EXERCISE 5 IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY II

DMITRY GOUREVITCH

- (1) (P) Show that for an object I in an abelian category C, the following are equivalent.
 - (a) I is injective
 - (b) Any monomorphism $I \hookrightarrow N$ has a section
 - (c) Any exact sequence $0 \to I \to N \to K \to 0$ splits.
- (2) Let X be an affine variety. Define a pre-sheaf $\mathcal{O}_X'(U):=\{\frac{f}{g}\mid f,g\in \operatorname{Pol}(X), g \text{ doesn't vanish on } U\}$. Show that $\operatorname{sh}(\mathcal{O}_X')=\mathcal{O}_X$.
- (3) The functor of global sections is left-exact, but not exact
- $(4) \ 0 \to \mathcal{O}_{\mathbb{P}^1}(\infty) \to \mathcal{O}_{\mathbb{P}^1} \to k_{\infty} \to 0 \text{ , where } k_{\infty} \text{ is the 1-dimensional skyscraper at the point } \infty \in \mathbb{P}^1.$
- (5) (a) $D_1 \equiv D_2 \Rightarrow \mathcal{O}(D_1) \cong \mathcal{O}(D_2)$
 - (b) $\mathcal{O}(D_1) \otimes \mathcal{O}(D_2) \cong \mathcal{O}(D_1 + D_2)$
 - (c) $\mathcal{O}(D) \cong \mathcal{O}(-D)$
- (6) The group Pic(C) is isomorphic to the group of invertible sheaves, with tensor product as multiplication.
- (7) Let X = SpecA be an algebraic variety, M be an A-module and \tilde{M} be the corresponding quasicoherent sheaf. Show that $\tilde{M}(X) = M$ and $\tilde{M}_p = M_{m_p}$ where $p \in X$ is any point and $m_p \subset A$ the corresponding maximal ideal.
- (8) Give an example of a non-zero module over $k[t_0, t_1]$ such that the corresponding sheaf on \mathbb{P}^1 is zero.

1

URL: http://www.wisdom.weizmann.ac.il/~dimagur/AlgGeo.html

Date: May 26, 2013.