
SUMMARY FOR THE COURSE ”REPRESENTATION THEORY OF
FINITE AND COMPACT GROUPS”, FALL 2013

DMITRY GOUREVITCH

Here I shortly summarize the the lectures that passed. Sometimes I am one lecture
behind or ahead. In the latter case, the notes of the future lecture may be incomplete
and may include remarks for myself, marked by ”??”.

1. Basic definitions and Schur’s lemmas

Definition 1.1. A group G is a set with a binary operation G × G → G, called multi-
plication, such that

(1) ∀f, g, h ∈ G.(fg)h = f(gh)
(2) ∃1 ∈ Gs.t.∀g ∈ G, 1g = g1 = g
(3) ∀g ∈ G, ∃g−1 ∈ Gs.t. gg−1 = g−1g = 1

A morphism of groups φ : G → H is a function φ : G → H s.t. φ(g1g2) =
φ(g1)φ(g2) ∀g1, g2 ∈ G.

Example 1.2. Z - the group of integers, Z/nZ = the cyclic group of order n, Sym(X)-
the group of all bijections from X to itself. Also denoted by Symn or Sn if X has n
elements. If V is a vector space of dimension n over a field F then we denote by GL(V )
or by GL(n, F ) the group of all invertible linear transformations from V to itself.

Definition 1.3. A G-set (a,X) is a set X together with a morphism of groups a : G →
Sym(X). We also say that G acts on X via a, and that a is an action of G on X. We
will sometimes omit the a or the X from the notation. Also, we will sometimes write gx
for a(g)x.
A morphism of G-sets ν : (a,X) → (b, Y ) is a function ν : X → Y such that
ν(a(g)x) = b(g)ν(x), ∀g ∈ G, x ∈ X.
Denote by XG the set of fixed points of G in X, i.e. XG := {x ∈ X : gx = x ∀g ∈ G}.
For a point x ∈ X denote by Gx := StabG(x) := {g ∈ G : gx = x} the stabilizer of x
in G and by Gx := {gx : g ∈ G} the orbit of x.
An action of G on X is called free if all stabilizers are trivial and transitive if Gx = X
for some (and hence every) x ∈ X.

Example 1.4.

(1) Sym(X) acts on X.
(2) GL(V ) acts on V .
(3) G × G acts on G by (g1, g2) ∙ h = g1hg−1

2 . This gives rise to 3 actions of G on
itself, corresponding to 3 embeddings of G to G × G: left, right and diagonal.
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Definition 1.5. Let H be a subgroup of G. Define an equivalence relation on G by g1 ∼ g2

iff g−1
1 g2 ∈ H. We will denote the set of equivalence classes by G/H and denote the

equivalence class of g by gH. Then G/H has a natural action of G defined by g1(g2H) :=
(g1g2)H. We call it the set of right H-cosets in G.
If the subgroup H is normal, i.e. satisfies ghg−1 ∈ H ∀g ∈ G, h ∈ H then G/H has a
natural group structure defined by (g1H)(g2H) := g1g2H.

Proposition 1.6. (1) |G| = |G/H| ∙ |H|, where | | denotes the size of a set.
(2) Any transitive G-set X is isomorphic the set of cosets G/Gx where x ∈ X is any

point.
(3) Any G-set is a disjoint union of transitive G-sets (its orbits).

Many important groups have natural actions that are straightforward from their defi-
nitions. Many theorems on groups and their subgroups come from actions of G on itself
or on coset spaces G/H . G-sets are important, and one can use geometry to study them.
However, one cannot ”compute” in G-sets. In order to compute, one needs some algebraic
structure, e.g. a vector space.

Definition 1.7. A representation of a group G over a field F consists of a vector space
V over F and a morphism of groups π : G → GL(V ). We will denote the representation
by (G, π, V ) or (π, V ) or π or V . The dimension of V is called the dimension of the
representation. A one-dimensional representation is called a character. A morphism
of representations φ : (π, V ) → (τ,W ) is a linear map φ : V → W that is a morphism of
G-sets, i.e. such that φ(π(g)v) = τ(g)φ(v), ∀g ∈ G, v ∈ V .

Here are some examples of characters.

Example 1.8.

(1) The trivial character (of any group): χ(g) = 1 for all g.
(2) The sign character of Sn (sign of permutation).
(3) The determinant for GL(n, F ).

Here are some examples of representations.

Example 1.9.

(1) The zero representation (of any group): V = 0, GL(V ) has one element.
(2) SO(2,R) acts on R2 by rotations.
(3) GL(V ) acts on V .
(4) Sym(X) acts on the space F (X) of all functions X → F .

Exercise 1.10. Let π, τ ∈ Rep(G) and let φ : π → τ be a morphism of representations
which is an isomorphism of linear spaces. Show that φ is an isomorphism of representa-
tions. In other words, show that the linear inverse φ−1 is also a morphism of representa-
tions.

Definition 1.11. Let (π, V ) and (τ,W ) be representations of G (over the same field F ).
Define a representation of G on the direct sum V ⊕ W by g(v, w) := (π(g)v, τ (g)w).

Define a dual or contragredient representation (π∗, V ∗) by (π∗(g)φ)(v) := φ(g−1)v.
Let (σ, U) be a representation of H (over F ). Define a representation of G×H on the

tensor product V ⊗ U by (g, h)(v ⊗ u) := π(g)v ⊗ σ(g)u.
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In particular, if G = H then π ⊗ σ is a representation of G × G, which also becomes
a representation of G using the diagonal embedding Δ : G ↪→ G × G. This enables us to
define an action of G on HomF (V, U) = V ∗ ⊗ U .

Exercise 1.12. Check that HomF (V, U)G = HomG(π, σ).

Definition 1.13. A subrepresentation of (G, π, V ) is a G-invariant subspace of V ,
with induced action of G.

Example 1.14. Any representation has (at least) 2 subrepresentations : 0 and V .

Definition 1.15. A representation is called irreducible if it has only 2 subrepresenta-
tions.

Example 1.16.

(1) Any character is irreducible
(2) The action of SO(2,R) on R2 by rotations is irreducible, while the action of R×

on R2 by homotheties is not.

Exercise 1.17. Every irreducible representation of a finite group is finite dimensional.

In the next lecture we will show that every representation is a direct sum of irreducible
ones, and for a given group there is a finite number of isomorphism classes of irreps (unlike
prime numbers). Thus, the main goals of representation theory are to classify all irre-
ducible representations of a given group (up to isomorphism) and given a representation
to find its decomposition to irreducible ones.

The most important properties of irreducible representations are Schur’s lemmas.

Lemma 1.18. Let ρ and σ be irreps of a group G.
(1) Any non-zero morphism φ : ρ → σ is an isomorphism.
(2) If the field F is algebraically closed and ρ is finite-dimensional then Hom(ρ, ρ) =

F ∙ Id.

Proof. (1) Ker φ is a subrepresentation of ρ and Im φ is a subrepresentation of σ.
(2) Let ϕ ∈ Hom(ρ, ρ) and λ be an eigenvalue of ϕ. Since ϕ − λId is not invertible, (1)
implies that it is zero. �

Corollary 1.19. Every irrep of a finite commutative group over an algebraically closed
field is one-dimensional.

Exercise 1.20. Every irrep of a commutative group over R is at most 2-dimensional.

Exercise 1.21. Let (π1, V1), (π2, V2) be irreps of a group G. Consider the direct sum
(π, V ) of these representations. The space V has four G-invariant coordinate subspaces
0, V1, V2, V . Show that the representations π1 and π1 are isomorphic if and only if there
exists a non-coordinate G-invariant subspace in V (i.e. a subspace distinct from the four
subspaces listed above).

In this course we will consider mainly representations over the field C of complex
numbers.
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2. Existence and uniqueness of decomposition to irreducibles,
intertwining numbers and the group algebra.

From now on we consider only finite groups.

Definition 2.1 (Exercise). A representation π is called completely reducible if one of the
following equivalent conditions holds.

(1) π is a direct sum of irreducible representations.
(2) For every subrepresentation τ ⊂ π there exists another subrepresentation τ ′ ⊂ π

such that π = τ ⊕ τ ′.

Note that an irreducible representation is completely reducible :-).

Theorem 2.2 (Weyl-Mashke). Every representation (π, V ) of a finite group G is com-
pletely reducible.

Proof. Let τ ⊂ π. It is enough to find a G-invariant linear projection on τ . We take any
linear projection on τ and average it. Namely, we take a linear map p : V → V s.t. p2 = p
and Im p = τ and replace it by p′ :=

∑
g∈G π(g)pπ(g−1). Check that p′2 = p′, Im p′ = τ

and p′ is G-invariant. �

The idea of averaging is very important. It always gives something G-invariant, but
sometimes produces zero. It already takes advantage of linearity of our subject - we would
not be able to do such a thing with G-sets.

In fact, this works over any field F such that |G| is not zero in F . The assumptions
that G is finite and |G| is not zero in F are necessary, as shown by the following example.

Example 2.3. Define A ∈ Mat2(F ) by A =

(
1 1
0 1

)

. Let the group Z act on F 2 by

π(n) := An. Then this representation is not completely reducible.
If charF = p then the same example gives a representation of the finite group Z/pZ.

Corollary 2.4. Any matrix A with An = Id is diagonalizable.

In order to prove uniqueness of the decomposition we introduce a very important notion,
called intertwining number.

Notation 2.5. We denote by Rep(G) the collection of all representations of G and by
Irr(G) the set of isomorphism classes of irreducible representations of G.

Definition 2.6. Let π, τ ∈ Rep(G). Define the intertwining number of π and τ by
〈π, τ 〉 := dim HomG(π, τ ).

Lemma 2.7. The ”form” 〈∙, ∙〉 is ”bilinear and symmetric”. Namely

(1) 〈π1 ⊕ π2, τ〉 = 〈π1, τ〉 + 〈π2, τ〉
(2) 〈π, τ1 ⊕ τ2〉 = 〈π, τ1〉 + 〈π, τ2〉
(3) 〈

⊕
aiπi,

⊕
biτi〉 =

∑
aibi〈πi, τi〉, where ai and bi are natural numbers or zeros.

(4) 〈π, τ 〉 = 〈τ, π〉

Proof. (1)-(2) are obvious and apply (3), which in turn implies (4) using complete re-
ducibility and Schur’s lemmas. �
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Note that we just proved that the spaces HomG(π, τ ) and HomG(τ, π) are equidimen-
sional and hence isomorphic, but we have no natural isomorphism between them.

Corollary 2.8. The decomposition of any representation to a direct sum of irreducible
ones is unique. The multiplicity with which an irrep σ appears in a representation π equals
〈σ, π〉.

Corollary 2.9. A representation π is irreducible if and only if 〈π, π〉 = 1.

For a vector space V denote End(V ) := Hom(V, V ). Note that End(V ) = V ⊗ V ∗.
Thus, let us study some properties of actions on tensor products.

Let π ∈ Rep(G) and τ ∈ Rep(H).

Exercise 2.10. Show that (π ⊗ τ)|G = (dim τ)π and (π ⊗ τ)|H = (dim π)τ .

Exercise 2.11. Show that (π ⊗ τ)G×H = πG ⊗ τH .

Lemma 2.12. Let ρ ∈ Irr(G) and σ ∈ Irr(H). Then ρ ⊗ σ ∈ Irr(G × H).

Proof.

EndG×H(ρ⊗σ) = (EndF (ρ⊗σ))G×H = (ρ∗⊗σ⊗σ∗⊗ ρ)G×H = (ρ∗⊗ ρ⊗σ⊗σ∗)G×H =

(ρ∗ ⊗ ρ)G ⊗ (σ ⊗ σ∗)H = EndF (ρ)G ⊗ EndF (σ)H = EndG(ρ) ⊗ EndH(σ).

Thus, 〈ρ ⊗ σ, ρ ⊗ σ〉 = 〈ρ, ρ〉〈σ, σ〉 = 1. �

Exercise 2.13. Prove that every irrep of G × H can be obtained in this way.

Corollary 2.14. If ρ ∈ Irr(G) then EndF (ρ) ∈ Irr(G × G).

Definition 2.15 (Group algerba). Define the group algebra A(G) of G to be the algebra
spanned over F by the symbols δg, g ∈ G with multiplication defined by δgδh = δgh. Note
that this is an associative non-commutative (unless G is commutative) algebra with unit
(equal to δ1). We can also view it as the algebra of functions from G to F , or the algebra
of measures on G, with multiplication given by convolution:

f ∗ h(g) :=
∑

x∈G

f(gx−1)h(x)

We define a representation of G × G on A(G) by (g1, g2)δx := δg1xg−1
2

∀x ∈ G or,

equivalently, ((g1, g2)f)(x) := f(g−1
1 xg2) ∀f ∈ A(G), x ∈ G. This representation is called

the regular representation of G. Its restrictions on first and second coordinate of G×G
are called the left regular and right regular representations respectively.

Definition 2.16. A representation of an algebra with unit A on a vector space V is a
morphism of algebras with unit A → End(V ).

Exercise 2.17. A representation (π, V ) of G defines a representation of A(G) on V and
vice versa.

Lemma 2.18. If ρ ∈ Irr(G) then the natural morphism of algebras A(G) → EndF (ρ) is
onto.

Proof. EndF (ρ) is an irrep of G × G and the image of this morphism is a non-zero sub-
representation. �
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3. Decomposition of the regular representation. Corollaries on number
and dimensions of irreducible representations. Examples for small

symmetric groups

Lemma 3.1. Let V be a vector space. Then 〈A,B〉 := Tr(AB) defines a non-degenerate
symmetric bilinear form on End(V ). Moreover, if V is a representation of G then this
form is invariant with respect to the diagonal action of G. This form is called the trace
form.

Theorem 3.2. The natural morphism

φ : A(G) →
⊕

σ∈Irr(G)

EndF (σ)

is an isomorphism of algebras and of representations of G × G.

Proof. (1) It is easy to see that φ is a morphism of algebras and of representations of
G × G. Thus it is enough to show that φ is one to one and onto.

(2) Suppose f ∈ Ker φ ⊂ A(G). Then f acts by zero on any irreducible representation
of G and thus on any representation of G. Thus, f acts by zero on A(G), but
fδ1 = f and thus f = 0.

(3) Define a morphism ψ :
⊕

σ∈Irr(G) EndF (σ) → A(G) in the following way. For

A ∈ End(σ) let by ψ(A)(g) := Tr(σ(g)A), and continue by linearity to the direct
sum. Let us show that it is an embedding.
From Lemmas 2.18 and 3.1 we see that Ker ψ does not intersect any coordinate of
the direct sum. On the other hand, by Exercise 1.21, Ker ψ must be a coordinate
subspace. Thus Ker ψ = 0.

(4) Now, by (3) the R.H.S. is finite dimensional and its dimension is at most the
dimension of L.H.S, and by (2), φ is one to one. Thus φ is an isomorphism.

�

Corollary 3.3. (1) Irr(G) is finite and
∑

σIrr(G)

(dim σ)2 = |G|.

(2) |Irr(G)| equals the number of conjugacy classes in G.

Proof. (1): obvious. (2): both are equal to the dimension of the center of A(G). �

Example 3.4. If G is commutative then |Irr(G)| = |G| and all irreps are characters.

Lemma 3.5. Let X and Y be G-sets. Then 〈F (X), F (Y )〉 equals the number of orbits of
G in X × Y under the diagonal action.

Corollary 3.6. If the action of G on X is double-transitive then F0(X) is irreducible.

Example 3.7. Classification of Irr(S2), Irr(S3), Irr(S4).

4. Isotypic components; Characters, Schur orthogonality relations

4.1. Isotypic components.
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Definition 4.1. A representation is called isotypic if it is a direct sum of isomorphic
irreducible representations.

Exercise 4.2. The following are equivalent:

(1) π is isotypic
(2) All irreducible subrepresentations of π are isomorphic
(3) If π ' ω ⊕ τ with 〈ω, τ 〉 = 0 then either ω = 0 or τ = 0.

Theorem 4.3. Let (π, V ) ∈ Rep(G). Then there exists a unique set of subrepresenta-

tions Vi such that V =
⊕k

i=1 Vi, Vi are isotypic, and 〈Vi, Vj〉 = 0. Moreover, for any

subrepresentation W ⊂ V , we have W =
⊕k

i=1(W ∩ Vi).

Proof. By induction. Existence is easy. Uniqueness follows from the ”moreover” part.
To prove the ”moreover” part, fix a decomposition V =

⊕
Vi, let W ⊂ V and consider

the decomposition W =
⊕

Wi where Wi has the same type as Vi, or is zero. Then
W ∩ Vi ⊂ Wi. On the other hand, Wi has zero projection on Vj , for j 6= i and thus
Wi ⊂ Vi. Thus Wi = Vi. �

The Vi are called the isotypic components of π.

Definition 4.4. If all isotypic components of π are irreducible then π is called multiplicity
free.

Lemma 4.5 (Easy). Every intertwining operator L ∈ HomG(π, π) preserves each isotypic
component. In particular, if π is multiplicity free then L is scalar on each Vi.

Exercise 4.6. Barak has got a game for his birthday. In the game there was a cube with
digits 1,...,6 on its faces. Each time he played with his friends and lost, he blamed the cube
and modified it by replacing the number on every face by the average of its 4 neighbors.
What numbers will be written on the faces after 10 losses?

Solution. Let V denote the 6-dimensional space of functions on the set X of faces of the
cube and L denote the ”averaging on neighbors” operator. Of course, we can guess that
the answer will be approximately the constant function 3 .5. However, to know how precise
this approximation is we will need to diagonalize L and representation theory will help
us.

Let G denote the group of motions of the cube and consider V as its representation.
Then G has 3 orbits on X, thus 〈V, V 〉 = 3 and thus V is a sum of 3 non-isomorphic
irreducible representations. One is, of course, the 1-dimensional space V1 of constant
functions. The other is the 2-dimensional space V2 of ”symmetric” functions with zero
sum, namely functions that have the same value on opposite faces (and zero sum). The
third is the 3-dimensional space V3 of ”anti-symmetric” functions.

The operator L commutes with the group action and thus acts by a scalar λi on each
Vi. Taking convenient vectors from each Vi we get λ1 = 1, λ2 = 1/2, λ1 = 0. Note that

V has the natural form 〈f, g〉 :=
∑

f(x)g(x), which is G-invariant and thus can be used
to compute projections to Vi. Let ξ be the original function given by (1, 2, 3, 4, 5, 6).
Then its projection ξ1 to V1 is the constant function 3.5. The length of the projection to
V2 is at most

√
2((3.5 − 1)2 + (3.5 − 2)2 + (3.5 − 3)2) =

√
17.5 and thus |L10(ξ) − ξ1| ≤√

17.5/210 < 0, 005. �
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Exercise 4.7. Classify all irreducible representations of the group G from the solution of
the last exercise.

Hint. Use the action of G on faces, edges, vertices and main diagonals of the cube, and
on regular tetrahedra inscribed in the cube.

Exercise 4.8. Repeat Exercise 4.6 for an icosahedron and a dodecahedron.

4.2. Characters.

Definition 4.9. Let (π, V ) ∈ Rep(G). Define a function χπ on G by χπ(g) := Tr π(g).

Lemma 4.10.

(1) If π w τ then χπ = χτ .
(2) χπ(hgh−1) = χπ(g), i.e. χπ ∈ Z(A(G)).
(3) χπ⊕τ = χπ + χτ .
(4) χπ⊗τ = χπχτ .
(5) χπ(g−1) = χπ∗(g).

This lemma immediately follows from the corresponding properties of trace.

Definition 4.11. Define a bilinear form on A(G) by

〈f, h〉 :=
∑

g∈G

f(g)h(g−1)

Exercise 4.12. This form is bilinear, symmetric and non-degenerate.

4.3. Schur orthogonality relations.

Theorem 4.13 (Schur orthogonality relations).

〈χπ, χτ 〉 = 〈π, τ 〉

Proof. Let us first prove for the case when π is the trivial representation. Then
Hom(π, τ ) = τG. Define p : τ → τG by p := 1/|G|

∑
τ(g). Then Im p = τG and

p|τG = Id, i.e. p is a projection on τG. Thus, dim τG = Tr(p). On the other hand,

Tr(p) = 1/|G|
∑

Tr(τ(g)) = 1/|G|
∑

g∈G

χτ (g) = 1/|G|
∑

χπ(g−1)χτ (g) = 〈χπ, χτ 〉

Now we will repeat the same argument for the general case, using the following exercise.
Exercise Let L, V be linear spaces and let X ∈ End V, Y ∈ End L. Define ΨX,Y :
Hom(L, V ) → Hom(V, L) by ΨX,Y (A) := Y AX . Then Tr ΨX,Y = Tr X Tr Y .
Hint There are (at least) to ways to solve this:
1) There is a ”free’ proof with tensor calculus.
2) In coordinates, (Y EijX)ij = YiiXjj .

Now, let V be the space of π and L be the space of τ . Then HomG(π, τ ) = Hom(V, L)G.
For any g ∈ G define Q(g) : Hom(V, L) → Hom(V, L) by Q(g)(A) := τ(g)Aπ(g−1). Then
1/|G|

∑
g∈G Q(g) is a projector from Hom(V, L) onto HomG(π, τ ) = Hom(V, L)G. Thus

〈π, τ 〉 = dim HomG(π, τ ) = Tr(1/|G|
∑

g∈G

Q(g)) = 1/|G|
∑

g∈G

χtau(g)χπ(g−1) = 〈χπ, χτ 〉

�
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Corollary 4.14. The character is a full invariant of a representation.

Proof. π =
⊕

ρ∈IrrG mρρ, and mρ are determined by mρ = 〈π, ρ〉 = 〈χπ, χρ〉. �

Corollary 4.15. Characters of irreducible representations form an orthonormal basis for
Z(A(G)).

Proof. By Lemma 4.10, characters of irreducible representations belong to Z(A(G)). By
the theorem and Schur’s lemmas, they form an orthonormal set. By Corollary 3.3 their
number is equal to dim Z(A(G)). Thus, they form an orthonormal basis. �

5. More Character theory; Classification of representations of
symmetric groups

5.1. More character theory.

Lemma 5.1. If F = C then χπ(g−1) = χπ(g). Thus, on Z(A(G)) the form 〈 , 〉 coincides

with the scalar product defined by 〈f, h〉′ =
∑

g∈G f(g)h(g).

Proof. As we showed some time ago, π has an invariant scalar product and thus π∗ ' π.
Now, χπ(g−1) = χπ∗(g) = χπ(g) = χπ(g). �

Proposition 5.2. Let ρ ∈ Irr(G) and let zρ = dim ρ/|G|
∑

g∈G χρ(g
−1)δg.

Then ρ(zρ) = Id and σ(zρ) = 0 for any σ � ρ ∈ Irr(G).

Proof. Let ω ∈ Irr(G). Then, by the second Schur’s lemma, ω(zρ) is a scalar. Now,
Tr ω(zρ) = dim ρ/|G|

∑
g∈G χρ(g

−1)χω(g) = dim ρ ∙ 〈ρ, ω〉. Thus, ω(zρ) = Id if ρ ' ω and

ω(zρ) = 0 otherwise. �

Corollary 5.3. The inverse of the map A(G) '
⊕

ρ∈Irr(G) EndF (ρ) is given on the coor-

dinate EndF (ρ) by A 7→ fA(g) = dim ρ/|G|Tr(Aρ(g−1)).

Corollary 5.4. ∀ρ ∈ Irr(G), dim ρ divides |G|.

For the proof we will need

Definition 5.5. A lattice is an abelian group without torsion.

Theorem 5.6 (from commutative algebra). Any finitely generated lattice L has a basis,
i.e. L ' Zn. In other words, ∃l1, ..., ln ∈ L s.t. ∀l ∈ L, l =

∑
aili, li ∈ Z.

Lemma 5.7. Let V be a vector space, and L < V a finitely generated lattice. Let A :
V → V s.t. A(L) ⊂ L. Suppose that A2 = qA. Then q ∈ Z.

Proof. Fix a basis (l1, ..., ln) for L. Take x ∈ L and let y := Ax. Then Ay = qy and
Aky = qky ∀k ≥ 1. Thus q is rational, and any power of the denominator of q divides all
the coordinates of y. Thus q ∈ Z. �

Proof of Corollary 5.4. V := A(G), A := convolution with
∑

χρ(g
−1), q = |G|/ dim ρ

and L := lattice generated by {ξδg : ξ is a root of unity of order |G|}. �
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5.2. Classification of irreducible representations of Sn. Let X be a set of size n
and G = Sym(X) = Sn.

Lemma 5.8. Conjugate classes in Sn = partitions of n, i.e. sets (α1, ..., αk) of natural
numbers s.t. α1 + ... + αk = n and α1 ≥ ... ≥ αk.

Let us now find an irreducible representation for each partition α = (α1, ..., αk). Denote
by Xα the set of all decompositions of the set X to subsets X1, .., Xk s.t. |Xi| = αi.

Definition 5.9. Tα := F (Xα), T ′
α := sgn ∙ Tα.

Definition 5.10. Denote by α∗ the partition given by α∗
i := |{j : αj ≤ i}.

Exercise 5.11. α∗ is a partition and (α∗)∗ = α.

Let us introduce the lexicographical ordering on the set of partitions. Note that ∗ is an
order-reversing operation.

Theorem 5.12.

〈Tα, T ′
β〉 =

{
0, α > β∗;
1, α = β∗.

We leave the proof as a difficult exercise.
The theorem implies that Tα and T ′

α have a unique joint irreducible component Uα

and that these components are different for different α. This gives a classification of all
irreducible representations of Sn. This classification is not very satisfying, but a long
and detailed study of the intertwining operator of Tα and T ′

α will lead to a (quite long)
expression for the character of Uα. We will give here a formula for dim Uα, that we will
prove later using Gelfand pairs:

dim Uα =
n!
∏

i<j(li − lj)

l1!...lk!
,

where li = αi + k − i, i = 1, ..., k.

6. Commutative groups: Fourier transform. Induction

In this lecture we had two completely different topics.

6.1. Commutative groups: Fourier transform. Let G be a finite commutative group.
Then, by the second Schur’s lemma all irreducible representations are 1-dimensional
(characters). Their number is equal to |G|. Actually, the characters form a group:

(χ ∙ ψ)(g) := χ(g)ψ(g). It is called the (Pontryagin) dual group Ĝ. This group is not

canonically isomorphic to G, but G u ̂̂G canonically.
Now, we constructed an isomorphism A(G) u

⊕
End(σ). For commutative G it be-

comes F : A(G) u A(Ĝ). It is called Fourier transform. To see why let us write the
explicit formula.

F(f)(χ) =
∑

g∈G

f(g)χ(g)
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By Schur orthogonality relations, we know that the characters form an orthonormal basis
for A(G) and thus f can be reconstructed from F(f) by

f(g) =
∑

χ∈Ĝ

F(f)(χ)χ(g)−1

since F(f)(χ) is exactly the χ−1-coordinate of f . This formula is called Fourier inversion

formula. It also shows that F(F(f))(g) = f(g−1), under the identification G u ̂̂G.
To make things more familiar, let take F = C. Then we have χ−1 = χ. Let us consider

G = Z/nZ and choose a non-trivial character ψ by ψ(k) := exp(2πik
n

). Then for c ∈ Z/nZ
we have another character is given by a 7→ ψ(ca), and all characters of G are of this form.

This gives an identification of G with Ĝ and the familiar formulas for Fourier transform.

The same thing happens for G = R, but analysis comes in. For G = S1, Ĝ = Z and
Fourier transform becomes Fourier series.

Application. Multiplication of numbers.
Remark. The isomorphism A(G) u

⊕
End(σ) for non-commutative groups can be

viewed as a generalization of Fourier transform.

6.2. Induced representation. We are looking for a way of ”lifting” representations of
a subgroup H < G to representations of G. In other words, we are looking for a ”functor”
IndG

H : Rep(H) → Rep(G).
Let us first find the trace (character) ψ of IndG

H(π). We have a natural map ResG
H :

Z(A(G)) → Z(A(H)). On both algebras we have a natural non-degenerate bilinear form.
Let us define IndG

H : Z(A(H)) → Z(A(G)) as the conjugate to ResG
H w.r. to these forms.

For any g ∈ G let Cg denote the conjugacy class of g and δCg denote the function which
equals |Cg|−1 on Cg and zero outside Cg. Then the functions of this form span Z(A(G)).
Now, by definition

ψ(g) = |G|〈Cg , ψ−1〉G = |G|〈Cg|H , χπ∗〉 =
|G|

|H||Cg|

∑

h∈Cg∩H

χπ(h)

As we know, this defines IndG
H(π) uniquely (up to isomorphism). One only has to show

existence now. However, before doing this let us check the meaning of induction by
evaluating IndG

H(χπ) on another (generating) subset of Z(A(G)) - the one formed by
characters of representations.

〈τ, IndG
H(π)〉 = 〈χτ , IndG

H(χπ)〉G = 〈ResG
Hχτ , χπ〉H = 〈ResG

Hτ, (π)〉

This very important formula is called Frobenius reciprocity. First of all, it shows that
IndG

H(χπ) is the character of a representation. It also defines induction uniquely and in
fact could be guessed without considering characters since in means that IndG

H(π) is the
”free representation of G generated by π”. Similar definitions work for the free group,
free module etc.

Let us now construct IndG
H(π). First let us consider several examples

Example 6.1. (1) H = {e}, IndG
H(C) = F (G).

(2) For any H, IndG
H(C) = F (G/H).

(3) For any character χ of H, IndG
H(χ) = {f ∈ F (G) : f(gh) = χ(h−1)f(g).
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(4) For any H-set X, the free G-set generated by X is the set of H-orbits in G × X
under the action h(g, x) := (gh−1, hx).

Based on these we define, for any (π, V ) ∈ Rep(H),

IndG
H(π) = {f ∈ F (G, V ) : f(gh) = π(h−1)f(g)},

where F (G, V ) denotes all the functions from G to V with the usual action of G, i.e.
IndG

H(π)(g)f(g′) = f(g−1g′).
Moreover, this construction is functorial. This means that for π1, π2 ∈ Rep(H) and

φ ∈ HomH(π1, π2) we define IndG
H(φ) : IndG

H(π1) → IndG
H(π2) by IndG

H(φ)(f)(g) = φ(f(g)),
and this preserves composition.

Lemma 6.2. The above construction satisfies Frobenius reciprocity. More precisely, for
any π ∈ Rep(H) and τ ∈ Rep(G) there is a canonical isomorphism HomG(τ, IndG

H(π)) '
HomH(τ |H , π).

Proof. To build the isomorphism let φ : τ → IndG
H(π). Then its image is given by

ψ(w) = (φ(w))(e), where e ∈ G is the identity element. The inverse morphism maps
ψ ∈ HomH(τ |H , π) to φ ∈ HomG(τ, IndG

H(π)) defined by φ(w)(g) := ψ(g−1w). �

Exercise 6.3. (1) For H < G and π1, π2 ∈ Rep(H),

IndG
H(π1 ⊕ π2) = IndG

H(π1) ⊕ IndG
H(π2).

(2) For H1 < H2 < G and π ∈ Rep(H),

IndG
H2

IndH2
H1

π = IndG
H1

π
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