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o [F: local field of char.0, G: reductive group over IF.
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Whittaker functionals

o F: local field of char.0, G: reductive group over .
e M(G): smooth admissible representations (of moderate growth).
@ Assume G quasisplit: fix Borel B = HN, n:= Lieg(N).

Define n' =[n,n], 0 =n/n ¥ =0* Cn*
@ ¥ <— Lie algebra characters of n <— unitary group characters of N

e ¥ D ¥* := non-degenerate characters.
e Forp € ¥, m € M(G) define

Why () := Hom§* (7, ), ¥ (1) := {p € ¥ : Why(7) # 0}
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e M(G): smooth admissible representations (of moderate growth).
@ Assume G quasisplit: fix Borel B = HN, n:= Lieg(N).
Define n' =[n,n], 0 =n/n ¥ =0* Cn*
@ Y <— Lie algebra characters of n <— unitary group characters of N

e ¥ D ¥* := non-degenerate characters.
e Forp € ¥, m € M(G) define
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Whittaker functionals

o F: local field of char.0, G: reductive group over .
e M(G): smooth admissible representations (of moderate growth).
@ Assume G quasisplit: fix Borel B = HN, n:= Lieg(N).

Define n' =[n,n], 0 =n/n ¥ =0* Cn*
@ ¥ <— Lie algebra characters of n <— unitary group characters of N

e ¥ D ¥* := non-degenerate characters.
e Forp € ¥, m € M(G) define

Why () := Hom§* (7, ), ¥ (1) := {p € ¥ : Why(7) # 0}

o (Casselman) For any y € ¥, 7 — Whj(7) is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For it € Irr(G), p € ¥, dim Whj () < 1.
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Kostant's theorem

o We say 7t is generic if Jip € ¥ s.t. Why(m) # 0.
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Kostant's theorem

o We say 7t is generic if Jip € ¥ s.t. Why(m) # 0.

Theorem (Kostant, Rodier)

7T is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near e € G, the character distribution (asymptotically) equals to a linear
combination of Fourier transforms of Haar measures of nilpotent coadjoint
orbits.

Xn =) aoF(1o)
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Theorem (Kostant, Rodier)

7T is generic iff it is large.
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Near e € G, the character distribution (asymptotically) equals to a linear
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Kostant's theorem

o We say 7t is generic if Jip € ¥ s.t. Why(m) # 0.

Theorem (Kostant, Rodier)

7T is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near e € G, the character distribution (asymptotically) equals to a linear

combination of Fourier transforms of Haar measures of nilpotent coadjoint
orbits.

Xn =) aoF(1o)

o Define WF(r1) = U{O |ap # 0} C N, where N' C g* denotes the
nilpotent cone.

e 7 is called large if WF(7t) = N
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Case of non-generic representations

@ In the p-adic case, Moeglin and Waldspurger give a very general
definition of degenerate Whittaker models and give a precise
connection between their existence and the wave-front set WF (7).
In the real case there is no full analog currently.
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Case of non-generic representations

@ In the p-adic case, Moeglin and Waldspurger give a very general
definition of degenerate Whittaker models and give a precise
connection between their existence and the wave-front set WF (7).
In the real case there is no full analog currently.

@ Several authors (Matumoto, Yamashita, ... ) consider generalized
Whittaker functionals ~ generic characters for smaller nilradicals

@ We consider degenerate functionals ~ arbitrary characters of n.
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Main results

@ From now on, let F = R.
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Main results

@ From now on, let F = R.
@ The finite group Fg = Normg. (G) / (Zg. - G) acts on M (G).
e For me M (G), define Tt =@ {m?:a € Fg}.

Theorem (1)

For m € M (G) we have
Y(wr) CWF(mr)N'Y C ¥ () (1)
Moreover if G = GL, (R) or if G is a complex group then 7T = 7T and

Y(m) =WF(m)N'Y (2)
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Main results

The sets ¥ (7t) and WEF (7t) determine one another if
@ G=GL,(R) or GL,(C) or SL, (C) and m € M (G)
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Main results

The sets ¥ (7t) and WEF (7t) determine one another if

@ G=GL,(R) or GL,(C) or SL, (C) and m € M (G)
@ G = 5p2,(C) or O, (C) or SO, (C) and 7t is irreducible

Key observation for the second statement:

Let O be a nilpotent orbit for a complex classical Lie algebra then O is
uniquely determined by O N'Y.
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Uniqueness

@ An analog of Shalika’s result would be uniqueness of " minimally
degenerate” Whittaker models. So far it is known only for GL,, both
in real and p-adic cases.
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@ Let G be GL,(R) or GL,(C). For a partition A of n let O, denote
the corresponding nilpotent orbit and 1, denote the corresponding
character of N.
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Uniqueness

@ An analog of Shalika’s result would be uniqueness of " minimally
degenerate” Whittaker models. So far it is known only for GL,, both
in real and p-adic cases.

@ Let G be GL,(R) or GL,(C). For a partition A of n let O, denote
the corresponding nilpotent orbit and 1, denote the corresponding
character of N.

Theorem (Aizenbud-G-Sahi)

Let me G ‘be an irreducible unitary representation. Let A be such that
WF (rt) = O,. Then dim Why, (1) = 1.
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Uniqueness

@ An analog of Shalika’s result would be uniqueness of " minimally
degenerate” Whittaker models. So far it is known only for GL,, both
in real and p-adic cases.

@ Let G be GL,(R) or GL,(C). For a partition A of n let O, denote
the corresponding nilpotent orbit and 1, denote the corresponding
character of N.

Theorem (Aizenbud-G-Sahi)

Let me G ‘be an irreducible unitary representation. Let A be such that
WF (rt) = O,. Then dim Why, (1) = 1.

@ In the p-adic case the analogous theorem was proven by Zelevinsky
without the assumption that 7t is unitary. The proofs in both cases
use "derivatives”.
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Algebraic setting

@ From now on, we let n, g, etc. denote complexified Lie algebras.
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@ Let K C G be maximal compact subgroup. A (g, K)-module is a
complex vector space with compatible actions of g and K such that
every vector is K-finite.

e Let HC(G) denote the category of (g, K)-modules of finite length

Theorem (Casselman-Wallach)

The functor 7t +— tK=finite js an equivalence of categories

M(G) = HC(G)

e For M € HC(G) and ¢ € ¥¢ we define
Whj,(M) := Hom,(M, ), ¥(M):= {g € Yc | Whi,(M) # 0}
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Algebraic setting

@ From now on, we let n, g, etc. denote complexified Lie algebras.

@ Let K C G be maximal compact subgroup. A (g, K)-module is a
complex vector space with compatible actions of g and K such that
every vector is K-finite.

e Let HC(G) denote the category of (g, K)-modules of finite length

Theorem (Casselman-Wallach)

The functor 7t +— tK=finite js an equivalence of categories

M(G) = HC(G)

e For M € HC(G) and ¢ € ¥¢ we define
Whj,(M) := Hom,(M, ), ¥(M):= {g € Yc | Whi,(M) # 0}

o Kostant showed that 77 is generic iff /X ~finite is generic, though
dimensions of Whittaker spaces differ considerably.
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Associated varieties and our algebraic theorem

e Using PBW filtration, gri/(g) = Sym(g) = Pol(g*)

Gourevitch-Sahi Degenerate Whittaker functionals August 2012 9 /14



Associated varieties and our algebraic theorem

e Using PBW filtration, gri/(g) = Sym(g) = Pol(g*)
@ Using this, one can define

AsV(M) C AnV(M) ¢ N
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Associated varieties and our algebraic theorem

e Using PBW filtration, gri/(g) = Sym(g) = Pol(g*)
@ Using this, one can define

AsV(M) C AnV(M) ¢ N

@ Schmid and Vilonen proved that WF(7t) and As)(rrK—finite)
determine each other.
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Associated varieties and our algebraic theorem

Using PBW filtration, gri{(g) = Sym(g) = Pol(g*)
Using this, one can define

AsV(M) C AnV(M) ¢ N

@ Schmid and Vilonen proved that WF(7t) and As)(rrK—finite)
determine each other.

Let pry+ : g* — n* denote the natural projection (restriction to n).
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Associated varieties and our algebraic theorem

e Using PBW filtration, gri/(g) = Sym(g) = Pol(g*)
@ Using this, one can define

AsV(M) C AnV(M) ¢ N

@ Schmid and Vilonen proved that WF(7t) and As)(rrK—finite)
determine each other.

@ Let pry- 1 g* — n* denote the natural projection (restriction to n).
Theorem (0)
For M € HC we have ¥(M) = pry-(AsV (M))NY.

Gourevitch-Sahi Degenerate Whittaker functionals August 2012 9 /14



|dea of the proof

@ Since n/[n, n] is commutative, from Nakayama's lemma we have
¥(M) = Supp(M/[n,n]M). Now, restriction to n corresponds to
projection on n* and quotient by [n, n] corresponds to intersection
with ¥ = [n,n]*.
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@ Since n/[n, n] is commutative, from Nakayama's lemma we have
¥(M) = Supp(M/[n,n]M). Now, restriction to n corresponds to
projection on n* and quotient by [n, n] corresponds to intersection
with ¥ = [n,n]*.

@ However, in non-commutative situation one could even have
V = [n,n]V. For example, let G = GL(3,R) and consider the
identification of n with the Heisenberg Lie algebra (x, &, 1) acting
on V =CI[x].
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|dea of the proof

@ Since n/[n, n] is commutative, from Nakayama's lemma we have
¥(M) = Supp(M/[n,n]M). Now, restriction to n corresponds to
projection on n* and quotient by [n, n] corresponds to intersection
with ¥ = [n,n]*.

@ However, in non-commutative situation one could even have
V = [n,n]V. For example, let G = GL(3,R) and consider the
identification of n with the Heisenberg Lie algebra (x, &, 1) acting
on V =CI[x].

@ Let b = h + n be the Borel subalgebra of g, let V' be a b-module. We
define the n-adic completion and Jacquet module as follows:

~ ~ . .\ b-finite
P v, 0 ()
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.
o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)
o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
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o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)

o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
e (Easy) J(CM) =~ C (JM) as b-modules.
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.

o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)

o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
e (Easy) J(CM) =~ C (JM) as b-modules.

o (Bernstein+Joseph)
AnV, (J (CM)) = AsVy(C (UM)) = AsVy(JM) M.
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.

o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)

o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
e (Easy) J(CM) =~ C (JM) as b-modules.

o (Bernstein+Joseph)
AnV, (J (CM)) = AsVy(C (UM)) = AsVy(JM) M.

o (Ginzburg+ENV) AsV,(JM) D AsV,(M)N'Y.
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.

o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)

o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
e (Easy) J(CM) =~ C (JM) as b-modules.

o (Bernstein+Joseph)
AnV, (J (CM)) = AsVy(C (JM)) = AsV,(JM)N'¥.

o (Ginzburg+ENV) AsV,(JM) D AsV,(M)NY.
o (Casselman-Osborne+Gabber) AsV,(M) = pry(AsVy(M)).
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Sketch of the proof

o Define ' = [n,n] and CV = Hy (v, V) = V /0 V.

o (Nakayama) ¥(M) = Supp, (CM) = AnV, (CM)

o (Joseph-+Gabber) AnV, (CM) = AnV, (CM) = AnV, (J (CM)
e (Easy) J(CM) =~ C (JM) as b-modules.

o (Bernstein+Joseph)
AnV, (J (CM)) = AsVy(C (JM)) = AsV,(JM)N'¥.

o (Ginzburg+ENV) AsV,(JM) D AsV,(M)NY.
o (Casselman-Osborne+Gabber) AsV,(M) = pry(AsVy(M)).
e Thus ¥(M) D pry-(AsVy(M)) N'¥; other inclusion is easy.
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Proof of Theorem 3

For GL (n,IR) and SL (n,C) ~ Jordan form

@ Orbits for Spap, (C) or O, (C) ~ partitions satisfying certain
conditions
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For GL (n,IR) and SL (n,C) ~ Jordan form

@ Orbits for Spap, (C) or O, (C) ~ partitions satisfying certain
conditions

@ An orbit meets ¥ iff it has at most one part > 2 with odd multiplicity
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Proof of Theorem 3

For GL (n,IR) and SL (n,C) ~ Jordan form

@ Orbits for Spap, (C) or O, (C) ~ partitions satisfying certain
conditions

@ An orbit meets ¥ iff it has at most one part > 2 with odd multiplicity

@ For each partition A and each k there is a partition # < A, which
meets ¥ and satisfies i1 + - -+ px = A1+ - - + Ag
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Proof of Theorem 3

For GL (n,IR) and SL (n,C) ~ Jordan form

@ Orbits for Spap, (C) or O, (C) ~ partitions satisfying certain
conditions

@ An orbit meets ¥ iff it has at most one part > 2 with odd multiplicity

@ For each partition A and each k there is a partition # < A, which
meets ¥ and satisfies i1 + - -+ px = A1+ - - + Ag

@ Result for SO, (C) requires slight additional argument.
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. I
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Theorem 3 is false for every exceptional group. \

@ We list all orbits whose closures have the same intersection with .

@ We follow Bala-Carter notation and we have underlined the special orbits.
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Theorem 3 is false for every exceptional group. \

@ We list all orbits whose closures have the same intersection with .

@ We follow Bala-Carter notation and we have underlined the special orbits.

e For G = GQZ Gz(al) and 2\\1
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

@ We list all orbits whose closures have the same intersection with .

@ We follow Bala-Carter notation and we have underlined the special orbits.
e For G = GQZ Gz(al) and A1
@ For G = Fy:
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

@ We list all orbits whose closures have the same intersection with .

@ We follow Bala-Carter notation and we have underlined the special orbits.
e For G = GQZ Gz(al) and 2\\1
@ For G = Fy:

Q Fy(a1) and Fy(a0)
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

@ We list all orbits whose closures have the same intersection with .

@ We follow Bala-Carter notation and we have underlined the special orbits.
e For G = GQZ Gz(al) and 2\\1
@ For G = Fy:

Q Fy(a1) and Fy(a0)

© Fa(a3) and C3(a1)
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with .

We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
@ For G = Eg:
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with .

We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
@ For G = Eg:
(4 ] Eﬁ(al) and &
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with .

We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
@ For G = Eg:
(4 ] Eﬁ(al) and &
Q Dy(a1) and A3 + Ay
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with V.
We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
For G = Eg:
o Eﬁ(al) and &
Q D4(31) and Az + A
@ For G = E:
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with V.
We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
For G = Eg:
o Eﬁ(al) and &
Q D4(31) and Az + A
@ For G = E:
Q E7(a1) and E7(a2)
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with V.
We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
For G = Eg:
o Eﬁ(al) and &
Q D4(31) and Az + A
@ For G = E:
Q E7(a1) and E7(a2)
Q E7(a3) and Dg
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Counterexamples for exceptional groups

Theorem 3 is false for every exceptional group. \

We list all orbits whose closures have the same intersection with V.
We follow Bala-Carter notation and we have underlined the special orbits.
For G = GQZ Gz(al) and 2\\1
For G = F4:
Q Fy(a1) and Fy(a0)
© Fa(a3) and C3(a1)
For G = Eg:
o Eﬁ(al) and &
Q D4(31) and Az + A
@ For G = E:
Q E7(a1) and E7(a2)
Q E7(a3) and Dg
© Eg(a1) and E7(as).
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Counterexamples for exceptional groups

@ For G = Eg:

Gourevitch-Sahi Degenerate Whittaker functionals August 2012 14 / 14



Counterexamples for exceptional groups

@ For G = Eg:
Q Es(a1), Eg(az), and Eg(as)
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Counterexamples for exceptional groups

@ For G = Eg:

© Eg(a1), Es(a2), and Eg(a3)
© Eg(ag), Eg(bs) and Eg(as)
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Counterexamples for exceptional groups

@ For G = Eg:
Q Eg(a1), Eg(a2), and Eg(a3)
@ Eg(as), Eg(bg) and Eg(as)
e E7 al) 8( )and E7 32)
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Counterexamples for exceptional groups

@ For G = Eg:

Q Eg(a1), Es(az), and Eg(a3)
© Es(as), Eg(bs) and Eg(as)
© £7(a1), Eg(bs) and E7(a2)
Q@ Es(ap) and D7(a1)
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Counterexamples for exceptional groups

@ For G = Eg:

Q Eg(a1), Es(az), and Eg(a3)
© Es(as), Eg(bs) and Eg(as)
© £7(a1), Eg(bs) and E7(a2)
Q@ Es(ap) and D7(a1)
© Ee(a1) and E7(as)
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Counterexamples for exceptional groups

@ For G = Eg:
Q Es(a1), Eg(a2), and Eg(a3)
© Es(as), Eg(bs) and Eg(as)
© £7(a1), Eg(bs) and E7(a2)
Q@ Es(ap) and D7(a1)
© Ee(a1) and E7(as)
O Es(a7), E7(as), Ee(a3) + A1, and Dg(az).
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