# Hypergeometric orthogonal polynomials of Jacobi type

Dmitry Gourevitch (Weizmann Institute, Israel)

Branching Problems for Representations of Real, P-Adic and Adelic Groups, Kelowna
j.w. J. Bernstein & S. Sahi

http://www.wisdom.weizmann.ac.il/~dimagur/

July 12, 2024

• Let  $\{P_n\}_{n=0}^{\infty}$  be a family of polynomials in  $\mathbb{C}[x]$  with deg  $P_n=n$ .

- Let  $\{P_n\}_{n=0}^{\infty}$  be a family of polynomials in  $\mathbb{C}[x]$  with deg  $P_n=n$ .
- $\{P_n\}$  is a *quasi-orthogonal* family if there exists a linear functional  $M : \mathbb{C}[x] \to \mathbb{C}$  s.t.  $M(P_iP_i) = 0 \iff i \neq j$ .

- Let  $\{P_n\}_{n=0}^{\infty}$  be a family of polynomials in  $\mathbb{C}[x]$  with deg  $P_n=n$ .
- $\{P_n\}$  is a *quasi-orthogonal* family if there exists a linear functional  $M : \mathbb{C}[x] \to \mathbb{C}$  s.t.  $M(P_iP_i) = 0 \iff i \neq j$ .
- Write  $P_n = \sum_{k=0}^n c(n,k) x^k$ . Say  $P_n$  is of Jacobi type if it is quasi-orthogonal and  $\exists$  polynomials p(u,s), q(s) s.t.

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(n, k)}{q(k)}$$

- Let  $\{P_n\}_{n=0}^{\infty}$  be a family of polynomials in  $\mathbb{C}[x]$  with deg  $P_n=n$ .
- $\{P_n\}$  is a *quasi-orthogonal* family if there exists a linear functional  $M : \mathbb{C}[x] \to \mathbb{C}$  s.t.  $M(P_iP_i) = 0 \iff i \neq j$ .
- Write  $P_n = \sum_{k=0}^n c(n,k) x^k$ . Say  $P_n$  is of Jacobi type if it is quasi-orthogonal and  $\exists$  polynomials p(u,s), q(s) s.t.

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(n, k)}{q(k)}$$

- Let  $\{P_n\}_{n=0}^{\infty}$  be a family of polynomials in  $\mathbb{C}[x]$  with deg  $P_n=n$ .
- $\{P_n\}$  is a *quasi-orthogonal* family if there exists a linear functional  $M : \mathbb{C}[x] \to \mathbb{C}$  s.t.  $M(P_iP_i) = 0 \iff i \neq j$ .
- Write  $P_n = \sum_{k=0}^n c(n, k) x^k$ . Say  $P_n$  is of Jacobi type if it is quasi-orthogonal and  $\exists$  polynomials p(u, s), q(s) s.t.

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(n, k)}{q(k)}$$

Equivalence:  $P_n(x) \sim P_n(\lambda x)$ ,  $P_n(x) \sim e_n P_n(x)$ ,  $e_n \in \mathbb{C}^{\times}$ .

### Theorem (Bernstein-G.-Sahi '24)

There exist only five families of Jacobi type (up to  $\sim$ ): Jacobi, Laguerre, Bessel, and two families  $E_n$ ,  $F_n$  obtained from Lommel polynomials.

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

$$_{i}F_{j}(\underline{a};\underline{b};x)=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k},\quad (c)_{k}:=c(c+1)\cdots(c+k-1),$$

If  $a_1 = -n$  the infinite series truncates to a polynomial of degree  $\leq n$ .

① Jacobi: ${}_2F_1(-n,n+a;b;x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0,1]  $p(u,s)=(s-u)(s+u+a), \quad q(s)=(s+1)(s+b).$ 

$$_{i}F_{j}(\underline{a};\underline{b};x)=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k},\quad (c)_{k}:=c(c+1)\cdots(c+k-1),$$

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- ② Bessel: $_2F_0(-n, n + a;; x)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **3** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **3** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **1** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **1** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If  $a_1 = -n$  the infinite series truncates to a polynomial of degree  $\leq n$ .

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **1** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

Measures of  $E_n$ ,  $F_n$  are discrete measures defined using zeros of (modified) Bessel functions.

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If  $a_1 = -n$  the infinite series truncates to a polynomial of degree  $\leq n$ .

- **1** Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- 2 Bessel: $_2F_0(-n, n + a; ; x)$
- **1** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$

Measures of  $E_n$ ,  $F_n$  are discrete measures defined using zeros of (modified) Bessel functions.

$$(D(D-1/2)-x(D-n)(D-n-c+1)(D+n+c)(D+n+1))E_n^{(c)}=0$$
 
$$(D(D+1/2)-x(D-n)(D-n-c+1)(D+n+c+1)(D+n+2))F_n^{(c)}=0$$
 where  $D:=x\frac{d}{dx}$ 

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!}x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

- ① Jacobi: ${}_2F_1(-n, n+a; b; x)$  measure: $(1-x)^{b-1}(1+x)^{a-b}dx$  on [0, 1]  $p(u, s) = (s-u)(s+u+a), \quad q(s) = (s+1)(s+b).$
- ② Bessel: $_2F_0(-n, n+a;;x)$  measure:  $x^{a-1}\exp(1/x)dx$  on  $(-\infty, 0)$
- **3** Laguerre:  ${}_1F_1(-n;b;x)$  measure:  $x^{b-1}\exp(-x)dx$  on  $(0,\infty)$
- - $h_{2n}^{(c)} = (-1)^n E_n^{(c)}(-x^2), \quad h_{2n+1}^{(c)} = (-1)^n x F_n^{(c)}(-x^2),$
- $h_{n+1}^{(c)} = 2(c+n)xh_n^{(c)} h_{n-1}^{(c)}, \quad h_0 = 1, \ h_{-1} = 0.$



### Theorem (Bernstein-G.-Sahi '24)

If  $\{P_n\}_{n=0}^{\infty}$  is a quasi-orthogonal family with

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(u, s)}{q(u, s)}$$
 for some  $p, q \in \mathbb{C}[u, s]$ 

then there exists  $g \in \mathbb{C}[u,s]$  and a family  $\{Q_n\}_{n=0}^\infty$  such that

$$P_n = g(n, x\partial_x)Q_n \quad \forall n,$$

and  $\{Q_n\}$  is either Jacobi, or Laguerre, or Bessel, or  $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$  for some scalars  $a, b, c, d \in \mathbb{C}$ .

# Theorem (Bernstein-G.-Sahi '24)

If  $\{P_n\}_{n=0}^{\infty}$  is a quasi-orthogonal family with

$$\frac{c(\textit{n},\textit{k}+1)}{c(\textit{n},\textit{k})} = \frac{p(\textit{u},\textit{s})}{q(\textit{u},\textit{s})} \; \textit{for some p, q} \in \mathbb{C}[\textit{u},\textit{s}]$$

then there exists  $g \in \mathbb{C}[u,s]$  and a family  $\{Q_n\}_{n=0}^\infty$  such that

$$P_n = g(n, x\partial_x)Q_n \quad \forall n,$$

and  $\{Q_n\}$  is either Jacobi, or Laguerre, or Bessel, or  $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$  for some scalars  $a, b, c, d \in \mathbb{C}$ .

#### Example

- $P_n = {}_{3}F_2(-n, n+1, cn + \frac{c+3}{2}; 3/2, cn + \frac{c+1}{2}; x),$   $Q_n = Jacobi(1, 3/2).$
- 2 Families not of the form  $_iF_i$ .

#### Theorem (Bernstein-G.-Sahi '24)

If  $\{P_n\}_{n=0}^{\infty}$  is a quasi-orthogonal family with

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(u, s)}{q(u, s)} \text{ for some } p, q \in \mathbb{C}[u, s]$$

then there exists  $g \in \mathbb{C}[u,s]$  and a family  $\{Q_n\}_{n=0}^\infty$  such that

$$P_n = g(n, x\partial_x)Q_n \quad \forall n,$$

and  $\{Q_n\}$  is either Jacobi, or Laguerre, or Bessel, or  $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$  for some scalars  $a, b, c, d \in \mathbb{C}$ .

#### Question

- Open questions: 1. Maybe  $Q_n$  is always of Jacobi type.
- 2 Given a  $Q_n$  of Jacobi type, what  $P_n$  are possible?

ullet Gauss-Favard: $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{lpha_n\}, \{eta_n\} \in \mathbb{C}^{\mathbb{N}}$ 

s.t. 
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
,  $\beta_n \neq 0$  for all  $n \geq 1$ ; (1)

- Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n \geq 1;$  (1)
- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.

- Gauss-Favard: $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^\mathbb{N}$ 
  - s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$ ,  $\beta_n \neq 0$  for all  $n \geq 1$ ; (1)
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .

• Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.

- Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n > 1;$  (1)
- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku+ls)$ ,  $k,l \in \mathbb{Z}$  and  $\exp(au+bs)$ .

- Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n \geq 1;$  (1)
- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku + ls)$ ,  $k, l \in \mathbb{Z}$  and  $\exp(au + bs)$ .
- Elementary analysis of poles using these models and (2):

$$\begin{split} &\Phi(\textit{u},\textit{s}-1) = \Phi(\textit{u}+1,\textit{s}) + \alpha(\textit{u})\Phi(\textit{u},\textit{s}) + \beta(\textit{u})\Phi(\textit{u}-1,\textit{s}), \\ &\text{where } \Phi = \textit{g}\exp(\textit{a}\textit{u}+\textit{b}\textit{s})\prod\Gamma(\textit{k}_{\textit{i}}\textit{u}+\textit{l}_{\textit{i}}\textit{s}+\textit{c}_{\textit{i}}), \ \textit{g} \in \mathbb{C}(\textit{u},\textit{s}) \Rightarrow \end{split}$$

- Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n \geq 1;$  (1)
- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku + ls)$ ,  $k, l \in \mathbb{Z}$  and  $\exp(au + bs)$ .
- Elementary analysis of poles using these models and (2):

$$\begin{split} &\Phi(\textit{u},\textit{s}-1) = \Phi(\textit{u}+1,\textit{s}) + \alpha(\textit{u})\Phi(\textit{u},\textit{s}) + \beta(\textit{u})\Phi(\textit{u}-1,\textit{s}), \\ &\text{where } \Phi = \textit{g}\exp(\textit{a}\textit{u}+\textit{b}\textit{s})\prod\Gamma(\textit{k}_{\textit{i}}\textit{u}+\textit{l}_{\textit{i}}\textit{s}+\textit{c}_{\textit{i}}), \ \textit{g} \in \mathbb{C}(\textit{u},\textit{s}) \Rightarrow \end{split}$$

- Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n \geq 1;$  (1)
- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku+ls)$ ,  $k,l \in \mathbb{Z}$  and  $\exp(au+bs)$ .
- Elementary analysis of poles using these models and (2):

$$\Phi(u,s-1) = \Phi(u+1,s) + \alpha(u)\Phi(u,s) + \beta(u)\Phi(u-1,s),$$
 where  $\Phi = g \exp(au + bs) \prod \Gamma(k_i u + l_i s + c_i), \ g \in \mathbb{C}(u,s) \Rightarrow$ 

$$(k_i, l_i) \in \{(\pm 1, 1), (0, -1), (\pm 1, 0)\} \ \forall i \Rightarrow$$

• Gauss-Favard:  $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t.  $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0 \text{ for all } n > 1;$  (1)

- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku + ls)$ ,  $k, l \in \mathbb{Z}$  and  $\exp(au + bs)$ .
- Elementary analysis of poles using these models and (2):

$$\Phi(u,s-1) = \Phi(u+1,s) + \alpha(u)\Phi(u,s) + \beta(u)\Phi(u-1,s),$$
 where  $\Phi = g \exp(au + bs) \prod \Gamma(k_i u + l_i s + c_i), \ g \in \mathbb{C}(u,s) \Rightarrow$ 

$$(k_i, l_i) \in \{(\pm 1, 1), (0, -1), (\pm 1, 0)\} \ \forall i \Rightarrow$$

$$\Phi(u,s+1) = \frac{p(s-u)r(s+u)Sg}{w(s)g}\Phi(u,s)$$

ullet Gauss-Favard: $\{P_n\}$  monic quasi-orthogonal  $\iff \exists \{lpha_n\}, \{eta_n\} \in \mathbb{C}^{\mathbb{N}}$ 

s.t. 
$$xP_n=P_{n+1}+\alpha_nP_n+\beta_nP_{n-1},\quad \beta_n\neq 0 \text{ for all } n\geq 1;$$
 (2)

- Algebra  $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$  with Uu = u + 1, Ss = s + 1.
- Key lemma: If  $\{P_n\}$  of Jacobi type then  $\alpha_n, \beta_n \in \mathbb{C}(n)$  (almost), and c(n, k) generate an A-module that is 1-dimensional over  $\mathbb{C}(u, s)$ .
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form  $\Gamma(ku+ls)$ ,  $k,l\in\mathbb{Z}$  and  $\exp(au+bs)$ .
- Elementary analysis of poles using these models and (2):

$$\begin{split} \Phi(u,s-1) &= \Phi(u+1,s) + \alpha(u)\Phi(u,s) + \beta(u)\Phi(u-1,s), \\ \text{where } \Phi &= g \exp(au+bs) \prod \Gamma(k_iu+l_is+c_i), \ g \in \mathbb{C}(u,s) \Rightarrow \\ (k_i,l_i) &\in \{(\pm 1,1),(0,-1),(\pm 1,0)\} \ \forall i \Rightarrow \\ \Phi(u,s+1) &= \frac{p(s-u)r(s+u)Sg}{w(s)g} \Phi(u,s) \end{split}$$

Finish, using clever but elementary considerations.



### Future plans

- Wilson type polynomials in progress.
- q-Jacobi type in progress.
- Askey-Wilson type.

### Future plans

- Wilson type polynomials in progress.
- q-Jacobi type in progress.
- Askey-Wilson type.

Askey-Wilson, 1979: A characterization theorem that leads to new orthogonal polynomials is usually interesting, one that says the classical polynomials are the only polynomials with a given property is usually much less interesting and if it keeps people from looking for new polynomials it is harmful.

Fortunately, ours found new polynomials, and leaves open questions.

### Future plans

- Wilson type polynomials in progress.
- q-Jacobi type in progress.
- Askey-Wilson type.

Askey-Wilson, 1979: A characterization theorem that leads to new orthogonal polynomials is usually interesting, one that says the classical polynomials are the only polynomials with a given property is usually much less interesting and if it keeps people from looking for new polynomials it is harmful.

Fortunately, ours found new polynomials, and leaves open questions.

# Thank you for your attention!