Finite multiplicities beyond spherical pairs

Dmitry Gourevitch
Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Basic Functions, Orbital Integrals, and Beyond Endoscopy
j.w. Avraham Aizenbud
arXiv:2109.00204

BIRS, November 2021
\(\mathbf{G} \): reductive group over \(\mathbb{R} \), \(\mathbf{X} := \) algebraic \(\mathbf{G} \)-manifold, \(\mathfrak{g} := \text{Lie}(\mathbf{G}) \), \(\mathcal{N}(\mathfrak{g}^*) \):=nilpotent cone, \(G := \mathbf{G}(\mathbb{R}) \), \(X := \mathbf{X}(\mathbb{R}) \),
\(G\): reductive group over \(\mathbb{R}\), \(X:=\) algebraic \(G\)-manifold, \(\mathfrak{g}:=\text{Lie}(G)\), \(\mathcal{N}(\mathfrak{g}^*):=\) nilpotent cone, \(G:=G(\mathbb{R})\), \(X:=X(\mathbb{R})\),
\(S(X):=\) smooth functions on \(X\), flat at infinity (Schwartz).
G: reductive group over \(\mathbb{R} \), \(X := \text{algebraic } G \)-manifold, \(g := \text{Lie}(G) \), \(\mathcal{N}(g^*) := \text{nilpotent cone} \), \(G := G(\mathbb{R}) \), \(X := X(\mathbb{R}) \).

\(S(X) := \text{smooth functions on } X \), flat at infinity (Schwartz).

\(X \) is called spherical if it has an open orbit of a Borel subgroup \(B \subset G \).

- Major Goal: study \(L^2(X), C^\infty(X), S(X) \) as rep-s of \(G \).

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan, ...

Theorem (Kobayashi-Oshima, 2013)

Let \(X = G/H \). Then

1. \(X \) is spherical \(\iff \) \(S(X) \) has bounded multiplicities.
2. \(X \) is real-spherical \(\iff \) \(S(X) \) has finite multiplicities.

\[m_\sigma(S(X)) := \dim \text{Hom}(S(X), \sigma), \]

\[m_\sigma(S(G/H)) := \dim(\sigma^- \mathcal{H}) \]

Theorem (Casselman, 1978)

\[0 < m_\sigma(S(G/U)) < \infty \quad \forall \sigma \in \text{Irr}(G), \]

where \(U = \text{maximal unipotent} \).
- G: reductive group over \mathbb{R}, $X :=$ algebraic G-manifold, $\mathfrak{g} := \text{Lie}(G)$, $\mathcal{N}(\mathfrak{g}^*) :=$ nilpotent cone, $G := G(\mathbb{R})$, $X := X(\mathbb{R})$,
- $S(X) :=$ smooth functions on X, flat at infinity (Schwartz).
- X is called spherical if it has an open orbit of a Borel subgroup $B \subset G$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.

Theorem (Kobayashi-Oshima, 2013)
Let $X = G/H$. Then
(i) X is spherical $\iff S(X)$ has bounded multiplicities.
(ii) X is real-spherical $\iff S(X)$ has finite multiplicities.

$m_\sigma(S(X)) := \dim \text{Hom}(S(X), \sigma)$,
$m_\sigma(S(G/H)) = \dim(\sigma^-_\infty) H$.

Theorem (Casselman, 1978)
$0 < m_\sigma(S(G/U)) < \infty \forall \sigma \in \text{Irr}(G)$, where $U = \text{maximal unipotent}$.
- \(G \): reductive group over \(\mathbb{R} \), \(X := \) algebraic \(G \)-manifold, \(g := \text{Lie}(G) \), \(\mathcal{N}(g^*) := \) nilpotent cone, \(G := G(\mathbb{R}) \), \(X := X(\mathbb{R}) \),
- \(S(X) := \) smooth functions on \(X \), flat at infinity (Schwartz).
- \(X \) is called spherical if it has an open orbit of a Borel subgroup \(B \subset G \).
- \(X \) is called real spherical if it has an open orbit of a minimal parabolic subgroup.

Theorem (Kobayashi-Oshima, 2013)

(i) \(X \) is spherical \(\iff \) \(S(X) \) has bounded multiplicities.

(ii) \(X \) is real-spherical \(\iff \) \(S(X) \) has finite multiplicities.

\[m_{\sigma}(S(X)) := \dim \text{Hom}(S(X), \sigma), \quad m_{\sigma}(S(G/H)) = \dim(\sigma^-) \]

Theorem (Casselman, 1978)

\[0 < m_{\sigma}(S(G/U)) < \infty \quad \forall \sigma \in \text{Irr}(G), \]

where \(U = \text{maximal unipotent}. \)
G: reductive group over \(\mathbb{R} \), \(X := \text{algebraic } G\)-manifold, \(g := \text{Lie}(G) \), \(\mathcal{N}(g^*) := \text{nilpotent cone} \), \(G := G(\mathbb{R}) \), \(X := X(\mathbb{R}) \),

\(S(X) := \text{smooth functions on } X \), flat at infinity (Schwartz).

\(X \) is called spherical if it has an open orbit of a Borel subgroup \(B \subset G \).

\(X \) is called real spherical if it has an open orbit of a minimal parabolic subgroup.

Major Goal: study \(L^2(X), C^\infty(X), S(X) \) as reps of \(G \).

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...
G: reductive group over \(\mathbb{R} \), \(X := \text{algebraic } G\text{-manifold} \), \(g := \text{Lie}(G) \), \(\mathcal{N}(g^*) := \text{nilpotent cone} \), \(G := G(\mathbb{R}) \), \(X := X(\mathbb{R}) \).

S(X) := smooth functions on \(X \), flat at infinity (Schwartz).

X is called spherical if it has an open orbit of a Borel subgroup \(B \triangleleft G \).

X is called real spherical if it has an open orbit of a minimal parabolic subgroup.

Major Goal: study \(L^2(X) \), \(C^\infty(X) \), \(S(X) \) as rep-s of \(G \).

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,

Theorem (Kobayashi-Oshima, 2013)

Let \(X = G/H \). Then

- **X** is spherical \(\iff \) \(S(X) \) has bounded multiplicities.
- **X** is real-spherical \(\iff \) \(S(X) \) has finite multiplicities.

\[
m_\sigma(S(X)) := \dim \text{Hom}(S(X), \sigma), \quad m_\sigma(S(G/H)) = \dim (\sigma^{-\infty})^H
\]
G: reductive group over \(\mathbb{R} \), \(X := \text{algebraic } G\text{-manifold}, \ g := \text{Lie}(G), \ N(g^*) := \text{nilpotent cone}, \ G := G(\mathbb{R}), \ X := X(\mathbb{R}), \)

\(S(X) := \text{smooth functions on } X, \text{ flat at infinity (Schwartz)} \).

\(X \) is called spherical if it has an open orbit of a Borel subgroup \(B \subset G \).

\(X \) is called real spherical if it has an open orbit of a minimal parabolic subgroup.

Major Goal: study \(L^2(X), C^\infty(X), S(X) \) as rep-s of \(G \).

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let \(X = G/H \). Then

- \(X \) is spherical \iff \(S(X) \) has bounded multiplicities.
- \(X \) is real-spherical \iff \(S(X) \) has finite multiplicities.

\[m_\sigma(S(X)) := \dim \text{Hom}(S(X), \sigma), \quad m_\sigma(S(G/H)) = \dim (\sigma^{-\infty})^H \]

Theorem (Casselman, 1978)

\[0 < m_\sigma(S(G/U)) < \infty \quad \forall \sigma \in \text{Irr}(G), \text{ where } U = \text{maximal unipotent}. \]
∀x ∈ X, have action map G → X, thus g → T_xX, and T^*_xX → g^*.
This gives the moment map μ : T^*X → g^*.
For X = G/H : T^*X ≅ G ×_H h^⊥ and μ(g, α) = g · α
Spherical spaces

∀x ∈ X, have action map G → X, thus g → TxX, and T^*xX → g^*.

This gives the moment map \(\mu : T^*X \rightarrow g^* \).

For \(X = G/H : T^*X \cong G \times_H \mathfrak{h}^\perp \) and \(\mu(g, \alpha) = g \cdot \alpha \).

Definition

- For a nilpotent orbit \(O \subset \mathcal{N}(g^*) \), say \(X \) is \(O \)-spherical if
 \[
 \dim \mu^{-1}(O) \leq \dim X + \dim O / 2
 \]

- For a \(G \)-invariant subset \(\Xi \subset \mathcal{N}(g^*) \), say \(X \) is \(\Xi \)-spherical if \(X \) is \(O \)-spherical \(\forall O \subset \Xi \).

For \(X = G/H \), \(X \) is \(O \)-spherical \(\iff \) \(\dim O \cap \mathfrak{h}^\perp \leq \dim O / 2 \).
-spherical spaces

∀x ∈ X, have action map \(G \rightarrow X \), thus \(\mathfrak{g} \rightarrow T_xX \), and \(T_x^*X \rightarrow \mathfrak{g}^* \).

This gives the moment map \(\mu : T^*X \rightarrow \mathfrak{g}^* \).

For \(X = G/H : T^*X \cong G \times_H \mathfrak{h}^\perp \) and \(\mu(g, \alpha) = g \cdot \alpha \)

Definition

For a nilpotent orbit \(\mathcal{O} \subset \mathcal{N}(\mathfrak{g}^) \), say \(X \) is \(\mathcal{O} \)-spherical if*

\[
\dim \mu^{-1}(\mathcal{O}) \leq \dim X + \dim \mathcal{O}/2
\]

For a \(G \)-invariant subset \(\Xi \subset \mathcal{N}(\mathfrak{g}^) \), say \(X \) is \(\Xi \)-spherical if \(X \) is \(\mathcal{O} \)-spherical \(\forall \mathcal{O} \subset \Xi \).*

For \(X = G/H \), \(X \) is \(\mathcal{O} \)-spherical \(\iff \) \(\dim \mathcal{O} \cap \mathfrak{h}^\perp \leq \dim \mathcal{O}/2 \).

For parabolic \(P \subset G \), \(\mathcal{O}_P \) := the unique orbit s.t. \(p^\perp \cap \mathcal{O}_P \) is dense in \(p^\perp \).

Theorem 1 (Aizenbud - G. 2021)

\(X \) is \(\overline{\mathcal{O}_P} \)-spherical \(\iff \) \(P \) has finitely many orbits on \(X \).
∀x ∈ X, have action map G → X, thus g → T_xX, and T_xX → g^*.
This gives the moment map μ : T^*X → g^*.
For X = G/H : T^*X ≅ G ×_H h⊥ and μ(g, α) = g · α

Definition

- For a nilpotent orbit O ⊂ N(g^*), say X is O-spherical if
 \[\dim \mu^{-1}(O) \leq \dim X + \dim O/2\]

- For a G-invariant subset Ξ ⊂ N(g^*), say X is Ξ-spherical if X is O-spherical ∀O ⊂ Ξ.

For X = G/H, X is O-spherical ⇐⇒ \(\dim O \cap h⊥ \leq \dim O/2\).
For parabolic P ⊂ G, OP := the unique orbit s.t. \(p⊥ \cap OP\) is dense in \(p⊥\).

Theorem 1 (Aizenbud - G. 2021)

X is OP-spherical ⇐⇒ P has finitely many orbits on X.

Corollary (following Wen-Wei Li)

- X is N(g^*)-spherical ⇐⇒ X is spherical
- X is \(\{0\}\)-spherical ⇐⇒ G has finitely many orbits on X.
Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
- $\text{gr}\mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*)$.

Theorem 2 (Aizenbud - G. 2021)

Let $\Xi \subset \mathbb{N}(g^*)$ closed G-invariant. Let X be Ξ-spherical G-manifold, and let $\sigma \in \mathcal{M}_\Xi(G)$. Then $\dim \text{Hom}(S(X), \sigma) < \infty$.
- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
- $\text{gr}\mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*)$.
- For an ideal $I \subset \mathcal{U}(g)$, $\mathcal{V}(I) := \text{zero set of symbols of } I \text{ in } g^*$.

Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
- $\text{gr}\mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*)$.
- For an ideal $I \subset \mathcal{U}(g)$, $\mathcal{V}(I) := \text{zero set of symbols of } I \text{ in } g^*$.
- For a g-module M, $\text{Ann}(M) \subset \mathcal{U}(g)$ - annihilator, $\mathcal{V}(\text{Ann}(M)) \subset g^*$
Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
- $\text{gr } \mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*)$.
- For an ideal $I \subset \mathcal{U}(g)$, $\mathcal{V}(I) :=$ zero set of symbols of I in g^*.
- For a g-module M, $\text{Ann}(M) \subset \mathcal{U}(g)$ - annihilator, $\mathcal{V}(%}\text{Ann}(M)) \subset g^*$
- $\mathcal{M}(G)$ - the Casselmann-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth.
Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\text{gr}\mathcal{U}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \text{Pol}(\mathfrak{g}^*)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g})$, $\mathcal{V}(I) := \text{zero set of symbols of } I \text{ in } \mathfrak{g}^*$.
- For a \mathfrak{g}-module M, $\text{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\text{Ann}(M)) \subset \mathfrak{g}^*$
- $\mathcal{M}(G)$ - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth.
- For $\mathfrak{E} \subset \mathcal{N}(\mathfrak{g}^*)$, $\mathcal{M}_\mathfrak{E}(G) = \{ \pi \in \mathcal{M}(G) \mid \mathcal{V}(\text{Ann}(\pi)) \subset \mathfrak{E} \}$
Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(g)$ - PBW filtration on universal enveloping algebra.
- $\text{gr}\mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*)$.
- For an ideal $I \subset \mathcal{U}(g)$, $\mathcal{V}(I) := \text{zero set of symbols of } I \text{ in } g^*$.
- For a g-module M, $\text{Ann}(M) \subset \mathcal{U}(g)$ - annihilator, $\mathcal{V}(\text{Ann}(M)) \subset g^*$.
- $\mathcal{M}(G)$ - the Casselmann-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth.
- For $\Xi \subset \mathcal{N}(g^*)$, $\mathcal{M}_\Xi(G) = \{ \pi \in \mathcal{M}(G) | \mathcal{V}(\text{Ann}(\pi)) \subset \Xi \}$
Associated variety of the annihilator & the main theorem

- \(\mathcal{U}_n(g) \) - PBW filtration on universal enveloping algebra.
- \(\text{gr}\mathcal{U}(g) \cong S(g) \cong \text{Pol}(g^*) \).
- For an ideal \(I \subset \mathcal{U}(g) \), \(\mathcal{V}(I) := \text{zero set of symbols of } I \text{ in } g^* \).
- For a \(g \)-module \(M \), \(\text{Ann}(M) \subset \mathcal{U}(g) \) - annihilator, \(\mathcal{V}(\text{Ann}(M)) \subset g^* \).
- \(\mathcal{M}(G) \) - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth.
- For \(\mathfrak{E} \subset \mathcal{N}(g^*) \), \(\mathcal{M}_\mathfrak{E}(G) = \{ \pi \in \mathcal{M}(G) | \mathcal{V}(\text{Ann}(\pi)) \subset \mathfrak{E} \} \)

Theorem 2 (Aizenbud - G. 2021)

Let \(\mathfrak{E} \subset \mathcal{N}(g^) \) closed \(G \)-invariant. Let \(X \) be \(\mathfrak{E} \)-spherical \(G \)-manifold, and let \(\sigma \in \mathcal{M}_\mathfrak{E}(G) \). Then \(\dim \text{Hom}(S(X), \sigma) < \infty \)*
Corollary

Let $H \subset G$ be reductive subgroup. Let $P \subset G$ and $Q \subset H$ be parabolic subgroups with $|P \backslash G / Q| < \infty$. Then $\forall \pi \in M_{Op}(G)$ and $\tau \in M_{OQ}(H)$,

$$\dim \text{Hom}_H(\pi|_H, \tau) < \infty$$
Corollary

Let $H \subset G$ be a reductive subgroup. Let $P \subset G$ and $Q \subset H$ be parabolic subgroups with $|P \backslash G/Q| < \infty$. Then $\forall \pi \in M_{Op}(G)$ and $\tau \in M_{OQ}(H)$, $\dim \text{Hom}_H(\pi|_H, \tau) < \infty$

Corollary

(i) Let $P \subset G$ be a parabolic subgroup such that G/P is a spherical H-variety. Then $\forall \pi \in M_{Op}(G)$, $\pi|_H$ has finite multiplicities.

(ii) Let $Q \subset H$ be a parabolic subgroup that is spherical as a subgroup of G. Then for any $\tau \in M_{OQ}(H)$, $\text{ind}_H^G \tau$ has finite multiplicities.
Corollary

Let $H \subset G$ be a reductive subgroup. Let $P \subset G$ and $Q \subset H$ be parabolic subgroups with $|P \backslash G / Q| < \infty$. Then $\forall \pi \in \mathcal{M}_{Op}(G)$ and $\tau \in \mathcal{M}_{OQ}(H)$,

$$\dim \text{Hom}_H(\pi|_H, \tau) < \infty$$

Corollary

(i) Let $P \subset G$ be a parabolic subgroup s.t. G / P is a spherical H-variety. Then $\forall \pi \in \mathcal{M}_{Op}(G)$, $\pi|_H$ has finite multiplicities.

(ii) Let $Q \subset H$ be a parabolic subgroup that is spherical as a subgroup of G. Then for any $\tau \in \mathcal{M}_{OQ}(H)$, $\text{ind}_H^G \tau$ has finite multiplicities.

For simple G and symmetric $H \subset G$, all $P \subset G$ satisfying (i), and all $Q \subset H$ satisfying (ii) are classified by He, Nishiyama, Ochiai, Oshima. For classical G, all H: Avdeev-Petukhov. They also have a strategy $\forall G$.
Corollary

Let H be a reductive group, and $P, Q \subset H$ be parabolic subgroups s.t. $H/P \times H/Q$ is a spherical H-variety, under the diagonal action. Then $\forall \pi \in \mathcal{M}_{O_P}(H)$, and $\tau \in \mathcal{M}_{O_Q}(H)$, $\pi \otimes \tau$ has finite multiplicities.

All such triples (H, P, Q) were classified by Stembridge.
Example: $H = GL_n$, $\tau \in \mathcal{M}_{O_{\text{min}}}(H)$, or classical H and $\pi, \tau \in \mathcal{M}_{O_{2n}}(H)$.
Corollary

Let \(H \) be a reductive group, and \(P, Q \subset H \) be parabolic subgroups s.t. \(H/P \times H/Q \) is a spherical \(H \)-variety, under the diagonal action. Then for all \(\pi \in \mathcal{M}_{O_P}(H) \) and \(\tau \in \mathcal{M}_{O_Q}(H) \), \(\pi \otimes \tau \) has finite multiplicities.

All such triples \((H, P, Q)\) were classified by Stembridge. Example: \(H = \text{GL}_n \), \(\tau \in \mathcal{M}_{O_{\text{min}}}(H) \), or classical \(H \) and \(\pi, \tau \in \mathcal{M}_{O_{2n}}(H) \).

- Our results also extend to certain representations of non-reductive \(H \).
Corollary

Let H be a reductive group, and $P, Q \subset H$ be parabolic subgroups s.t. $H/P \times H/Q$ is a spherical H-variety, under the diagonal action. Then $\forall \pi \in \mathcal{M}_{\mathcal{O}_P}(H)$, and $\tau \in \mathcal{M}_{\mathcal{O}_Q}(H)$, $\pi \otimes \tau$ has finite multiplicities.

All such triples (H, P, Q) were classified by Stembridge.
Example: $H = GL_n$, $\tau \in \mathcal{M}_{\mathcal{O}_{\text{min}}}(H)$, or classical H and $\pi, \tau \in \mathcal{M}_{\mathcal{O}_{2^n}}(H)$.

- Our results also extend to certain representations of non-reductive H.

Example (Generalized Shalika model)

Let $G = GL_{2n}$, $R = LU \subset G$ with $L = GL_n \times GL_n$ and $U = \text{Mat}_{n \times n}$, $M = \Delta GL_n \subset L$, $H := MU$.

Let $m^* \supset \mathcal{O}_{\text{min}} := \text{minimal nilpotent orbit}$, and $\pi \in \mathcal{M}_{\mathcal{O}_{\text{min}}}(M)$.

Let ψ be a unitary character of H.

Then $\text{ind}_H^G(\pi \otimes \psi)$ has finite multiplicities.

Similar case: $G = O_{4n}$, $L = GL_{2n}$, $M = \text{Sp}_{2n}$, $\mathcal{O}_{\text{ntm}} \subset m^*$.
Some necessary conditions for finite multiplicities

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\text{Ind}_P^G \rho$, with $\dim \rho < \infty$, have finite H-multiplicities, then H has finitely many orientable orbits on G/P.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

(i) H is O_P-spherical.

(ii) Every $\pi \in M_{O_P}(G)$ has finite multiplicities in $S(G/H)$.

(iii) H has finitely many orbits on G/P.

(iv) H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups.
Some necessary conditions for finite multiplicities

Theorem (Tauchi)

Let \(P \subset G \) be a parabolic subgroup. If all degenerate principal series representations of the form \(\text{Ind}^G_P \rho \), with \(\dim \rho < \infty \), have finite \(H \)-multiplicities, then \(H \) has finitely many orientable orbits on \(G/P \).

Corollary

Let \(P \subset G \) be a parabolic subgroup defined over \(\mathbb{R} \). Suppose that for all but finitely many orbits of \(H \) on \(G/P \), the set of real points is non-empty and orientable. Then the following are equivalent.

- (i) \(H \) is \(\overline{O}_P \)-spherical.
- (ii) Every \(\pi \in \mathcal{M}_{\overline{O}_P}(G) \) has finite multiplicities in \(S(G/H) \).
- (iii) \(H \) has finitely many orbits on \(G/P \).
- (iv) \(H \) has finitely many orbits on \(G/P \).

The assumption of the corollary holds if \(H \) and \(G \) are complex reductive groups.
Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

(i) H is O_P-spherical.

(ii) Every $\pi \in M_{O_P}(G)$ has finite multiplicities in $S(G/H)$.

(iii) H has finitely many orbits on G/P.

(iv) H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $|H \backslash G/P|$ is not necessary, but the finiteness of $|H \backslash G/P|$ is not sufficient for finite multiplicities.
Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

(i) H is OP-spherical.

(ii) Every $\pi \in \mathcal{M}_{OP}(G)$ has finite multiplicities in $S(G/H)$.

(iii) H has finitely many orbits on G/P.

(iv) H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $|H \backslash G/P|$ is not necessary, but the finiteness of $|H \backslash G/P|$ is not sufficient for finite multiplicities. Branching multiplicities for degenerate principal series were computed in various cases by Frahm-Orsted-Oshima, and Kobayashi. Kobayashi: Conditions for bounded multiplicities in terms of distinction w.r. to symmetric $G' \subset G$.
Example (I. Karshon, related to Howe correspondance in type II)

\(G := \text{Sp}(V \otimes W \oplus V^* \otimes W^*) \), \(H := \text{GL}(V) \times \text{GL}(W) \hookrightarrow G \).

Then \(G / B_H \) is \(O_{\text{min}} \)-spherical.
Further Examples

Example (I. Karshon, related to Howe correspondence in type II)

\[\mathbf{G} := \text{Sp}(V \otimes W \oplus V^* \otimes W^*), \quad \mathbf{H} := \text{GL}(V) \times \text{GL}(W) \hookrightarrow \mathbf{G}. \]
Then \(\mathbf{G} / B_H \) is \(O_{\text{min}} \)-spherical.

Example (D. Panyushev, strict inequality)

\[\mathbf{G} := \text{Sp}_{2n}, \quad \mathbf{P} = \text{LU} \subseteq \mathbf{G} \text{- maximal parabolic subgroup with } U \cong \text{Heisenberg group}, \quad \mathbf{O} := O_{\text{min}}. \]
Then \(\dim \mathbf{O} = 2n \), while \(\dim \mathbf{O} \cap p^\perp = 1 \).
Thus \(\dim \mu_{-1}^{-1}(\mathbf{O}) < \dim \mathbf{G} / \mathbf{P} + \dim \mathbf{O} / 2. \)
Step 1 of the proof: Reduction to distributions

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(g)$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(g^*)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let $S^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG-invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$\dim S^*(X \times Y)^{\Delta G, I} < \infty$$
Step 1 of the proof: Reduction to distributions

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(g)$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(g^*)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$$
Reduction to distributions

Theorem 3

Let \(I \subset \mathcal{U}(\mathfrak{g}) \) be a two-sided ideal such that \(\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*) \). Let \(X, Y \) be \(\mathcal{V}(I) \)-spherical \(G \)-manifolds. Let \(\mathcal{E} \) be an algebraic vector bundle on \(X \times Y \). Let \(S^*(X \times Y, \mathcal{E})^{\Delta G,I} \) denote the space of \(\Delta G \)-invariant tempered \(\mathcal{E} \)-valued distributions on \(X \times Y \) annihilated by \(I \). Then

\[
\dim S^*(X \times Y, \mathcal{E})^{\Delta G,I} < \infty
\]

Proof of Theorem 2.

\(\mathcal{E} \subset \mathcal{N}(\mathfrak{g}^*) \), \(X \) is \(\mathcal{E} \)-spherical, \(\sigma \in \mathcal{M}_\mathcal{E} \). Need: \(\dim \text{Hom}_G(S(X), \sigma) < \infty \).

Let \(\mathcal{E} \) be a bundle on \(Y := G/K \) s.t. \(\sigma \mapsto S^*(Y, \mathcal{E}) \). Let \(I := \text{Ann}(\sigma) \). Then \(\mathcal{V}(I) \subset \mathcal{E} \), and

\[
\text{Hom}_G(S(X), \sigma) \hookrightarrow \text{Hom}_G(S(X), S^*(Y, \mathcal{E}))^{I} \hookrightarrow S^*(X \times Y, \mathbb{C} \boxtimes \mathcal{E})^{\Delta G,I}
\]
Main technique: D-modules

Theorem 3

Let $I \subset \mathcal{U}(g)$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(g^*)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let E be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, E)^{\Delta G, I}$ denote the space of ΔG-invariant tempered E-valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y, E)^{\Delta G, I} < \infty$$

- $D_X :=$ sheaf of algebraic differential operators. $\text{Gr } D_X \cong O(T^*X)$.
- For a fin.gen. sheaf M of D_X-modules, $\text{SingS}(M) := \text{Supp } \text{Gr}(M) \subset T^*X$.
- Bernstein: if $M \neq 0$ then $\dim \text{SingS}(M) \geq \dim X$.
- M is called holonomic if $\dim \text{SingS}(M) = \dim X$.

Dmitry Gourevitch
Finite multiplicities beyond spherical pairs
BIRS, November 2021
Main technique: D-modules

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $S^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$\dim S^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$$

- $D_X :=$ sheaf of algebraic differential operators. $\text{Gr } D_X \cong \mathcal{O}(T^*X)$.
- For a fin.gen. sheaf M of D_X-modules, $\text{SingS}(M) := \text{Supp Gr}(M) \subset T^*X$.
- Bernstein: if $M \neq 0$ then $\dim \text{SingS}(M) \geq \dim X$.
- M is called holonomic if $\dim \text{SingS}(M) = \dim X$.

Theorem (Bernstein-Kashiwara)

For any holonomic M, $\dim \text{Hom}_{D_X}(M, S^(X)) < \infty$.***
Theorem 3

Let \(I \subset \mathcal{U}(\mathfrak{g}) \) be a two-sided ideal such that \(\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*) \). Let \(X, Y \) be \(\mathcal{V}(I) \)-spherical \(G \)-manifolds. Let \(S^*(X \times Y)^{\Delta G, I} \) denote the space of \(\Delta G \)-invariant tempered distributions on \(X \times Y \) annihilated by \(I \). Then

\[
\dim S^*(X \times Y)^{\Delta G, I} < \infty
\]

- \(D_X := \) sheaf of algebraic differential operators. \(\text{Gr } D_X \cong \mathcal{O}(T^*X) \).
- For a f.gen. sheaf \(M \) of \(D_X \)-modules,
 \[
 \text{Sing}_S(M) := \text{Supp Gr}(M) \subset T^*X.
 \]
- \(M \) is called holonomic if \(\dim \text{Sing}_S(M) = \dim X \).
- Bernstein-Kashiwara: \(\forall \) holonomic \(M \), \(\dim \text{Hom}_{D_X}(M, S^*(X)) < \infty \).

Lemma

Let \(\mathcal{E} \subset \mathcal{N}(\mathfrak{g}^*) \) and let \(X, Y \) be \(\mathcal{E} \)-spherical \(G \)-manifolds. Then

\[
\dim \mu_{X \times Y}^{-1}((\mathcal{E} \times \mathcal{E}) \cap (\Delta \mathfrak{g})^\perp) \leq \dim X + \dim Y
\]
Theorem 3
Let $I \subset \mathcal{U}(g)$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(g^*)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let $S^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG-invariant tempered distributions on $X \times Y$ annihilated by I. Then
\[
\dim S^*(X \times Y)^{\Delta G, I} < \infty
\]

- $D_X :=$ sheaf of algebraic differential operators. $\text{Gr } D_X \cong \mathcal{O}(T^*X)$.
- For a f.gen. sheaf M of D_X-modules,
 $\text{SingS}(M) := \text{Supp } \text{Gr}(M) \subset T^*X$.
- M is called holonomic if $\dim \text{SingS}(M) = \dim X$.
- Bernstein-Kashiwara: \forall holonomic M, $\dim \text{Hom}_{D_X}(M, S^*(X)) < \infty$.

Lemma
Let $\Xi \subset \mathcal{N}(g^*)$ and let X, Y be Ξ-spherical G-manifolds. Then
\[
\dim \mu_{X \times Y}^{-1}((\Xi \times \Xi) \cap (\Delta g)^\perp) \leq \dim X + \dim Y
\]

Proof of Theorem 3.

$M := D_{X \times Y}$-module with $S^*(X \times Y)^{\Delta G, I} \hookrightarrow \text{Hom}(M, S^*(X, Y))$.
By the lemma, M is holonomic.
Proof of the geometric lemma

Lemma

Let $\Xi \subset \mathcal{N}(g^*)$ and let X, Y be Ξ-spherical G-manifolds. Then

$$\dim \mu_{X \times Y}^{-1}((\Xi \times \Xi) \cap (\Delta g) \perp) \leq \dim X + \dim Y$$

Proof.

\forall orbit $O \subset \Xi$ we have

$$\dim \mu_{X \times Y}^{-1}((O \times O) \cap (\Delta g) \perp) = \dim \mu_X^{-1}(O) + \dim \mu_Y^{-1}(O) - \dim O \leq \dim X + \dim O/2 + \dim Y + \dim O/2 - \dim O = \dim X + \dim Y$$
Open questions

- What’s a geometric criterion for \overline{O}-sphericity for non-Richardson O?
Open questions

- What’s a geometric criterion for \overline{O}-sphericity for non- Richardson O?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
Open questions

- What’s a geometric criterion for \overline{O}-sphericity for non- Richardson O?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
Open questions

- What’s a geometric criterion for \mathcal{O}-sphericity for non- Richardson \mathcal{O}?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $S(X) \to \sigma$ and $S(X) \to \tilde{\sigma}$ for $\mathcal{V}(\text{Ann}(\sigma))$-spherical X are holonomic.
 Are they regular holonomic? Wen-Wei Li: for spherical X they are.
Open questions

- What’s a geometric criterion for \mathcal{O}-sphericity for non-Richardson \mathcal{O}?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $S(X) \to \sigma$ and $S(X) \to \tilde{\sigma}$ for $\mathcal{V}(\text{Ann}(\sigma))$-spherical X are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical X they are.
- If G/H is $\mathcal{V}(\text{Ann}(\sigma))$-spherical, is $\sigma^{HC}|_H$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).

Conjecture: Theorem 2 holds over non-archimedean fields as well.

Happy Birthday, Bill!

Dmitry Gourevitch
Open questions

- What’s a geometric criterion for \mathcal{O}-sphericity for non-Richardson \mathcal{O}?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $S(X) \to \sigma$ and $S(X) \to \tilde{\sigma}$ for $\mathcal{V}(\text{Ann}(\sigma))$-spherical X are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical X they are.
- If G/H is $\mathcal{V}(\text{Ann}(\sigma))$-spherical, is $\sigma^{HC}|_H$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.
Open questions

- What’s a geometric criterion for \overline{O}-sphericity for non-Richardson O?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $S(X) \to \sigma$ and $S(X) \to \tilde{\sigma}$ for $V(\text{Ann}(\sigma))$-spherical X are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical X they are.
- If G/H is $V(\text{Ann}(\sigma))$-spherical, is $\sigma^{HC}|_h$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.
Open questions

- What’s a geometric criterion for \overline{O}-sphericity for non-Richardson O?
- Can we bound $m_\sigma(S(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $S(X) \to \sigma$ and $S(X) \to \tilde{\sigma}$ for $\mathcal{V}(\text{Ann}(\sigma))$-spherical X are holonomic.
 Are they regular holonomic? Wen-Wei Li: for spherical X they are.
- If G/H is $\mathcal{V}(\text{Ann}(\sigma))$-spherical, is $\sigma^{HC}|_H$ finitely generated?
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Happy Birthday, Bill!