EXERCISE 4 IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY II

DMITRY GOUREVITCH

- (1) Let X be a topological space.
 - (a) What is a monomorphism and an epimorphism in PreSh(X)?
 - (b) $(P)^*$ What is a monomorphism and an epimorphism in Sh(X)?
- (2) $(P)^*$ Show that a category is abelian if and only if it satisfies the following:
 - (a) $\exists 0$ object.
 - (b) $\exists 0$ direct sums and direct products.
 - (c) Any monomorphism is the kernel of some morphism, and any epimorphism is the cokernel of some morphism.
- (3) Show that the localization functor is exact, but does not commute with infinite direct products.
- (4) Show that If M is a finitely generated A- module then $\operatorname{Hom}(M, \oplus N_{\alpha}) = \oplus \operatorname{Hom}(M, N_{\alpha})$.
- (5) (P) Let M be a finitely generated module over a ring A. Show that M is projective if and only if it is locally free, i.e. M_m is free over A_m for any maximal ideal m of A. Hint: first assume that A is local.
- (6) (P) Let M be a module over a ring A. Show that the following are equivalent.(a) M is flat.
 - (b) For any embedding $K \subset L$, the natural map $K \otimes_A M \to L \otimes_A M$ is an embedding
 - (c) For any ideal $I \subset A$, the natural map $I \otimes_A M \to M$ is an embedding.
 - (d) For any pair of tuples $m \in M^k$, $r \in A^k$ with $r^t m := \sum r_i m_i = 0$ there exists a matrix $X \in Mat(A, k \times k)$ and a tuple $n \in M^k$ s.t. An = m and $r^t A = 0$.
 - (e) There exists a directed system of finitely generated free modules F_{α} with $\lim_{\to} F_{\alpha} = M$.
- (7) (P) Any finitely presented flat module is projective.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/AlgGeo.html

Date: May 19, 2013.