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Orthogonal families of hypergeometric polynomials

o Let {P,}° , be a family of polynomials in C[x] with deg P, = n.
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e {P,} is a quasi-orthogonal family if there exists a linear functional
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c(n,k+1) p(n k)
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Orthogonal families of hypergeometric polynomials

o Let {P,}° , be a family of polynomials in C[x] with deg P, = n.

e {P,} is a quasi-orthogonal family if there exists a linear functional
M : C[X] — C s.t. M(P,'Pj) =0 < i #].

o Write P, = Y-0_o c(n, k)x*. Say P, is of Jacobi type if it is
quasi-orthogonal and 3 polynomials p(u,s), q(s) s.t.

c(n,k+1) p(n k)

c(n k) aq(k)

Equivalence: P,(x) ~ Pp(Ax), Pp(x) ~ e,Pp(x), e, € C*.

Theorem (Bernstein-G.-Sahi '24)

There exist only five families of Jacobi type (up to ~):
Jacobi, Laguerre, Bessel, and two families E,, F,, obtained from Lommel

polynomials.
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Definitions of the families

e = £ B O = (e

If a3 = —n the infinite series truncates to a polynomial of degree < n.
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o (a)k-(@i)k k
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Bessel functions.

(D(D—=1/2) —=x(D—=n)(D—n—c+1)(D+n+c)(D+n+1)E =0

(D(D+1/2) =x(D=n)(D—n—c+1)(D+n+c+1)(D+n+2)F =0

where D := xdi
X




Definitions of the families

\m
\c~

If a3 = —n the infinite series truncates to a polynomial of degree < n.

© 6 00

Jacobi:aF1(—n, n+ a; b; x) measure:(1 — x)?~1(1 + x)2~2dx on [0, 1]
plu,s) = (s — )(s + u+2), a(s) = (s+1)(s+b).
Bessel:nFo(—n, n+ a; ; x) measure: x?~ L exp(1/x)dx on (—oo,0)

b=1 exp(—x)dx on (0, )

E,SC): aFi(—=n,—n—c+1,n4+c,n+1;1/2;x)

F\: aFi(=n—n—c+1,n+c+1n+2,3/2x)

B = (“1)"ER (—x2), ki, = (—1)"xF (=),

W = 2(c+mxhl? —h', h=1, h =0

Laguerre: 1F1(—n; b; x) measure: x



Theorem (Bernstein-G.-Sahi '24)
If {Ps}%, is a quasi-orthogonal family with

C(n,k—|—1) . p(u' S) or some u,s
c(n k) q(us) i pra sl

then there exists g € Clu, s| and a family {Qn}5_, such that

P, =g(n xdx)Q, Vn,

and {Qn} is either Jacobi, or Laguerre, or Bessel, or
Qn(x) = aF1(—n,—n+d,n+a,n+c; b; x)
for some scalars a, b, c,d € C.




Theorem (Bernstein-G.-Sahi '24)
If {Ps}%, is a quasi-orthogonal family with

c(nk+1) p(u,s)
c(nk) — qlus)

then there exists g € Clu, s| and a family {Qn}5_, such that

for some p, q € Clu, s]

P, =g(n xdx)Q, Vn,

and {Qn} is either Jacobi, or Laguerre, or Bessel, or
Qn(x) = aF1(—n,—n+d,n+a,n+c; b; x)
for some scalars a, b, c,d € C.

Example

Q@ P,=3 F(—nn+1cn+ CTH;3/2, cn+ %;x),
Qn = Jacobi(1,3/2).

@ Families not of the form ;F;.




Theorem (Bernstein-G.-Sahi '24)
If {Pn}$_ is a quasi-orthogonal family with

c(nk+1)  p(u,s)
c(n k) qlu,s)

then there exists g € Clu, s| and a family {Q,}5_, such that

for some p, g € Clu, s]

P, = g(n,xox)Qn Vn,

and {Q,} is either Jacobi, or Laguerre, or Bessel, or
Qn(x) = aF1(—n,—n+d,n+a,n+c; b; x)
for some scalars a, b, c,d € C.

@ Open questions: 1. Maybe Qy, is always of Jacobi type.

@ Given a Q, of Jacobi type, what P, are possible?

Dima Gourevitch Hypergeometric Orthogonal Polynomials July 12, 2024



Proof Ingredients

o Gauss-Favard:{P,} monic quasi-orthogonal <= 3{a,}, {B,} € CN
sit. xPy = Ppi1+anPp+ BnPp-1, PBn#O0foralln>1; (1)
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Proof Ingredients

o Gauss-Favard:{P,} monic quasi-orthogonal <= 3{a,}, {B,} € CN
sit. xPy = Ppi1+anPp+ BnPn-1, PBn#O0foralln>1; (2)

o Algebra A= C(u,s)(U*, S*1) with Uu = u+1,5s = s+ 1.

o Key lemma: If {P,} of Jacobi type then a,, B, € C(n) (almost), and
c(n, k) generate an A-module that is 1-dimensional over C(u, s).

@ Ore (1930s): models for all 1-dimensional A-modules using products
of functions of the form I'(ku+ Is), k,! € Z and exp(au + bs).

e Elementary analysis of poles using these models and (2):

P(u,s—1)=P(u+1,s) +a(u)®(u,s) + p(u)P(u—1,s),
where ® = gexp(au + bs) [ [T (kiu+ lis+¢;), g € C(u,s) =
(ki, I;) € {(£1,1), (0, —1),(£1,0)} Vi =

ofus 1) = PS80,

@ Finish, using clever but elementary considerations.




Future plans

@ Wilson type polynomials - in progress.
@ g-Jacobi type - in progress.
o Askey-Wilson type.
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Askey-Wilson, 1979: A characterization theorem that leads to new
orthogonal polynomials is usually interesting, one that says the classical

polynomials are the only polynomials with a given property is usually much

less interesting and if it keeps people from looking for new polynomials it
is harmful.

Fortunately, ours found new polynomials, and leaves open questions.
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Thank you for your attention!

Dima Gourevitch Hypergeometric Orthogonal Polynomials July 12, 2024



