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Abstract. We prove that the character of an irreducible cuspidal rep-
resentation of GLn(Fℓ((t))) is locally bounded up to a logarithmic factor
by the orbital integral of a matrix coefficient of this representation.

The characteristic 0 analog of this result is part of the proof of the
celebrated Harish-Chandra’s integrability theorem.

In a sequel work [AGKS] we use this result in order to prove a posi-
tive characteristic analog of Harish-Chandra’s integrability theorem un-
der some additional assumptions.
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1. Introduction

Throughout the paper we fix a non-Archimedian local field F of arbitrary
characteristic. Denote by ℓ the size of the residue field of F . All the algebraic
varieties and algebraic groups that we will consider are defined over F . We
will also fix a natural number n and set G = (GLn)F . Denote G = G(F ).
We will denote by C−∞(G) the space of generalized functions on G, i.e.

functionals on the space of smooth compactly supported measures.

1.1. Orbital integrals. Our main result involves the notion of the orbital
integral of a function on G. Let us first define this notion:

Let Grss be the collection of regular semisimple elements in G.

• Denote by µG the Haar measure on G normalized such that the mea-
sure of a maximal compact subgroup in G is 1.

• For x ∈ Grss denote by µGx the Haar measure on the torus Gx nor-
malized such that the measure of the maximal compact subgroup of
Gx is 1.

• For x ∈ Grss denote by µG·x the Ad(G)-invariant measure on the
conjugacy class G · x :=Ad(G) · x that corresponds to the measures
µG and µGx under the identification Ad(G) · x ∼= G/Gx.

• Let f ∈ C∞(G) have compact support modulo the center of G. Let
Ω(f) : Grss → C be the function defined by Ω(f)(x) =

∫
f |G·xµG·x.

1.2. Main results. For an irreducible representation ρ of G we denote by
χρ its character, which is a generalized function on G. Our main result
consists of a bound on this character in terms of the orbital integral of a
function on G. In order to formulate the bound we need some notation:

• For x ∈ Grss denote by ∆(x) the discriminant of the characteristic
polynomial of x.

• For x ∈ G let ovG(x) := max(maxi,j(− val(xij)), val(det(x))) where
xij are the entries of x.
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• For x ∈ Grss let ovGrss(x) = max(ovG(x), val(∆(x))).

Theorem A (§1.4). Let ρ be a cuspidal irreducible representation of G. Let
m be a matrix coefficient of ρ m(1) ̸= 0. Then there exists a polynomial
αρ,m ∈ N[t] such that for every η ∈ C∞

c (G) we have

|⟨χρ, η · µG⟩| < ⟨f · Ω(|m|), (|η| · µG)|Grss⟩,
where f ∈ C∞(Grss) is defined by f(g) = αρ,m(ovGrss(g)).

Remark. A priori, the right hand side of the above inequality can be infinity.
We interpret the statement in that case as void.

1.3. Background and motivation. When the characteristic of F is zero,
Theorem A is proven in [HC70, page 102]1. This is an important step in
the proof of Harish-Chandra’s integrability theorem: “The character of an
irreducible cuspidal representation of a p-adic reductive group is given by
a locally integrable function”, [HC70]. The proof in [HC70, page 102], as
well as our proof of Theorem A, is based on the fact that averaging of
cuspidal functions on G is bounded (up to a logarithmic factor) by their
orbital integral. See Theorem B below.

This fact (in characteristic 0) is also an important step in the proof of
Harish-Chandra’s integrability theorem for general (not necessarily cuspidal)
irreducible representations.

In a sequel work [AGKS] we use Theorem A in order to prove an ana-
log of Harish-Chandra’s integrability theorem for cuspidal representations of
GLn(Fℓ((t))) under some additional assumptions.

1.4. Idea of the proof. In our argument we will use the following language.
Several statements in this paper will concern the existence of certain poly-

nomials in N[t] that satisfy some conditions. In the formulation of each such
statement we assign a name for the corresponding polynomial. It is implied
that after each such statement we fix such a polynomial and we will refer to
it later by this name. Nothing significant will depend on the choices of these
polynomials.

We note that in many of the statements one can actually choose this
polynomial to be a linear function, but this is not essential to our argument.

Following [HC70] our proof can be divided into 2 steps:

(1) The character of ρ is, up to a scalar, the (weak) limit of the sequence
of functions Ai(m), where m is a matrix coefficient of ρ, and Ai(m)
is the averaging of m w.r.t. a ball Gi in G. See Theorem 1.4.2 below.

(2) Given x ∈ Grss one can bound all Ai(m)(x) in terms of ovGrss(x) and
Ω(m)(x), uniformly in i.

We now provide a formal description of these ingredients. In order to
formulate the first ingredient, let us define the notion of averaging:

Definition 1.4.1. Denote

1This is an immediate corollary of the 3rd displayed formula in [HC70, page 102]
together with the first equality in (ii) in that page.
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• Z(G) to be the center of G.
• Gad := G/Z(G).
• Gi := {x ∈ G|ovG(x) ≤ i}.
• (Gad)i to be the image of Gi under the map G→ Gad.
• µZ(G) to be the Haar measure on Z(G) normalized such that the mea-
sure of the maximal compact subgroup of Z(G) is 1.

• µGad to be the Haar measure on Gad corresponding to µG and µZ(G).
• For a function f ∈ C∞(G), denote its averaging Ai(f) ∈ C∞(G) by

Ai(f)(x) :=

∫
(Gad)i

f(Ad(g)x)dg,

where dg is the Haar measure µGad.

Let us recall the notion of matrix coefficient of a representation (ρ, Vρ).

For a pair v ∈ Vρ, φ ∈ Ṽρ, the corresponding matrix coefficient is a smooth
function on G defined by mv,φ(g) = φ(ρ(g)v).

We can now formulate the formula for the character of a cuspidal repre-
sentation:

Theorem 1.4.2 (§3, cf. [HC70, Theorem 9]). Let (ρ, Vρ) be an irreducible
cuspidal representation of G. Then there exists a positive number d(ρ) such

that for every matrix coefficient m of ρ we have Ai(m) −→
i→∞

m(1)
d(ρ)

χρ, where

the convergence is in the weak topology on C−∞(G).

In fact, d(ρ) is the formal dimension of ρ (see [HC70, Theorem 1]).
The proof of Theorem 1.4.2 in [HC70] is valid in arbitrary characteristic.

However, the result is not formulated there in this language. For complete-
ness we include the proof of Theorem 1.4.2 in §3 below.
In order to formulate the second ingredient we need the notion of a cuspidal

function on G:

Definition 1.4.3. Let f ∈ C∞(G).

• We say that f is cuspidal if for any unipotent radical U of a proper
parabolic subgroup of G and any x ∈ G the function h : U → C given
by h(u) := f(ux) is compactly supported and∫

hµU = 0,

where µU is a Haar measure on U .
• We denote the collection of cuspidal functions by C∞(G)cusp.

Now we can formulate the second ingredient:

Theorem B (§9). For any m ∈ C∞(G)cusp which has compact support mod-
ulo the center, there exists a polynomial αm ∈ N[t] such that for any x ∈ Grss

we have

|Ai(m)(x)| ≤ αm(ovGrss(x))Ω(|m|)(x).
4



Theorem A follows now from Theorem B and Theorem 1.4.2 using the
standard fact that a matrix coefficient of a cuspidal representation is cuspi-
dal.

1.4.1. Idea of the proof of Theorem B. The proof of Theorem B is based on
the following 2 ingredients:

(1) For any given x ∈ Grss, the sequence Ai(m)(x) stabilizes. More-
over, there is an effective way to bound the time needed to achieve
saturation in terms of ovGrss(x).

(2) One can bound Ai(m)(x) in terms of ovGrss(x), i and Ω(m)(x).

Both ingredients involve uniform work on x ∈Grss. We use the theory of
norms developed in [Kot05] in order to work uniformly on algebraic varieties.
Then we prove some bounds on these norms on several algebraic varieties
related to Grss – see §5.
Let us now describe these ingredients in more details. The first one is the

following stabilization result:

Theorem C (§9). For any m ∈ C∞(G)cusp which has compact support mod-
ulo the center, there exists a polynomial αm

ad−stab ∈ N[t] such that for every
x ∈ Grss and every i > i0 := αm

ad−stab(ovGrss(x)) we have

Ai(m)(x) = Ai0(m)(x).

Sections 7-9 are dedicated to the proof of this theorem. The proof itself
is in §9. Let us briefly explain the idea of the proof.

(1) For any x in G we consider the adjoint action map ϕx : Gad → G
defined by ϕx([g]) = gxg−1. Here g is a representative in G of a class
[g] ∈ Gad.

We study the averaging of m w.r.t. the adjoint action using the
averaging of ϕ∗

x(m) w.r.t. the multiplication action.
(2) Note that while m is a cuspidal function (i.e. its integrals over cosets

of unipotent radicals of proper parabolic subgroups of G vanish), the
function ϕ∗

x(m) is not cuspidal. However, it turns out that some of the
cuspidality survives. Namely, we show, in Lemma 9.0.2 below, that if
M < G is a Levi subgroup and x ∈M ∩Grss then ϕ∗

x(m) is cuspidal
w.r.t. parabolic subgroups corresponding to elements of the center
A of M . We call this property A-cuspidality, see Definition 8.0.2
below. Moreover, if x is elliptic inM then ϕ∗

x(m) has compact support
modulo A.

(3) We prove a version of Theorem C for A-cuspidal functions with com-
pact support modulo A, where the averaging is taken w.r.t. the
multiplication action. See Theorem 8.0.3 below. In view of the pre-
vious step this is already enough in order to give the stabilization for
each x separately. However, we need a more uniform result.

(4) For elliptic x ∈ M which is also an element of Grss, we bound the
support of ϕ∗

x(m) modulo-A in terms of the support of m. See
5



Lemma 7.0.3 below. The proof of this lemma is based on the re-
sults of §5 and it is essentially different from the proof in the zero
characteristic case.

(5) The steps above give us Theorem C for the collection of all the elliptic
elements in all the standard Levi subgroups of G, which are regular
semi-simple in G.

(6) In order to complete the proof we use the theory of Norm Descent
Property developed in [Kot05]. We prove the Norm Descent Property
of a certain map (see Lemma 5.1.2 below). This allows us to enhance
the results above to obtain uniformity on Grss.

The second ingredient in the proof of Theorem B is the following:

Theorem D (§6). There exists a polynomial αav ∈ N[t] such that for any

• m ∈ C∞(G) which has compact support modulo the center
• x ∈ Grss

• i ∈ N
we have

|Ai(m)(x)| ≤ αav(i+ ovGrss(x))Ω(|m|)(x).
We prove this theorem using the results of §5.

1.5. Comparison to the characteristic zero case. Our proof of Theo-
rem B is similar to the original Harish-Chandra’s argument in the charac-
teristic 0 case with the following essential difference: in the characteristic
zero case, one can work for each torus separately, since there are finitely
many tori up to conjugation. This is not the case in positive characteristic.
Therefore, we need to give more uniform bounds. For this we use the theory
of norms developed in [Kot05] and prove uniform bounds on certain norms,
see §5.

In more details, in the characteristic zero case, one can replace Theorems
C and D with the following less uniform versions:

Theorem 1.5.1 (cf. [HC70, page 101]2). Let m ∈ C∞(G)cusp be a cus-
pidal function which has compact support modulo the center. Let Γ < G
be a maximal (not necessarily split) torus. Then there exists a polynomial

αm,Γ
ad−stab ∈ N[t] such that for every:

• γ ∈ Γ ∩Grss

• y ∈ G
• i > i0 := αm,Γ

ad−stab(ovΓ∩Grss(γ) + ovG(y))

we have
Ai(m)(yγy−1) = Ai0(m)(yγy−1)

Theorem 1.5.2 (cf [HC70, 2nd displayed formula in page 102]). Let Γ < G
be a maximal torus. Then there exists a polynomial αΓ

av ∈ N[t] such that for
any

2the first display formula of page [HC70, page 101] gives a slightly weaker statement,
but the proof of this formula in fact gives the theorem.
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• m ∈ C∞(G) which has compact support modulo the center
• γ ∈ Γ ∩Grss

• y ∈ G
• i ∈ N

we have

|Ai(m)(yγy−1)| ≤ αΓ
av(i+ ovΓ∩Grss(γ) + ov(y))Ω(|m|)(yγy−1).

Harish-Chandra’s proof of these 2 theorems works (with minor changes)
for the positive characteristic case. However, while in the characteristic zero
case these 2 theorems imply Theorems C and D, this is no longer true in
positive characteristic. The reason is that, in this case, there are infinitely
many conjugacy classes of tori.

Therefore we use a different argument. Our argument is based on [Kot05],
§5, and ideas of the original Harish-Chandra’s argument.

1.5.1. The role of the assumption G = GLn. We used the assumption G =
GLn in order to make all explicit computations easier. However, our argu-
ment does not use any statement that inherently depend on this assumption
(such as existence of mirabolic subgroup, stability of adjoint orbits, or the
Richardson property of all nilpotent orbits).

1.6. The Lie algebra case. Harish-Chandra used the characteristic 0 case
of Theorem A not only to prove integrability of characters of cuspidal repre-
sentations, but also to prove integrability of characters of general irreducible
representations, see [HC99]. More precisely, he used a Lie algebra version of
this theorem. In positive characteristic, like in characteristic 0, the proof of
Theorem A also fits its Lie algebra version. Specifically one can prove the
following:

Theorem A’ (§10). Let x ∈ gln(F ) be an elliptic (regular semi-simple) ele-
ment. Let µ be an ad(G)-invariant measure on gln(F ) supported in ad(G)x.
Let µ̂∈ C−∞(gln) be its Fourier transform.
Then there exists a polynomial αµ ∈ N[t] such that for every compact open

B ⊂ gln(F ) there exists m ∈ C∞
c (gln(F )) such that for every η ∈ C∞

c (B) we
have

|⟨µ̂, η · µg⟩| < ⟨f · Ω(m), (|η| · µg)|grss⟩,
where f ∈ C∞(grss) is defined by f(x) = αµ(ovgrss(x)), and ovgrss is defined
analogously to ovGrss.

In §10 we explain how to adapt the proof of Theorem A in order to prove
Theorem A’. We also formulate there a Lie algebra version of Theorem B.

1.7. Structure of the paper. In §2 we fix some conventions and notation.
In §3 we prove Theorem 1.4.2.
In §4 we give an overview of the theory of norms on algebraic varieties

over local fields developed in [Kot05, §18]. In particular we recall the notion
of norms and of the Norm Descent Property (NDP) of algebraic maps.
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In §5, we establish results showing that a certain function defines a norm,
and establish the NDP properties of certain maps (see Lemmas 5.1.1, 5.1.2
and Proposition 5.1.4). This preparation is needed in order to make our
bounds more effective and thus torus independent.

In §6 we prove Theorem D.
In §7 we adapt the results of §5 to fit the needs of Theorem C.
In §8 we discuss the notion of A-cuspidal function where A is the center

of a standard Levi-subgroup of G. This is “what survives” from cuspidality
when we pull a cuspidal function w.r.t. the adjoint action. The goal of
this section is to prove Theorem 8.0.3 which is an analog of Theorem C for
A-cuspidal functions.

In §9 we prove Theorems C and Theorem B.
In §10 we discuss the Lie algebra version of the main results. In particular

we prove Theorem A’, and formulate and prove Theorem B’, which is a Lie
algebra version of Theorem B.

1.8. Acknowledgments. During the preparation of this paper, A.A., D.G.
and E.S. were partially supported by the ISF grant no. 1781/23. D.K. was
partially supported by an ERC grant 101142781.

2. Conventions and Notation

2.1. Conventions.

(1) By a variety we mean a reduced scheme of finite type over F .
(2) When we consider a fiber product of varieties, we always consider it

in the category of schemes. We use set-theoretical notations to define
subschemes, whenever no ambiguity is possible.

(3) We will usually denote algebraic varieties by bold face letters (such
as X) and the spaces of their F -points by the corresponding usual
face letters (such as X := X(F )). We use the same conventions when
we want to interpret vector spaces as algebraic varieties.

(4) We will use the same letter to denote a morphism between algebraic
varieties and the corresponding map between the sets of their F -
points.

(5) We will use the symbol □ in a middle of a square diagram in order
to indicate that the square is Cartesian.

(6) By an F -analytic manifold we mean an analytic manifold over F in
the sense of [Ser92].

(7) As we are proving a theorem for GLn, many of the objects that we
consider depend on the parameter n. Since we fixed n, our notations
will usually not include n. However, if we want to consider a certain
object for different values of n, we will put these values as left supper
scripts. For example kG := GLk and other uses of left-super-index
such as kC, kS.
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(8) If the left superscript is a tuple of natural numbers then we refer to
the product of the corresponding objects. For example

(k1,k2)G := k1G× k2G := GLk1 ×GLk2

(9) A standard Levi subgroup of G (resp. G) is a subgroup consisting
of block diagonal matrices in G (resp. G) with respect to a certain
block partition.

(10) A standard torus of G (resp. G) is the center of a standard Levi
subgroup of G (resp. G).

(11) When no ambiguity is possible we will denote the adjoint action
simply by “ · ”.

(12) We will use the symbol < to denote the (not necessarily proper)
containment relation for groups.

2.2. Notations. We denote by:

(1) T < G the maximal standard torus.
(2) T := T(F ).
(3) For a composition λ of n denote by Tλ the standard torus corre-

sponding to this composition. Denote also Tλ := Tλ(F ).
(4) For a group (or an algebraic group) H we denote by Z(H) the center

of H.
(5) OF the ring of integers in F .
(6) K0 := G(OF ) < G with respect to the standard OF -structure on G.
(7) Ki < K0 the i-th congruence subgroup.
(8) Kad

i = Ki/Z(Ki).
(9) Gad := G/Z(G). Note that Gad⪇Gad(F ).
(10) C − the variety of monic polynomials of degree n that do not vanish

at 0. We will identify it with Gm × An−1. We equip C with a group
structure using this identification.

(11) C := C(F ).
(12) p : G → C − the Chevalley map, i.e. the map that sends a matrix

to its characteristic polynomial.
(13) µC - the Haar measure on C, given by the identification C ∼= F× ×

F n−1, normalized on the maximal compact subgroup of C.
(14) µC the measure on C corresponding to the standard Haar measure

on F× × F n−1 under the standard identification C ∼= F× × F n−1.
(15) ∆ the discriminant considered as a regular function on G.
(16) Grss ⊂ G the non-vanishing locus of ∆. This is the locus of regular-

semi-simple elements.
(17) Grss := Grss(F ).
(18) Gel the collection of elliptic elements in G. i.e. matrices whose char-

acteristic polynomial is separable and irreducible.
(19) For a standard Levi subgroupM < G we denote byM el the collection

of elliptic elements in M , i.e. block matrices with each of the blocks
being elliptic.

(20) Crss and Crss the images (under p) of Grss and Grss in C and C.
9



(21) prss : Grss → Crss the restriction of p.
(22) ∆C the discriminant considered as a function on C.
(23) Cel the image (under p) of Gel in C.
(24) Similarly Crss (resp. Crss) is identified with the collection of all

separable polynomials in C (resp. C), and Cel with the collection of
all irreducible polynomials in Crss.

3. Weak convergence of the averaging to the character -
Proof of Theorem 1.4.2

Set d(ρ) to be the formal dimension of ρ, as defined in [HC70, Theorem
1] taken w.r.t. the Haar mesure µGad . Let m = mv,φ be a matrix coefficient
of ρ.

Case 1. ρ is unitarizable.
Let (·, ·) be the inner product on Vρ. Choose u ∈ Vρ such that
φ(·) = (·, u). Then m(y) = (ρ(y)v, u).

We will show that for any f ∈ C∞
c (G) we have

⟨Ai(m), fµG⟩ −→
i→∞

m(1)

d(ρ)
⟨χρ, fµG⟩

Notice that

⟨Ai(m), fµG⟩ =
∫
G

f(x)

(∫
(Gad)i

m(gxg−1)dg

)
dx,

where dg is the measure µGad . As (Gad)i is compact we can inter-
change the order of iterated integration:

⟨Ai(m), fµG⟩ =
∫
Gad

i

(∫
G

f(x)m(gxg−1)dx

)
dg

=

∫
Gad

i

(∫
G

f(x)(ρ(gxg−1)v, u)dx

)
dg

By [HC70, Theorem 9]:

(v, u)⟨χρ, fµG⟩ = d(ρ)

∫
Gad

(∫
G

f(x)(ρ(g−1xg)v, u)dx

)
dg

The result follows.
Case 2. The general case.

Let wρ be the central character of ρ. we can write wρ = w1w2 where
w1 is a unitary character of Z(G) and w2:= |wρ| is a character of
Z(G) that can be extended to a character w′ of G. Let ρ1 = (w′)−1ρ.
It is easy to see that ρ1 is unitarizable. The assertion follows now
from the previous case.

Remark 3.0.1. We use [HC70, Theorems 1 and 9] in the proof. Formally,
[HC70] assumes characteristic zero, but the proofs of these results do not
depend on this assumption.
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4. Norms

In this section, we recall basic parts of the theory of norms developed in
[Kot05, §18]. We will use the following notions from [Kot05, §18].

(1) An abstract norm on a set Z is a real-valued function || · ||Z on Z
such that ||x||Z ≥ 1 for all x ∈ Z.

(2) For two abstract norms || · ||1Z , || · ||2Z on Z we say that ||x||1Z≺||x||2Z
if there is a constant c > 1 such that ||x||1Z < c(||x||2Z)c.

(3) We say that two abstract norms || · ||1Z , || · ||2Z on Z are equivalent if
||x||1Z ≺ ||x||2Z ≺ ||x||1Z . We denote this as

|| · ||1Z∼|| · ||2Z .
(4) Let M be an algebraic variety. In [Kot05, §18] there is a definition of

a canonical equivalence class of abstract norms in M = M(F ). The
abstract norms in this class are called norms on M .

(5) For a map ϕ : Z1 → Z2 between sets and abstract norms ||·||Z1 , ||·||Z2

on these sets, [Kot05, §18] defines norms ϕ∗(|| · ||Z1) and ϕ
∗(|| · ||Z2) on

Im(ϕ) and Z1 correspondingly by ϕ∗(|| · ||Z1)(z) := infy∈ϕ−1(z) ||y||Z1 ,
and ϕ∗(|| · ||Z2)(y) := ||ϕ(y)||Z2 .

(6) We say that a map ϕ : M → N of algebraic varieties satisfies the
Norm Descent Property (in short NDP) if for any two norms || · ||M
and || · ||N on M := M(F ) and N := N(F ) we have

(|| · ||N)|ϕ(M) ∼ ϕ∗(|| · ||M).

Notation 4.0.1. As a rule, we will put the domain of definition of a norm
in a subscript in the notation for that norm. Given an abstract norm || · ||X
on a set X, we denote:

(1) by ovX : X → R the map given by ovX(x) = logℓ(||x||X).
(2) For i ∈ Z, Xi := {x ∈ X |ovX(x) ≤ i}. Note that this notation might

be ambiguous with the notation Ki, but we will not consider norms
on K so that there is no actual ambiguity.

If we consider more than one norm on the same set X, we will distinguish
between them and the related notation ovX and Xi using super-scripts.

Notation 4.0.2. For two sets Z1, Z2, and abstract norms || · ||Z1 , || · ||Z2 on
them we define an abstract norm || · ||Z1 × || · ||Z2 := || · ||Z1×Z2, where

||(a, b)||Z1×Z2 := max(||a||Z1 , ||b||Z2).

We will also use the following facts from [Kot05, §18].

Lemma 4.0.3 ([Kot05, Proposition 18.1(1)]). Given a morphism of alge-
braic varieties ϕ : M → N and norms || · ||M on M := M(F ) and || · ||N on
N := N(F ), we have

(1) ϕ∗(|| · ||N) ≺ || · ||M .
(2) If ϕ is a finite map then ϕ∗(|| · ||N) ∼ || · ||M .

Corollary 4.0.4. Finite maps satisfy the NDP.
11



Lemma 4.0.5 (cf. [Kot05, 18.4]). Consider morphisms

M1
f−→ M2

g−→ M3

of algebraic varieties. Assume that the map f : M1(F ) → M2(F ) is surjec-
tive. Then:

(1) If f and g satisfy the norm descent property, then so does g ◦ f .
(2) If g ◦ f satisfies the norm descent property, then so does g.

Lemma 4.0.6 ([Kot05, Theorem 18.2]). Let γ : M → N be a morphism
algebraic varieties. For an open subset U ⊆ N, write γU for the morphism
γ−1(U) → U obtained by restriction from γ.

(1) The norm descent property for γ : M → N is local with respect to the
Zariski topology on N. In other words, for any cover of N by affine
open subsets, the morphism γ has the norm descent property if and
only if the morphisms γU have the norm descent property for every
member U of the open cover.

(2) If the morphism γ : M → N admits a section, then γ has the norm
descent property. More generally, if γ : M → N admits sections
locally in the Zariski topology on N, then γ has the norm descent
property.

Lemma 4.0.7 (cf. [Kot05, Lemma 18.9]). For any torus S < G, the map
G → G/S has the NDP.

The following two lemmas are straightforward:

Lemma 4.0.8. Let

M1 M2

M3 M4

f

□
g

be a Cartesian square of algebraic varieties. If g has NDP then so does f .

Lemma 4.0.9. Consider morphisms

M1
f−→ M2

g−→ M3

of algebraic varieties. Assume that the map g : M2(F ) → M3(F ) is injective.
If f and g satisfy the NDP, then so does g ◦ f .

We fix the following norms:

(1) ||x||F = max(|x|, 1)
(2) || · ||Fk := || · ||F × · · · × || · ||F . We will use this notation for affine

spaces that are equipped with standard basis.
(3) ||g||G = max{||g||g, || det g||−1

F }, where g = gln(F ) = Matn×n(F ).
(4) ||f ||C = max(||f ||c, ||f(0)−1||), where c is the space of monic polyno-

mials of degree n with coefficients in F .
(5) || · ||Gad := ad∗(|| · ||G) where ad : G→ Gad is the quotient map.
(6) ||g||Grss = max(||g||G, |∆(g)−1|).

12



(7) ||f ||Crss := max(||f ||C , ||∆(f)−1||).
(8) For any standard torus A < T set || · ||G/A := pr∗(|| · ||G) where

pr : G→ G/A is the projection.
(9) For any other variety V we choose a norm || · ||V on V := V(F ).

5. Some bounds on norms

The role of this section is to provide bounds on norms, that enable us to
make Harish-Chandra’s bounds uniform on the entire group.

5.1. Statements and ideas of proof. In this subsection we formulate
some norm bounds - Lemmas 5.1.1 and 5.1.2, and Proposition 5.1.4. These
will be important for the proof of Theorem B.

Lemma 5.1.1. The map ϕ : G × Grss → Grss × Grss given by ϕ(g, h) =
(g−1hg, h) has the NDP.

We will prove this lemma in §5.2. The proof is based on the notion of
companion matrix.

Lemma 5.1.2. Let M < G be a standard Levi. Then the adjoint action
map G× (M ∩Grss) → Grss has NDP.

We will prove this lemma in §5.8. The proof is based on the previous
lemma and the NDP property of products of polynomials (Lemma 5.6.6).

Notation 5.1.3.

• Define Comrss := {(x, y) ∈ Grss × G |xy = yx}. Note that it is
reduced (in fact even smooth), so we consider it as a variety.

• For any x ∈ Grss, define an abstract norm || · ||′Gx
in the following

way. Let
∏
pi be the decomposition of the characteristic polynomial of

x into irreducible monic polynomials. Identify Gx with
∏
E×

i , where
Ei = F [t]/pi. Let || · ||′E×

i

= max(| · |Ei
, | · |−1

Ei
). Using the identification

above, define

(5.1) || · ||′Gx
:= || · ||′

E×
1
× · · · × || · ||′

E×
k

• Define || · ||RComrss by

(5.2) ||(x, y)||RComrss := ||y||′Gx

• Define || · ||′Comrss by

(5.3) || · ||′Comrss := max(pr∗|| · ||Grss , || · ||RComrss),

where pr : Comrss → Grss is the projection on the first coordinate.

Proposition 5.1.4. || · ||′Comrss is a norm.

Subsections 5.3-5.7 are devoted to the proof of this proposition, the proof
itself is in §5.7. Let us first summarize the idea of the proof. The intuitive
meaning of the proposition is that given an element x ∈ Grss and an element
y in its centralizer, we can bound (from above and below) the value ||y||′Gx

13



in terms of the norm of the pair (x, y) ∈ Comrss. The value ||y||′Gx
can be

interpreted as the “distance” of y from the maximal compact subgroup of
the centralizer of x.

Step 1. Consider the set Sel := Cel × Pn−1 where Pn−1 is the collection of
polynomials of degree ≤ n − 1. For each f ∈ Cel we can identify
Pn−1 with the field extension F [t]/f . This gives us an abstract norm
|| · ||′

Sel on S
el analogous to the norm || · ||Comrss , see Notation 5.4.1

(5-8) below. We prove that this abstract norm is equivalent to the
restriction of the chosen norm on S := Crss × Pn−1. This step is
performed in Lemma 5.4.2.

The intuitive meaning of this lemma is that given a monic irre-
ducible polynomial f and a polynomial g we can bound the norm of
g considered as an element in the field F [t]/f in terms of the norm
of the pair (f, g) ∈ S.

The proof of this lemma is based on an inductive argument and
on a bound on the minimal distance between roots of a polynomial
f ∈ Crss in terms of its norm in Crss, that is given in Corollary 5.3.5
below.

Step 2. We consider a subset S× ⊂ S consisting of pairs of co-prime poly-
nomials. We also consider the set Sel,× := S× ∩ Sel. We define an
abstract norm || · ||′

Sel,× analogously to || · ||′
Sel (see Notation 5.5.1

below) and prove that it is equivalent to the restriction of the chosen
norm on S×. This step is performed in Lemma 5.5.2.

Step 3. Analogously we construct an abstract norm ||·||′S× (see Notation 5.5.1
below) and prove that it is a norm. This step is performed in
Lemma 5.6.1.

Step 4. We deduce the proposition. The relation between the previous step
and this proposition is given by a map θ : Comrss → S× defined by
θ(x, y) = (p(x), g) where g is a polynomial such that y = g(x). This
step is performed in §5.7.

5.2. Proof of Lemma 5.1.1. For the proof we will need the following
lemma:

Lemma 5.2.1. Let V be a vector space and M be an affine variety. Let
f ∈ O(M × V) be a regular function. Assume that for any x ∈ M(F̄ ) the
function f |x×V(F̄ ) is not identically 0. Then the collection

{Mv := {x|f(x, v) ̸= 0}|v ∈ V(F )}

covers M.

Proof. Follows from the fact that V(F ) is Zariski dense in V. □

Proof of Lemma 5.1.1. Let c : C → G be the map defined by mapping a
polynomial to its companion matrix. Let a : G × Crss → Grss be the map
defined by a(g, f) := gc(f)g−1.

14



Step 1. a is onto on the level of F -points, and has the norm descent property.
By Lemma 4.0.6, it is enough to construct a section of a, locally in
the Zariski topology. For any v ∈ F n, we say that A ∈ G is v-regular
if and only if the matrix [v, A(v), . . . , An−1(v)] whose columns are
v, A(v), . . . , An−1(v) is invertible.

We denote the collection of v-regular matrices by Gr,v.
Define νv : G

r,v ∩Grss → G×Crss by

νv(A) := ([v,A(v), . . . , An−1(v)], p(A))

It is easy to see that νv is a section for a. Also, by Lemma 5.2.1
the collection

{Gr,v ∩Grss|v ∈ F n}
covers Grss. So we are done by Lemma 4.0.6.

Step 2. ϕ has the norm descent property.
Let us first explain the idea of the proof. Given two conjugated
elements x1, x2 ∈ Grss, we have to find an element g ∈ G that
conjugates x1 to x2, with an effective bound on its norm. By the
previous step, we can find elements g1, g2 such that gi conjugates xi
to its companion matrix. Taking the ratio of gi we get the required
element g.

For the formal proof, consider the following diagram.

G×Crss ×G×Crss Grss ×Grss

G×G×Crss Grss ×Crss Grss

G×Grss

a×a

ã

γ □

IdG×a

i

ϕ

Here, γ is given by γ(g1, g2, f) = (g1, f, g2, f) and ã is defined by the
Cartesian square.

By the previous step, the map a×a has NDP. Thus by Lemma 4.0.8,
the map ã has NDP. Since i is a closed embedding, by Lemma 4.0.9
this implies that i ◦ ã has NDP. So ϕ ◦ IdG × a = i ◦ ã also has NDP.
By the previous step IdG × a is surjective on the level of points and
has NDP. Therefore, by Lemma 4.0.5(2) we obtain that ϕ has NDP
as required.

□

5.3. Bounds on roots of polynomials. In this subsection we prove that
the product map on polynomials has NDP and give a bound on distances
between roots of a polynomial in terms of its norm in Crss.
Recall that for any k ∈ Z>0 we denote by kC the variety of monic poly-

nomials of degree k.

Lemma 5.3.1. For any k, l ∈ Z>0 the multiplication map m(k,l) :
kC× lC →

k+lC is finite.
15



Proof. Consider the map µ : (1C)k+l → kC× lC defined by

(5.4) µ(f1, . . . , fk+l) = (f1 · · · fk, fk+1 · · · fk+l).

It is easy to see that this map is dominant. The composition m(k,l) ◦ µ :
1Ck+l → kC× lC → k+lC is finite. Thus m(k,l) is finite. □

By Corollary 4.0.4 this lemma gives the following corollary.

Corollary 5.3.2. For any k ∈ Z>0, the multiplication map m(k,l) : kC ×
lC → k+lC satisfies the norm descent property.

Notation 5.3.3.

• For f ∈ C, denote ||f ||rootC = max{||λ||F̄ |λ ∈ F̄ with f(λ) = 0}.
• For f ∈ Crss, denote

(5.5)

||f ||δ−root
Crss = max

{∣∣∣∣∣∣∣∣ 1

λ− µ

∣∣∣∣∣∣∣∣
F̄

: λ, µ ∈ F̄ with f(λ) = f(µ) = 0 and λ ̸= µ

}
.

Lemma 5.3.4. We have || · ||rootC ≺ || · ||C.

Proof. The classical bounds of Cauchy and Lagrange give || · ||rootC ≤ || · ||C .
This implies the assertion. □

Corollary 5.3.5. We have || · ||δ−root
Crss ≺ || · ||Crss.

Proof. Let f ∈ Crss and let λi be the roots of f in F̄ . We have

(5.6) |∆(f)|F =
∏

1≤i<j≤n

|λi − λj|F̄ .

Thus, for any i ̸= j we have

(5.7) |λi − λj|F̄ ≥ |∆(f)|F (||f ||rootC )−n2 ≥ (||f ||Crss)−1(||f ||rootC )−n2

By the previous lemma (Lemma 5.3.4), this implies the assertion. □

5.4. Norms on Sel. In this subsection we define an abstract norm || · ||′
Sel

and prove that it is a norm.

Notation 5.4.1. Let k < n be an integer. We introduce the following nota-
tion.

(1) Pk - the variety of polynomials of degree ≤ k.
(2) Sk := Crss ×Pk, Sk := Sk(F ).
(3) Sel

k := (Cel × Pk).
(4) S := Sn−1, S := Sn−1, S

el := Sel
n−1.

(5) For any f ∈ Crss, define an abstract norm || · ||′(F [t]/f) in the following

way. Let f =
∏
fi be the decomposition of f into irreducible monic

polynomials. Identify F [t]/f with
∏
Ei, where Ei := F [t]/fi. Using

this identification, define

|| · ||′(F [t]/f) := || · ||E1 × · · · × || · ||Ed

(6) ||(f, g)||RSk
:= ||(g mod f)||′(F [t]/f)
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(7) || · ||′Sk
:= max(pr∗(|| · ||Crss), ||(f, g)||RSk

), where pr : Sk → Crss is the
projection.

(8) || · ||R
Sel := (|| · ||RS )|Sel; || · ||′Sel := (|| · ||′S)|Sel; || · ||Sel := (|| · ||S)|Sel

Lemma 5.4.2. For any k < n we have || · ||′
Sel
k
∼ || · ||Sel

k

Before giving the formal proof let us indicate its idea: The main part is
the inequality || · ||Sel

k
≺ || · ||′

Sel
k
. Its intuitive meaning is that for a pair

(f, g) ∈ Sel we can bound (from above) the coefficients of g by the norm of
f ∈ Crss and the norm of g(t) considered as an element in F [t]/f . The proof
is by induction on the degree of g. The main step is to bound the norm of
the leading coefficient of g. This is done in Steps 1,2 below. The bound on
the rest of the coefficients follows by induction (see Steps 3,4 below).

The proof of the bound on the leading coefficient of g is based on a rela-
tion between the norm of this leading coefficient, the norm of g(t) and the
distances between the roots of f and of g (see (5.16) below). This relation
implies that if the leading coefficient is too large, then one of the roots of
f is very close to one of the roots of g. Using the Galois action, we deduce
that any root of f is very close to some root of g. Since we can bound the
distance between roots of f (Corollary 5.3.5), this contradicts the fact that
deg(g) < deg(f).

Proof of Lemma 5.4.2 . We first show || · ||′
Sel
k
≺ || · ||Sel

k
. Let (f, g) ∈ Sel

k . We

have

(5.8) |gmod f |F [t]/f = |res(f, g)|F ,
where res(f, g) is the resultant of f and g. Consider res as a map Sel

k → F .
We obtain

(5.9) || · ||RSel
k
= res∗(|| · ||F ).

Thus by Lemma 4.0.3 we have || · ||R
Sel
k
≺ || · ||Sel

k
and thus || · ||′

Sel
k
≺ || · ||Sel

k
.

It remains to show that || · ||Sel
k
≺ || · ||′

Sel
k
. We will prove this by induction

on k. Define

• T : Sel
k → F by

(5.10) T

((
f,

k∑
i=0

ait
i

))
= ak

• H : Sel
k → Sel

k−1 by

(5.11) H

((
f,

k∑
i=0

ait
i

))
=

(
f,

k−1∑
i=0

ait
i

)
• || · ||′′

Sel
k
:= max(T ∗(|| · ||F ), H∗(|| · ||′

Sel
k−1

)).

Note that

(5.12) || · ||Sel
k
:= max(T ∗(|| · ||F ), H∗(|| · ||Sel

k−1
)).
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Thus, the induction hypothesis implies that || · ||Sel
k

≺ || · ||′′
Sel
k
. Thus it is

enough to show that || · ||′′
Sel
k
≺ || · ||′

Sel
k
.

Denote:

(5.13) Sel,1
k =

{
(f, g) ∈ Sel

k : |g mod f |F [t]/f ≤ 1
}

We divide the proof into the following steps.

Step 1. (T ∗(|| · ||F )|Sel,1
k

≺ || · ||′
Sel
k
|Sel,1

k

Let

(5.14) (f =
n∑

i=0

bit
i, g =

k∑
i=0

ait
i) ∈ Sel,1

k

By Corollary 5.3.5, it is enough to show that

(5.15) |ak|F ≤ (||f ||δ−root
Crss )nℓn.

Assume the contrary. Let E = F [t]/f and let E ′/F be the normal
closure of E/F . Choose a finite field extension L′/E ′ such that g
splits in L′. Let L/F be the normal closure of L′/F . By [Sta25,
Lemma 0BME] the map Aut(L/F ) → Gal(E ′/F ) is onto.

Let λi be the roots of f and µj be the roots of g in L. Consider
g(t) as an element in E. We have

1 ≥ |g(t)|E = |ak
k∏

j=1

(t− µj)|E = |ak|F · |
k∏

j=1

n∏
i=1

(λi − µj)|
1
n
L >(5.16)

> (||f ||δ−root
Crss )nℓn

k∏
j=1

n∏
i=1

|λi − µj|
1
n
L .(5.17)

So there exists (i, j) ∈ {1, . . . , n} × {1, . . . , k} such that

(5.18) |µj − λi|E < ||f ||δ−root
Crss ℓ−1.

Fix such (i, j).
On the other hand for any i1 ̸= i2 ∈ {1, . . . , n} we have

|λi1 − λi2|E > ||f ||δ−root
Crss ℓ−1.

For any l ∈ {1, . . . , n}, let γl ∈ Aut(L/F ) be such that γlλi = λl.
Set µl := γlµj. We have:

|λl − µl|L = |λj − µi|L < min
i1,i2

|λi1 − λi2|

So µl are all distinct when l ranges over {1, . . . , n}. On the other
hand µl are roots of g. So deg(g) ≥ n. Contradiction.

Step 2. T ∗(|| · ||F ) ≺ || · ||′Sk

By the previous step, we know that there exists c > 1 such that for
every (f, g) ∈ Sel,1

k we have ||ak||F < c(||(f, g)||′Sk
)c.

Fix (f, g =
∑k

i=0 ait
k) ∈ Sel

k . It is enough to show that

||ak||F < c(||(f, g)||′A′
k
)c+n.
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Let M := |
∑
ait

i|F [t]/f . We may assume that M > 1. Find b ∈ F

such that Mn ≥ |b| ≥M . We have∣∣∣ak
b

∣∣∣
F
≤
∣∣∣∣∣∣ak
b

∣∣∣∣∣∣
F
< c

(∣∣∣∣∣∣(f, g
b

)∣∣∣∣∣∣′
Sel
k

)c

.

Thus

|ak| < |b|c
(∣∣∣∣∣∣(f, g

b

)∣∣∣∣∣∣′
Sel
k

)c

≤Mnc

(∣∣∣∣∣∣(f, g
b

)∣∣∣∣∣∣′
Sel
k

)c

≤ c
(
||(f, g)||′Sel

k

)c+n

Thus

||T ((f, g))|| = ||ak||F < c(||(f, g)||′Sel
k
)c+n.

Step 3. H∗
(
|| · ||′

Sel
k−1

)
≺ max

(
(|| · ||′

Sel
k
, T ∗ (|| · ||F )

)
.

Let y :=
(
f =

∑n
i=0 bit

i, g =
∑k

i=0 ait
i
)
∈ Sel

k . We have∣∣∣∣∣
k−1∑
i=0

ait
i

∣∣∣∣∣
E

=

∣∣∣∣∣
k∑

i=0

ait
i − akt

k

∣∣∣∣∣
E

≤

∣∣∣∣∣
k∑

i=0

ait
i

∣∣∣∣∣
E

+
∣∣aktk∣∣E

≤ ||y||′Sel
k
+ ||T (y)||Sel

k
· (|t|E)k

= ||y||′Sel
k
+ ||T (y)||Sel

k
· |b0|k/nF

≤ ||y||′Sel
k
+ ||T (y)||Sel

k
· ||y||′Sel

k

≤ 2max(||y||′Sel
k
, ||T (y)||Sel

k
)2

Thus ||H(y)||′
Sel
k
< 2max(||y||′

Sel
k
, ||T (y)||Sel

k
)2.

Step 4. || · ||′′
Sel
k
≺ || · ||′

Sel
k
.

|| · ||′′Sel
k
= max

(
H∗
(
|| · ||′Sel

k−1

)
, T ∗ (|| · ||F )

)
≺ max(max(|| · ||′Sel

k
, T ∗ (|| · ||F )), T ∗ (|| · ||F ))

≺ max(max(|| · ||′Sel
k
, || · ||′Sel

k
), || · ||′Sel

k
) = || · ||′Sel

k

□

5.5. Norms on Sel,×. Let S× ⊂ S denote the collection of pairs of coprime
polynomials, and S× := S×(F ). In this subsection we define an abstract
norm || · ||′

Sel,× on Sel,× := Sel ∩ S× and prove that it is equivalent to || ·
||Sel,× := || · ||S× |Sel,× .

Notation 5.5.1. Define:

(1) For any f ∈ Crss, define an abstract norm ||·||′(F [t]/f)× in the following

way. Let f =
∏
fi be the decomposition of f into irreducible monic
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polynomials. Identify (F [t]/f)× with
∏
E×

i , where Ei := F [t]/fi.
Using this identification, define

|| · ||′(F [t]/f)× := || · ||E×
1
× · · · × || · ||E×

k

(2) ||(f, g)||RS× := ||(g mod f)||′(F [t]/f)×

(3) || · ||′S× := max(pr∗×(|| · ||Crss), ||(f, g)||RS×), where pr× : S× → Crss is
the projection.

(4) || · ||R
Sel,× := (|| · ||RS×)|Sel,×; || · ||′Sel,× := (|| · ||′S×)|Sel,×;

|| · ||Sel,× := (|| · ||S×)|Sel,×;

Lemma 5.5.2. We have || · ||′
Sel,× ∼ || · ||Sel,×

Proof. As in (5.9) we have:

(5.19) || · ||RSel,× = res∗(|| · ||F×).

Therefore
|| · ||′Sel,× = max(|| · ||′Sel , res

∗(|| · ||F×)).

On the other hand, we have:

|| · ||Sel,× ∼ max(|| · ||Sel , res∗(|| · ||F×))

The lemma follows now from Lemma 5.4.2. □

5.6. Norms on S×. In this subsection we prove:

Lemma 5.6.1. || · ||S× ∼ || · ||′S×.

Let us first explain the idea of the proof. The proof is by induction on n.
Let λ = (k1, . . . , kr) be a composition of n, namely n = k1 + · · · + kr.

Recall our convention of using ki and λ as left super-script (§2.1(7-8)).
The proof is based on the construction of the following Cartesian squares:

λS× λScop,× S×

λCrss λCcop,rss Crss

□ □

In this diagram the left horizontal arrows are open embeddings, the lower
right horizontal arrow is coming from polynomial multiplication and the
upper right horizontal arrow is based on polynomial multiplication on the
C-coordinates and on the Chinese remainder theorem on the P -coordinates.

We prove that the right horizontal arrows have the NDP. Based on this
we show that, for a proper composition λ, the induction hypothesis implies
the required equivalence on the image of the upper right horizontal arrow.
When we take the union of these images ranging over all such λ we are left
with Sel,×. So the lemma will follow from Lemma 5.5.2.

Throughout this subsection λ = (k1, . . . , kr) denotes a composition of n.

Notation 5.6.2. We introduce the following notation.

(1) λCcop ⊂ λC - the open subset of tuples consisting of pairwise co-prime
polynomials.
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(2) λCrss,cop := λCrss ∩ λCcop

(3) λScop ⊂ λS by λScop :∼= λCcop,rss × Pk1−1 × · · ·Pkr−1 under the iden-
tification

λS ∼= λCrss ×Pk1−1 × · · ·Pkr−1.

(4) Similarly we define λS×,cop.

We now define the notions of division with residue and modular inversions
of polynomials as a morphism of algebraic varieties.

Definition 5.6.3.

• Define modl,k : kC × Pl → Pk−1 in the following way: for any
unital commutative ring A, and any f ∈ kC(A), g ∈ Pl(A) we set
mod(f, g) ∈ Pk−1(A) to be the unique element such that

g ≡ mod(f, g) mod f.

• Define invl,k : (l,k)Ccop → Pk−1 in the following way: for any unital
commutative ring A, and any (f, g) ∈ (l,k)Ccop(A) we set invl,k(f, g) ∈
Pk−1(A) to be the unique element such that

inv(f, g)f ≡ 1 mod g.

Notation 5.6.4.

(1) Define modλ : λCcop,rss ×Pn−1 → λScop by

modλ((f1, . . . , fr), g) := ((f1,modn−1,k1(g, f1)) . . . , (fr,modn−1,kr(g, fr))).

(2) mCrss

λ : λCcop,rss → Crss to be the map given by the product of poly-
nomials.

(3) mS
λ := mCrss

λ × IdPn−1 :
λCcop,rss ×Pn−1 → Crss ×Pn−1 =: S

To sum up we have the following diagram:

λScop λCcop,rss ×Pn−1 S

λCcop,rss Crss

mS
λmodλ

□

mCrss

λ

Lemma 5.6.5 (Relative version of the Chinese remainder theorem). modλ
is an isomorphism.

Proof. The proof follows the proof of the Chinese remainder theorem. By
induction, it is enough to prove the lemma for the case when λ = (k1, k2) is
of length 2. In this case, we can define the inverse morphism by the following
formula.

((f1, g1), (f2, g2)) 7→ ((f1, f2),mod2(k1+k2),n(g1f2invk2,k1(f2, f1)+g2f1invk1,k2(f1, f2), g2))

□

Lemma 5.6.6. mCrss

λ is a finite map, in particular it has the NDP property.
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Proof. By induction, it is enough to show this for λ of length 2. This follows
from Lemma 5.3.1. □

Corollary 5.6.7. mS
λ is a finite map.

Notation 5.6.8.

(1) Define chinλ := mλ ◦mod−1
λ : λScop → S

(2) Define chin×
λ : λScop,× → S× to be the restriction of chinλ.

From Corollary 5.6.7 we obtain

Corollary 5.6.9. The maps chinλ and chin×
λ are finite and thus satisfy

NDP.

Notation 5.6.10.

(1) Denote || · ||RλS×, and || · ||1λS× to be the natural analogues of || · ||RS×

and || · ||1S×.
(2) Denote || · ||RλScop,× := (|| · ||IλS× |)λScop,× and

|| · ||1λScop,× := max(|| · ||RλScop,× , pr
∗
λCrss,cop(|| · ||λCrss,cop)) =

max((|| · ||1λS )|λScop,× , pr∗λCrss,cop(|| · ||λCrss,cop))

where prλCrss,cop : λScop,× → λCrss,cop is the projection.

Proof of Lemma 5.6.1. We prove the Lemma by induction. Thus from now
on we assume that it holds for any smaller value of n. Let λ be a proper
composition of n.

Step 1. || · ||′λS× ∼ || · ||λS× .
Follows immediately from the induction hypothesis.

Step 2. || · ||′λScop,× ∼ || · ||λScop,× .
Follows immediately from the previous step.

Step 3. (|| · ||′S×)|chin×
λ (λScop,×) ∼ (|| · ||S×)chin×

λ (λScop,×).

Consider the following Cartesian square:

λScop,× S×

λCcop,rss Crss

prcop

chin×
λ

□ pr

mCrss

λ

Here, prcop and pr are the projections on the first coordinates. By
Corollary 5.6.9, chin×

λ has NDP and hence

(|| · ||S×)|chin×
λ (λScop,×) ∼ (chin×

λ )∗(|| · ||λScop,×).

By definition

(|| · ||RS×)|chin×
λ (λS×) ∼ (chin×

λ )∗(|| · ||
R
λScop,×).

By Lemma 5.6.6,

(|| · ||Crss)|mCrss
λ (λCrss) ∼ (mCrss

λ )∗(|| · ||λCcop,rss).
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Therefore,

(pr∗(|| · ||Crss))|chin×
λ (λS×) ∼ (chin×

λ )∗(prcop
∗(|| · ||λCcop,rss)).

So we obtain

(|| · ||S×)|chin×
λ (λScop,×) ∼ (chin×

λ )∗(|| · ||λScop,×) ∼ (chin×
λ )∗(|| · ||

′
λScop,×) =

= (chin×
λ )∗(max(|| · ||RλScop,× , prcop

∗(|| · ||λCcop,rss))) =

max
(
(chin×

λ )∗(|| · ||
R
λScop,×), (chin

×
λ )∗prcop

∗(|| · ||λCcop,rss)
)
∼

max
(
(|| · ||RS×)|chin×

λ (λS×), (pr
∗(|| · ||Crss))|chin×

λ (λS×)

)
=

max
(
|| · ||RS× , pr∗(|| · ||Crss)

)
|chin×

λ (λS×) = (|| · ||′S×) |chin×
λ (λS×)

Step 4. || · ||S ∼ || · ||′S
This follows from the previous step, Lemma 5.4.2 and the following
equality

S× =

(⋃
λ

λS×

)
∪ Sel,×,

where λ ranges over all proper compositions of n.

□

5.7. Norms on Comrss and the proof of Proposition 5.1.4. The next
lemma follows from standard linear algebra and basic algebro-geometric con-
siderations.

Lemma 5.7.1. Let X be an algebraic variety and V be a vector space over
F . Let ψ, ϕi : X → V for i = 1, . . . , k be morphisms of algebraic varieties.
Assume that for any x ∈ X there exist unique ai ∈ F such that

∑
aiϕi(x) =

ψ(x). Then there exist regular functions Ai ∈ OX(X) such that
∑
Aiϕi = ψ.

Corollary 5.7.2. There exists a morphism ξ : Comrss → Pn such that for
any ring A and any (g1, g2) ∈ Comrss(A) we have ξ((g1, g2))(g1) = g2.

Proof of Proposition 5.1.4. Let ξ be as in Corollary 5.7.2. Define θ : Comrss →
S× by

θ(g1, g2) = (p(g1), ξ((g1, g2))).

By Corollary 5.7.2 we have the following Cartesian square:

Comrss S×

Grss Crss

prG

θ

□ prC

p|Grss

Here prG, prC are the projections on the first coordinates. So by Lemma 5.6.1,

(5.20) max(θ∗(|| · ||S×), pr∗G(|| · ||Grss)) ∼ max(θ∗(|| · ||′S×), pr∗G(|| · ||Grss)).
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Thus:

|| · ||Comrss ∼ max(θ∗(|| · ||S×), pr∗G(|| · ||Grss))
(5.20)∼ max(θ∗(|| · ||′S×), pr∗G(|| · ||Grss)) ∼

∼ max(θ∗(max(pr∗C(|| · ||Crss), || · ||RS×)), pr∗G(|| · ||Grss)) =

= max(θ∗ (pr∗C(|| · ||Crss)) , θ∗
(
|| · ||RS×

)
, prG

∗(|| · ||Grss)) =

= max(pr∗G (p|∗Grss(|| · ||Crss)) , || · ||RComrss , pr∗G(|| · ||Grss)) =

= max(pr∗G (max(p|∗Grss(|| · ||Crss), || · ||Grss)) , || · ||RComrss)
Lem 4.0.3 (1)∼

∼ max(pr∗G(|| · ||Grss), || · ||RComrss) = || · ||′Comrss

□

5.8. Proof of Lemma 5.1.2. Let λ be a composition of n such that M =
λG.

Consider the following diagram:

λG λC

(λG ∩Grss) λCrss,cop

G× (λG ∩Grss) Grss ×Crss (λG ∩Grss) Grss ×Crss
λCrss,cop Grss

G×Grss Grss ×G λCrss,cop Crss

λp

λprss,cop

□

ϕλ

i1 □ i2

p′

□
pr1

pr2 □ prss

ϕ mCrss

λ

were:

• i1, i2 are the natural embeddings.
• ϕ is defined in Lemma 5.1.1
• the rest of the maps are either defined above (see the index) or defined
by the Cartesian squares.

By Lemma 5.6.6 the map mCrss

λ has NDP. Therefore, by Lemma 4.0.8, the
map pr1 has NDP. The companion matrix gives a section to λp. Therefore
p′ also has a section. Thus p′ is onto on the level of F -points and, by
Lemma 4.0.6, has NDP. Therefore, by Lemma 4.0.5, the composition pr1 ◦p′
has NDP. By Lemma 5.1.1 ϕ has NDP. Thus by Lemma 4.0.8, the map ϕλ has
NDP. Since any 2 regular semi-simple matrices with the same characteristic
polynomial are conjugated, the map ϕλ is onto on the level of F -points.
Therefore by Lemma 4.0.5, the composition pr1◦p′◦ϕλ has NDP as required.

6. Bound on averaging of a function - Proof of Theorem D

The idea of the proof of Theorem D is based on the analysis of the action
map ϕx : Gad → G.
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The main step is to bound the measure (ϕx)∗(µGad1(Gad)i)|Ad(G)·x in terms
of µAd(G)·x. This is done in Corollary 6.0.4 below. Let us start with some
preparations:

Notation 6.0.1. For x ∈ Grss let:

(i) Gad
x := Gx/Z(G).

(ii) µGad
x

be the Haar measure on Gad
x corresponding to the Haar measures

µGx and µZ(G).
(iii) For g ∈ Gad let µgGad

x
be the measure on the coset gGad

x corresponding
to the measure µGad

x
.

Lemma 6.0.2. There exists a polynomial αvol ∈ N[t] such that for any
x ∈ Grss and i ∈ N we have

µGad
x
(Gad

x ∩ (Gad)i) < αvol(i+ ovGrss(x)).

Proof. The proof is based on the comparison of different norms on Comrss,
which is given by Proposition 5.1.4. We will use Notation 5.1.3 and the
conventions given in Notation 4.0.1.

Since Comrss is a closed subvariety of Grss × G, there exists c> 1 such
that for any (x, y) ∈ Comrss, we have

c−1max(||x||Grss , ||y||G)−c < ||(x, y)||Comrss < cmax(||x||Grss , ||y||G)c.

By Proposition 5.1.4 there exists d> 1 such that

d−1|| · ||−d
Comrss < || · ||′Comrss < d|| · ||dComrss

Set αvol(i) := (2(n(d(ci+ c) + d) + 1))n. Let x ∈ Grss and i ∈ N. We have

(Gad)i ∩Gad
x = ((Gi ∩Gx)Z(G))/Z(G).

Define an embedding ιx : G ↪→ G×G by ιx(g) := (x, g). Then we have

Gi ∩Gx ⊂ ι−1
x ((Comrss)c(ov(x)+i)+c) ⊂ ι−1

x ((Comrss)′d(c(ov(x)+i)+c)+d) ⊂
ι−1
x ((Comrss)Rd(c(ov(x)+i)+c)+d) = (Gx)

′
d(c(ov(x)+i)+c)+d

Thus we obtain

µGad
x
(Gad

x ∩ (Gad)i) ≤ µGad
x
((Gx)

′
d(c(ov(x)+i)+c)+dZ(G)/Z(G))

≤ µGx((Gx)
′
d(c(ovGrss (x)+i)+c)+d) ≤ (2(n(d(c(ovGrss(x)+i)+c)+d)+1))n < αvol(ovGrss(x)+i)

□

Corollary 6.0.3. With αvol from Lemma 6.0.2, the following holds: for any

• x ∈ Grss

• [g] ∈ Gad

• i ∈ N
we have

µ[g]Gad
x

(
ϕx

−1(ϕx([g])) ∩ (Gad)i
)
≤ αvol(i+ ovGrss(x) + ovGad([g]))
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Proof. Fix x, [g], i as above. WLOG we may assume that ||g||G = ||[g]||Gad .(
ϕx

−1(ϕx([g])) ∩ (Gad)i
)
· [g]−1 = Gad

x ∩ ((Gad)i · [g]−1)

⊂ Gad
x ∩ (Gad)i+ovG(g)

= Gad
x ∩ (Gad)i+ov

Gad ([g])

So, by Lemma 6.0.2,

µ[g]Gad
x

(
ϕx

−1(ϕx([g])) ∩ (Gad)i
)
= µGad

x

((
ϕx

−1(ϕx([g])) ∩ (Gad)i
)
[g]−1

)
≤

≤µGad
x

(
Gad

x ∩ (Gad)i+ov
Gad ([g])

) Lem 6.0.2

≤

≤αvol

(
i+ ovGad([g]) + ovGrss(x)

)
□

Corollary 6.0.4. There is a polynomial αpush ∈ N[t] such that for all i ∈ N
we have

sup

(
(ϕx)∗(µGad1(Gad)i)|G·x

µG·x

)
< αpush(i+ ovGrss(x)).

Here, 1(Gad)i is the characteristic function of the set (Gad)i.

Proof. Take αpush(i) = αvol(2i + 1). Fix i ∈ N and x ∈ Grss. Let y ∈
Supp

(
(ϕx)∗(µGad1(Gad)i

)|G·x

µG·x

)
. We can find [g] ∈ (Gad)i such that ϕx([g]) = y.

Now, we have

(ϕx)∗(µGad1(Gad)i)|G·x

µG·x
(y) =

(ϕx)∗(µGad1(Gad)i)|G·x

µG·x
(ϕx([g])) =

= µ[g]Gad
x
((ϕx

−1(ϕx([g])) ∩ (Gad)i))
Cor 6.0.3

≤
≤ αvol(i+ ovGrss(x) + ovGad([g])) ≤
≤ αvol(2i+ ovGrss(x)) < αpush(i+ ovGrss(x))

□

Proof of Theorem D. Take αav := αpush. Using the last corollary (Corol-
lary 6.0.4) we get

|Ai(m)(x)| = |⟨ϕx
∗(m), µGad1(Gad)i⟩| =

= |⟨m, (ϕx)∗(µGad1(Gad)i)⟩| ≤

≤ ⟨(|m|)|G·x, (ϕx)∗(µGad1(Gad)i)|G·x⟩
Cor 6.0.4

≤
≤⟨(|m|)|G·x, αpush(i+ ovGrss(x))µG·x⟩ =
= αpush(i+ ovGrss(x))⟨(|m|)|G·x, µG·x⟩ =
= αav(i+ ovGrss(x))Ω(|m|)(x)

□
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7. Application of norm bounds

In this section we explicate the results of §5 in a language suitable for
further use. We will use Notation 5.1.3 and the conventions given in Nota-
tion 4.0.1.

We start with the following simple lemma:

Lemma 7.0.1. Let M < G be a standard Levi subgroup. Let x ∈M el∩Grss.
Then Gx = (Gx)

′
2nZ(M).

Proof. First note that Gx = Mx. As both RHS and LHS are products of
factors that correspond to the blocks of M we can prove the equality for
each block separately. So we can reduce the statement to the case when
M = G (note that the rank of each block might be smaller than n, but the
statement becomes weaker when we enlarge n).

In this case Gx
∼= E× when E is certain field extension of F of degree

≤ n, and under this identification Z(M) is identified with F×. The assertion
follows now from the equality:

E× = {e ∈ E : ℓ−2n < |e|E < ℓ2n}F×

□

The following Lemma gives a uniform bound on the size of the compact
part of maximal tori in G.

Lemma 7.0.2. There exists a polynomial αell∈ N[t] such that for any stan-
dard Levi subgroupM < G, and any x ∈M ell∩Grss we have Gαell(ovGrss (x))Z(M) ⊃
Gx.

Proof. By Proposition 5.1.4 there exists d ∈ R>1 such that for any x ∈ Grss

and y ∈ Gx we have

(7.1) ||y||G < d(||y||′Gx
||x||Grss)d.

Take αell(j) := d(2n+ 1) + dj. We obtain:

Gαell(ovGrss (x))Z(M) ⊃ Gd+2nd+dovGrss (x)Z(M) ⊃ (Gx)
′
2nZ(M) = Gx

Where the last equality follows from Lemma 7.0.1. □

The following is a uniform version of [HC70, Corollary of Theorem 18]
which is valid in arbitrary characteristic:

Lemma 7.0.3. There exists a polynomial αpull : N → N such that for any

• i ∈ N,
• standard Levi M ⊂ G, and
• x ∈M el ∩Grss

we have

ϕ−1
x (Gi) ⊂ Gad

αpull(i+ovGrss (x))(Z(M)/Z(G))
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Proof. By Lemma 5.1.1 there exists c ∈ R>1 such that for any x ∈ Grss and
y ∈ Ad(G) · x there is g ∈ G such that:

gxg−1 = y(7.2)

||g||G < c(||x||Grss ||y||Grss)c(7.3)

Take
αpull(j) = c+ 2cj + αell(j).

Fix i,M, x as in the lemma. Let z ∈ G such that zxz−1 ∈ Gi. We have to
find z0 ∈ Z(M) such that zzsuchthat0 ∈ Gαpull(i+ovGrss (x)). By the above we
can find g such that

• gxg−1 = zxz−1

• ||g||G < c(||x||Grssℓi)c

Let z1 = g−1z. We get that z1 ∈ Gx. By Lemma 7.0.2 we can write z1 = z2z3
such that z3 ∈ Z(M) and ovG(z2) ≤ αell(ovGrss(x)). Take z0 = z−1

3 ∈ Z(M).
Then

||zz0||G = ||gz1z−1
3 ||G = ||gz2||G ≤ ||g||G||z2||G ≤

≤ c(||x||Grssℓi)cℓαell(ovGrss (x)) =

= c(||x||Grss)cℓic+αell(ovGrss (x)) ≤ ℓαpull(i+ovGrss (x))

□

8. A-cuspidal functions

Notation 8.0.1. For any a ∈ T , denote

Va :=
{
g ∈ G | lim

i→∞
Ad(a)i(g) = 1

}
and

Pa :=
{
g ∈ G | the sequence {Ad(a)i(g)}i∈N is bounded

}
.

It is well known (see e.g. [Del76]) that Pa = Pa(F ) for a corresponding
parabolic subgroup Pa < G and Va = Va(F ) where Va is the unipotent
radical of Pa. We also consider Va as a subgroup of Gad.

Definition 8.0.2. Let A < T be a standard torus.

(1) We say that a function f ∈ C∞(Gad) is A-cuspidal if for any non-
central a ∈ A, and any x ∈ G we have∫

Va

f(xu)du = 0,

where du is a Haar measure on Va.
(2) Let i ∈ N. We say that f ∈ C∞(Gad) is (A, i)-adapted if it:

(a) is A-cuspidal,
(b) is right-A/Z(G)-invariant, and
(c) satisfies Supp(f) ⊂ Gad

i · (A/Z(G)).

In this section we prove the following:
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Theorem 8.0.3. There exists a polynomial αstab : N → N such that for any

• standard torus A < T ,
• integer i ∈ N,
• y ∈ Gi,
• (A, i)-adapted function f ∈ C∞(Gad), and
• j > j0 := αstab(i)

we have ∫
Gad

j

f(xy)dx =

∫
Gad

j0

f(xy)dx,

where the integral is taken w.r.t. a Haar measure on Gad.

Let us first describe the steps of the proof.

(1) It is easy to deduce the theorem from the fact that the integral of
f over xKiy vanishes whenever x is far enough from the center (in
comparison to i). This statement is Proposition 8.3.4.

(2) We deduce Proposition 8.3.4 from the case y = 1. This case is Corol-
lary 8.3.3.

(3) Since the support of f is close to A, we can write x = x′a where
a ∈ A and x′ is relatively small.

(4) We use the right-A-invariance of f in-order to replace the integral by
an integral over x′aKa−1.

(5) If a is far away from any proper standard subtorus A′ < A, then
aKa−1 is very similar to Va−1 (see §8.2). So we deduce the result from
an effective version of cuspidality of f (see Corollary 8.1.5 below).
This case is treated in Lemma 8.3.1 below.

(6) In order to deduce Corollary 8.3.3 in the general case we use the last
step and induction on the rank of A.

We now perform these steps formally.

8.1. Effective cuspidality. In this subsection we give effective version of
cuspidality, see Corollary 8.1.5 below.

Lemma 8.1.1. Let A < T be a standard torus and let a ∈ A. Then the
multiplication map Va × (A/Z(G)) → Gad has the norm descent property.

Proof. Follows from Corollary 4.0.4 as this map is a closed embedding. □

Corollary 8.1.2. There exists a polynomial αint ∈ N[t] such that for any

• standard torus A < T
• a ∈ A
• i ∈ N

we have:
Gad

i (A/Z(G)) ∩ Va ⊂ Gad
αint(i)

.

Proof. Let A < G be a standard torus. By Lemma 8.1.1, for any a ∈ A, we
can find ca ∈ R>1 such that for any b ∈ A/Z(G) and u ∈ Va we have:

(8.1) ||u||Gad < ca(||ub||Gad)ca
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Let a1, . . . , aN ∈ A be such that

{Vak |k = 1, . . . , N} = {Va|a ∈ A}.
Take

αA
int(i) =

N∑
k=1

(cak + icak).

Fix A, a, i as in the corollary. Let x ∈ (Gad
i (A/Z(G)))∩Va. We have to show

that ovGad(x) ≤ αint(i). Write x = yb where y ∈ Gad
i and b ∈ A/Z(G). We

have y = xb−1. By (8.1) above ||x||Gad < ca(||y||Gad)ca ≤ cai
ca . Therefore

ovGad(x) ≤ ca + ica ≤ αA
int(i).

Take αint =
∑

A α
A
int, where A ranges over all standard tori of G. We get

that for any A, a, i as above we have

(Gad
i (A/Z(G))) ∩ Va ⊂ Gad

αA
int(i)

⊂ Gad
αint(i)

.

□

Notation 8.1.3. For x ∈ G and a subgroup H < G denote by ηx,H : H → G
the map given by

ηx,H(y) := xy.

Corollary 8.1.4. There exists a polynomial αη ∈ N[t] such that for any

• standard torus A < T ,
• a ∈ A,
• i ∈ N, and
• x ∈ Gad

i

we have:
η−1
x,Va

(Gad
i (A/Z(G))) ⊂ Gαη(i).

Proof. Take αη(i) = αint(2i). By Corollary 8.1.2 we have

η−1
x,Va

(Gad
i (A/Z(G))) = (x−1Gad

i (A/Z(G))) ∩ Va ⊂
(Gad

2i (A/Z(G))) ∩ Va ⊂ Gαint(2i) = Gαη(i).

□

Corollary 8.1.5. There exists a polynomial αcusp ∈ N[t] such that for any

• standard torus A < T ,
• a ∈ A,
• i ∈ N,
• (A, i)-adapted f ∈ C∞(Gad),
• x ∈ Gad

i , and
• a compact Ω ⊂ Va such that Va ∩Gad

αcusp(i)
⊂ Ω

we have: ∫
Ω

f(xu)du = 0,

where the integral is taken w.r.t. a Haar measure on Va.
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Proof. Take αcusp = αη. By the assumption and the last corollary (Corol-
lary 8.1.4) we have

(8.2)
Supp(η∗x,Va

(f)) = η−1
x,Va

(Supp(f)) ⊂ η−1
x,Va

(Gad
i (A/Z(G)))

⊂ Va ∩Gad
αcusp(i) ⊂ Ω.

Thus,∫
Ω

f(xu)du = −
(∫

Va

f(xu)du−
∫
Ω

f(xu)du

)
= −

∫
Va∖Ω

f(xu)du =

∫
Va∖Ω

η∗x,Va
(f)(u)du

(8.2)
= 0

□

8.2. Conjugation of congruence subgroups. Here we study the behavior
of aKia

−1 when a is large.

Lemma 8.2.1. For any a ∈ T and i ∈ N>1 we have

a−1Kia = (a−1Kia ∩K0)(a
−1Kia ∩ Va)

Proof. From Iwahori decomposition of Ki we get

Ki = (Ki ∩ Pa−1)(Ki ∩ Va).
Thus

a−1Kia = a−1(Ki ∩ Pa−1)aa−1(Ki ∩ Va)a⊂(a−1Kia ∩Ki)(a
−1Kia ∩ Va) ⊂

⊂ (a−1Kia ∩K0)(a
−1Kia ∩ Va)

The opposite inclusion is obvious.
□

Lemma 8.2.2. There exists a polynomial αconj : N → N such that for every
i ∈ N and y ∈ Gi we have:

Kαconj(i) ⊂ y−1Kiy

Proof. Take αconj(i) = (n+2)i using Cartan decomposition write y = k1ak2
where ki ∈ K0 and a ∈ T ∩Gi. We have

y−1Kiy = k−1
2 a−1k−1

1 Kik1ak2 = k−1
2 a−1Kiak2 ⊃ k−1

2 Kαconj(i)k2 = Kαconj(i)

□

Definition 8.2.3. Let A < T be a standard torus.

(1) Recall that || · ||G/A := pr∗(|| · ||G) where pr : G→ G/A is the projec-
tion.

(2) Denote by X(A) the set of all proper standard subtori of A.
(3) For x ∈ G define depthA(x) := minA′∈X(A)ovG/A′([x]).

The following lemma is straightforward.

Lemma 8.2.4. For any

• integer i,
• composition λ of n,
• a ∈ Tλ with depthA(a) > ni, and
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• j1, j2 ∈ {1, . . . , n} lying in different parts of the composition λ.

we have ovF×(aj1/aj2) > i where ai is the i-th component of the diagonal
matrix a.

Corollary 8.2.5. For any

• i ∈ N,
• standard torus A < T , and
• a ∈ A such that depthA(a) > ni

we have
a−1Kia ⊃ Va ∩Gi.

8.3. Vanishing of the integral on xKiy. In this subsection we prove van-
ishing of the integral on xKiy, see Proposition 8.3.4 below.

Lemma 8.3.1. There exists a polynomial αdeep ∈ N[t] such that for any

• standard tori A′ < A < T ,
• i ∈ N>1,
• (A, i)-adapted function f ∈ C∞(Gad), and
• x ∈ Gad

i (A′/Z(G)) with depthA′(x) > αdeep(i)

we have ∫
Kad

i

f(xk)dk = 0,

where the integral is taken w.r.t. a Haar measure on Kad
i .

Proof. Take αdeep(i) = n2αcusp(i) + i. Let A,A′, i, f, x be as in the Lemma.
Write x = ga with g ∈ Gad

i and a ∈ A′/Z(G). We have:

depthA′(a) ≥ n2αcusp(i)

and hence
depthA′(a−1) ≥ nαcusp(i).

Thus, by Corollary 8.2.5

aKia
−1 ∩ Va−1 ⊃ Va−1 ∩Gαcusp(i).

Therefore, by Corollary 8.1.5, for any h ∈ Gad
i we have

(8.3)

∫
aKad

i a−1∩Va−1

f(hu)du = 0.

Now,∫
Kad

i

f(xk)dk =

∫
Kad

i

f(gak)dk =

∫
Kad

i

f(gaka−1)dk =

=

∫
aKad

i a−1

f(gk1)dk1
Lem 8.2.1

=

∫
(aKad

i a−1∩K0)(aKad
i a−1∩Va−1 )

f(gk1)dk1 =

=

∫
aKad

i a−1∩K0

∫
aKad

i a−1∩Va−1

f(gk2u)dudk2
(8.3)
= 0

Here dk, dk1, dk2, du are appropriate Haar measures. □
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Lemma 8.3.2. Let A′ < A < T be standard tori. Then there exists a
polynomial αA′,A

van0 ∈ N[t] such that for any

• i ∈ N>1,
• an (A, i)-adapted function f ∈ C∞(Gad), and
• x ∈ Gad

i (A′/Z(G)) with

ovGad(x) > αA′,A
van0(i),

we have ∫
Kad

i

f(xk)dk = 0,

where the integral is taken w.r.t. a Haar measure on Kad
i .

Proof. Define recursively:

αA′,A
van0 = i+

∑
A′′∈X(A′)

αA′′,A
van0 ◦ αdeep.

We will prove the lemma by induction on A′ w.r.t. the inclusion order. The
base of the induction A′ = Z(G) is obvious. So we will now fix A′ and
assume the statement for any A′′ ∈ X(A′). Let i, f, x be as in the Lemma.
We will show the required vanishing by analyzing 2 cases:

Case 1. depthA′(x) > αdeep(i).
This case follows immediately from the previous lemma (Lemma 8.3.1)

Case 2. depthA′(x) ≤ αdeep(i).
In this case one can findA′′ ∈ X(A′) such that x ∈ Gαdeep(i)(A

′′/Z(G)).
The assertion follows now from the induction hypothesis.

□

Corollary 8.3.3 (A version of [HC70, Theorem 10]). There exists a poly-
nomial αvan0 ∈ N[t] such that for any

• standard torus A < T ,
• i ∈ N>1,
• an (A, i)-adapted function f ∈ C∞(Gad), and
• x ∈ Gad

i with
ovGad(x) > αvan0(i),

we have ∫
Kad

i

f(xk)dk = 0,

where the integral is taken w.r.t. a Haar measure on Kad
i .

Proof. Take
αvan0 = max

A
αA,A
van0

where the maximum is over all standard tori. Let A, i, f, x be as in the
lemma.

If xKad
i ∩ Gad

i (A/Z(G)) = ∅, we are done. Otherwise we can assume
without loss of generality that x ∈ Gad

i (A/Z(G)). In this case the assertion
follows from the previous lemma (Lemma 8.3.2). □
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Proposition 8.3.4 (A version of [HC70, Theorem 20]). There exists a poly-
nomial αvan ∈ N[t] such that for any

• standard torus A < T ,
• i ∈ N>1,
• y ∈ Gad

i ,
• (A, i)-adapted function f ∈ C∞(Gad), and
• x ∈ Gad such that

ovGad(x) > αvan(i)

we have ∫
Kad

i

f(xky)dk = 0,

where the integral is taken w.r.t. a Haar measure on Kad
i .

Proof. We take
αvan(i) := αvan0(i+ αconj(αconj(i))).

Fix:

• A, i, y, f as above.
• x ∈ Gad such that

ovGad(x) > αvan(i)

Denote i′ = αconj(i), i
′′ = αconj(i

′). By Lemma 8.2.2, we have

Kad
i′′ ⊂ y−1Kad

i′ y ⊂ Kad
i .

Now, we have∫
Kad

i

f(xky)dk =
∑

[z]∈Kad
i /Kad

i′

∫
Kad

i′

f(xzk1y)dk1 =

=
∑

[z]∈Kad
i /Kad

i′

∫
Kad

i′

f(xzyy−1k1y)dk1 =

=
∑

[z]∈Kad
i /Kad

i′

∫
y−1Kad

i′ y

f(xzyk2)dk2 =

=
∑

[z]∈Kad
i /Kad

i′

 ∑
[w]∈(y−1Kad

i′ y)/Kad
i′′

∫
Kad

i′′

f(xzywk3)dk3

 = 0

Here dk, dk1, dk2, dk3 are appropriate Haar measures, and the last equality
follows from Corollary 8.3.3. □

8.4. Proof of Theorem 8.0.3. Take αstab := αvan. Fix

• a standard torus A < T ,
• an integer i ∈ N,
• y ∈ Gad

i ,
• an (A, i)-adapted function f ∈ C∞(Gad), and
• j > j0 := αstab(i)
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We have ∫
Gad

j

f(xy)dx−
∫
Gad

j0

f(xy)dx

=

∫
Gad

j ∖Gad
j0

f(xy)dx =
∑

[z]∈(Gad
j ∖Gad

j0
)/Kad

1

∫
Kad

1

f(zky)dk = 0

Here the last equality follows from Proposition 8.3.4.

9. Proof of Theorems C and B

Lemma 9.0.1. Let M < G be a Levi subgroup. Let x ∈ M ∩ Grss. Let
A := Z(M) and a ∈ A. Then:

(1) For any u ∈ Va we have uxu−1x−1 ∈ Va.
(2) The map Cx : Va → Va defined by

Cx(u) := uxu−1x−1

is a homeomorphism that maps a Haar measure to a Haar measure.

Proof. Item (1) is obvious. Let us prove item (2). Consider the natural
filtration V k

a on the unipotent group Va. The quotient V
k
a /V

k+1
a has a natural

structure of a linear space. It is easy to see that Cx preserves this filtration
and acts as an invertible linear operator on each V k

a /V
k+1
a . This implies the

assertion. □

Lemma 9.0.2. Let f ∈ C∞(G) be a cuspidal function. Let M < G be a
Levi subgroup. Let x ∈ M ∩ Grss. Let A := Z(M) and a ∈ A. Recall that
ϕx : Gad → G is defined by ϕx([g]) = gxg−1. Then ϕ∗

x(f) is A-cuspidal (and
A-right-invariant).

Proof. Let a ∈ A and g ∈ G. Let [g] be the class of g in Gad. For u ∈ Va we
have

ϕx([g]u) =guxu
−1g−1 = guxu−1x−1g−1gxg−1 = gCx(u)g

−1gxg−1 =

=(Ad(g) ◦ Cx)(u)gxg
−1.

Therefore:∫
Va

ϕ∗
x(f)([g]u)du =

∫
Va

f((Ad(g)◦Cx)(u)gxg
−1)du =

∫
Ad(g)(Va)

f(vgxg−1)dv,

where du is a Haar measure on U and dv = (Ad(g) ◦ Cx)∗(du). By the
previous Lemma (Lemma 9.0.1) dv is a Haar measure on Ad(g)(U). Since f
is cuspidal, we get ∫

Va

ϕ∗(f)([g]u)du = 0

as required. □
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Proof of Theorem C. Let N ∈ N be such that Supp(m) ⊂ GNZ(G). For any
standard Levi M < G let aM : G × (M ∩ Grss) → Grss be the action map.
By Lemma 5.1.2 we can find c such that for any standard Levi M < G we
have

(9.1) (aM)∗(|| · ||G × || · ||M∩Grss) < c((|| · ||Grss)|Im(aM ))
c.

Also, since M ∩ Grss is a closed subset of Grss, by Corollary 4.0.4, we have
d such that for any standard Levi M < G we have

(9.2) || · ||Grss < d(|| · ||M∩Grss)d.

We take

αm
ad−stab(i) := αstab(αpull(N + cd+ d+ cdi) + c+ ci).

Fix x ∈ Grss and i > i0 := αm
ad−stab(ovGrss(x)). We have to show that

Ai(m)(x) = Ai0(m)(x).
Let M < G be a standard Levi such that we have an element x0 ∈M el ∩

Grss which is conjugate to x. Let A = Z(M). By (9.1), we can find x1 ∈
M, y ∈ G such that

(a) yx1y
−1 = x

(b) ||x1||M∩Grss < c(||x||Grss)c

(c) ||y||G < c(||x||Grss)c

It is easy to see that x1 ∈M el. By (9.2), we also have:

||x1||Grss < d(||x1||M∩Grss)d

and thus:

(9.3) ||x1||Grss < cdd(||x||Grss)cd.

By Lemma 7.0.3, we have

ϕ−1
x1
(GNZ(G)) = ϕ−1

x1
(GN) ⊂ Gad

αpull(N+ovGrss (x1))
(A/Z(G)).

Denote i1 := αpull(N+ovGrss(x1)). By Lemma 9.0.2, this implies that ϕ∗
x1
(m)

is (A, i1)-adapted. For any j ∈ N we have:

Aj(m)(x) =

∫
Gad

j

m(Ad(g)(x))dg
(a)
=

∫
Gad

j

m(Ad(g)(yx1y
−1))dg =

∫
Gad

j

ϕ∗
x1
(m)(g[y])dg,

where [y] ∈ Gad is the class of y. Note that

i0 = αm
ad−stab(ovGrss(x)) = αstab(αpull(N + cd+ d+ cd(ovGrss(x))) + c+ c · ovGrss(x))

(9.3)

≥

≥ αstab(αpull(N + ovGrss(x1)) + c+ c · ovGrss(x))
(c)

≥
≥ αstab(αpull(N + ovGrss(x1)) + ovG(y)) ≥ αstab(i1 + ovGad([y])).

Let i2 := i1 + ovGrss[y]. Note that ϕ∗
x1
(m) is (A, i2)-adapted and [y] ∈ Gad

i2
.

So, by Theorem 8.0.3,

Ai(m)(x) =

∫
Gad

i

ϕ∗
x1
(m)(g[y])dg =

∫
Gad

i0

ϕ∗
x1
(m)(g[y])dg = Ai0(m)(x)
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as required. □

Proof of Theorem B. Take αm(i) = αav(α
m
ad−stab(i) + i). For any x ∈ Grss

and i ∈ N we have

|Ai(m)(x)|
Thm C

≤ max
k≤αm

ad−stab(ovGrss (x))
|Ak(m)(x)| ≤

Thm D

≤ max
k≤αm

ad−stab(ovGrss (x))
αav(k + ovGrss(x))Ω(|m|)(x) =

= αav(α
m
ad−stab(ovGrss(x)) + ovGrss(x))Ω(|m|)(x) = αm(ovGrss(x))Ω(|m|)(x).

□

10. Lie algebra versions of the main results

In this section we formulate Lie algebra versions of the main results and
explain how one can modify the proof of the main results in order to prove
the Lie algebra versions.

Definition 10.0.1. Let f ∈ C∞(g).

• We say that f is cuspidal if for any nilpotent radical u of a proper
parabolic subalgebra of g and any x ∈ g the function h : u → C given
by h(u) := f(x+ u) is compactly supported and∫

hµu = 0,

where µu is a Haar measure on u.
• We denote the collection of cuspidal functions on g by C∞(g)cusp.

The proof of Theorem B also gives:

Theorem B’. For any m ∈ C∞(g)cusp which has compact support modulo
the center, there exists a polynomial αm ∈ N[t] such that for any x ∈ Grss

we have
|Ai(m)(x)| ≤ αm(ovGrss(x))Ω(|m|)(x).

Here we extend the definition of Ai given in Definition 1.4.1 to functions
on g in the natural way.

To be more precise one has to modify the proof of Theorem B as follows:
In Lemma 9.0.1, replace Cx(u) with Dx(u) := uxu−1 − x. This allows to
modify Lemma 9.0.2 to work for a cuspidal function f ∈ C∞(g). The rest
of the proof works with the obvious modifications.

Theorem A’ follows from Theorem B’ and the fact that µ̂x|B = limAi(m)|B
for some cuspidal m ∈ C∞(g). This is proven exactly as in characteristic
zero case, see [HC99, Lemma 1.19].

Index
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