log-Lipschitz: μ is an L-log-Lipschitz, $\left|\nabla \log \frac{d \mu}{d \nu}\right| \leq L$.

Then: $T_{L V N}$ is
$O\left(\exp \left(\frac{L^{2}}{\kappa}+\frac{L}{\sqrt{\kappa}}+\frac{L K}{\kappa^{2}}+e^{\frac{L^{2}}{\kappa}} \|\right.\right.$ Riem $\left.\left.\|_{\infty}\right)\right)$-Lipschitz.
Curvature terms $:=\nabla$ Ric $+d^{*} \operatorname{Riem}+\operatorname{Riem}\left(\nabla \log \left(\frac{d \nu}{d V \mathrm{VI}}\right)\right)$.

Bismut's formula on manifolds

A similar Bismut formula (properly interpreted), due to Cheng Thalmaier, and Wang also applies on manifolds:

$$
\begin{aligned}
\nabla^{2} P_{t} f(x) & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s \\
& + \text { curvature terms. }
\end{aligned}
$$

Bismut's formula on manifolds

A similar Bismut formula (properly interpreted), due to Cheng Thalmaier, and Wang also applies on manifolds:

$$
\begin{aligned}
\nabla^{2} P_{t} f(x) & =\frac{1}{t \sqrt{2}} \mathbb{E}\left[\nabla f\left(X_{t}^{x}\right) \nabla X_{t}^{x} \int_{0}^{t}\left\langle\nabla X_{s}, d B_{s}\right\rangle\right] \\
& +\frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\nabla P_{t-s} f\left(X_{s}^{x}\right) \nabla^{2} X_{s}^{x}\right] d s \\
& + \text { curvature terms. }
\end{aligned}
$$

Better control of the curvature terms, as in the sphere, can lead to better bounds.

Further Questions

- Is third order regularity necessary?
- Is the double exponential necessar.y?
- More generally, when should we expect the existence of l inschitz transnort mans on manifolds?
- Even more generally, can we characterize which measures can be coupled by Lipschitz maps? What about when the source measure is Gaussian?

Further Questions

- Is third order regularity necessary?
- Is the double exponential necessary?
- More generally, when should we expect the existence of Lipschitz transport maps on manifolds?
- Even more generally, can we characterize which measures can be coupled by Lipschitz maps? What about when the source measure is Gaussian?

Further Questions

- Is third order regularity necessary?
- Is the double exponential necessary?
- More generally, when should we expect the existence of Lipschitz transport maps on manifolds?
- Fven more generally can we characterize which measures can be coupled by Lipschitz maps? What about when the source measure is Gaussian?

Further Questions

- Is third order regularity necessary?
- Is the double exponential necessary?
- More generally, when should we expect the existence of Lipschitz transport maps on manifolds?
- Even more generally, can we characterize which measures can be coupled by Lipschitz maps? What about when the source measure is Gaussian?

Further Questions

- Is third order regularity necessary?
- Is the double exponential necessary?
- More generally, when should we expect the existence of Lipschitz transport maps on manifolds?
- Even more generally, can we characterize which measures can be coupled by Lipschitz maps? What about when the source measure is Gaussian?

Thank You

