EXERCISE 11 IN D-MODULES I

DMITRY GOUREVITCH

(1) (P) A corrected exercise on derived categories: Let k be a field. Let $\mathcal{C} = Mod(k[x,y])$. Let A be the complex

$$k[x,y] \stackrel{\cdot x^2}{\to} k[x,y] \to k[x,y]/x$$

and B be the complex

$$k[x,y]/(y^2-x) \xrightarrow{y^2} k[x,y]/(y^2-x) \to k[x,y]/(x,y).$$

Compute the cohomologies of RHom(A, B) and $A \overset{L}{\otimes} B$.

- (2) (P) Let M be a smooth \mathcal{D}_X -module. Prove that $\mathbb{D}M \cong \mathcal{H}om_{\mathcal{O}_X}(M,\omega_X)$ as an \mathcal{O}_X -module.
- (3) Show that for any $\mathcal{F}, \mathcal{H} \in D^b_{coh}(\mathcal{M}(\mathcal{D}_X)), \mathcal{H}om(\mathcal{F}, \mathcal{H}) \cong \mathbb{D}(\mathcal{F}) \otimes^L \mathcal{H}$.
- (4) Let $p: X \to pt$, and let $\mathcal{F}, \mathcal{H} \in D^b_{Hol}(\mathcal{M}(\mathcal{D}_X))$. Show that

$$Hom_{\mathcal{D}_X}(\mathcal{F},\mathcal{H}) \cong H^0(p_*(\mathbb{D}\mathcal{H} \otimes^! \mathcal{F})).$$

Hint. Since $Hom_{\mathcal{D}_X}(\mathcal{F},\mathcal{H}) \cong H^0(R\Gamma(R\mathcal{H}om(\mathcal{F},\mathcal{H})))$, and $R\mathcal{H}om(\mathcal{F},\mathcal{H}) \cong \mathbb{D}\mathcal{F} \otimes_{\mathcal{D}_X}^L \mathcal{H}[-\dim X]$, it is enough to show that $\mathbb{D}\mathcal{F} \otimes_{\mathcal{D}_X}^L \mathcal{H}[-\dim X] \cong (\mathbb{D}\mathcal{F} \otimes^! \mathcal{H}) \otimes_{\mathcal{D}_X}^L \mathcal{O}_X$.

- (5) Show that $\mathcal{F} \otimes^! \mathcal{O}_X \cong \mathcal{F}$.
- (6) (P) Radon transform: let V be a vector space over \mathbb{K} , $X = \mathbb{P}(V)$, and $X' = \mathbb{P}(V^*)$. For any $y \in X'$ denote by $H_y \subset X$ the hyperplane on which y vanishes. Let $I = \{x \in X, y \in X' \mid x \in H_y\}$. Let $U := X \times X' \setminus I$ and let j denote the embedding $j : U \subset X \times X'$.

Define $\tilde{R}: D^b(\mathcal{M}(\mathcal{D}_X)) \to D^b(\mathcal{M}(\mathcal{D}_X'))$ by the kernel $j_*\mathcal{O}_U$.

Show that the functor \tilde{R} is an equivalence of categories, with pseudo-inverse given by $j_!\mathcal{O}_U$. Hint: Show that $K := j_*\mathcal{O}_U * j_!\mathcal{O}_U \cong (\Delta_X)_*\mathcal{O}_X$ in two steps:

- 1. $\forall x \neq y \in X$, $i_{(x,y)}^!(K) = 0$ 2. $\Delta_X^! K \cong \mathcal{O}_X$.
- (7) (P) Let $\mathbb{K} := \mathbb{C}$, and $j : \mathbb{A}^1 \setminus \{0\} \subset \mathbb{A}^1$. Compute $j_{!*}\mathcal{F}$ and $Cone(\varphi_{\mathcal{F}})$ if \mathcal{F} is the $\mathcal{D}(\mathbb{A}^1 \setminus \{0\})$ -module generated by the function f on $\mathbb{R}_{>0}$ where:
 - (a) $f(x) = x^{\lambda}$ for some $\lambda \in \mathbb{C}$
 - (b) $f(x) = \log x$
- (8) This optional problem illustrates non-exactness of Γ for \mathcal{O} -modules. Let $X := \mathbb{A}^2 \setminus \{0,0\}$ and $Z := \mathbb{A}^1 \setminus \{0,0\}$. Note that Z is affine while X is not, and $\mathcal{O}_X(X) = \mathbb{K}[x,y]$, $\mathcal{O}_Z(Z) = \mathbb{K}[x,x^{-1}]$.
 - (a) Show that the map $\varphi: \mathcal{O}_X \to i_{\bullet}\mathcal{O}_Z$ is onto, while $\Gamma(\varphi)$ is not onto.
 - (b) Find the kernel $K := \text{Ker}\varphi$.
 - (c) Compute $H^1(X, K)$ using the Chech resolution with respect to X_x and X_y the complements to x = 0 and to y = 0 respectively.
 - (d) Compute the boundary map $\Gamma(\mathcal{O}_Z) \to H^1(X,K)$.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/DmodI_3.html