EXERCISE 11 IN D-MODULES I

DMITRY GOUREVITCH

(1) (P) A corrected exercise on derived categories: Let k be a field. Let $\mathcal{C}=\operatorname{Mod}(k[x, y])$. Let A be the complex

$$
k[x, y] \xrightarrow{\cdot x^{2}} k[x, y] \rightarrow k[x, y] / x
$$

and B be the complex

$$
k[x, y] /\left(y^{2}-x\right) \xrightarrow{y^{2}} k[x, y] /\left(y^{2}-x\right) \rightarrow k[x, y] /(x, y) .
$$

Compute the cohomologies of $\operatorname{RHom}(A, B)$ and $A \stackrel{L}{\otimes} B$.
(2) (P) Let M be a smooth \mathcal{D}_{X}-module. Prove that $\mathbb{D} M \cong \mathcal{H}_{\mathcal{O}_{\mathcal{O}_{X}}}\left(M, \omega_{X}\right)$ as an \mathcal{O}_{X}-module.
(3) Show that for any $\mathcal{F}, \mathcal{H} \in D_{\text {coh }}^{b}\left(\mathcal{M}\left(\mathcal{D}_{X}\right)\right), \mathcal{H o m}(\mathcal{F}, \mathcal{H}) \cong \mathbb{D}(\mathcal{F}) \otimes^{L} \mathcal{H}$.
(4) Let $p: X \rightarrow p t$, and let $\mathcal{F}, \mathcal{H} \in D_{H o l}^{b}\left(\mathcal{M}\left(\mathcal{D}_{X}\right)\right)$. Show that

$$
\operatorname{Hom}_{\mathcal{D}_{X}}(\mathcal{F}, \mathcal{H}) \cong H^{0}\left(p_{*}(\mathbb{D} \mathcal{H} \otimes!\mathcal{F})\right) .
$$

Hint. Since $\operatorname{Hom}_{\mathcal{D}_{X}}(\mathcal{F}, \mathcal{H}) \cong H^{0}(R \Gamma(R \mathcal{H} \operatorname{com}(\mathcal{F}, \mathcal{H})))$, and $R \mathcal{H} \operatorname{Hom}(\mathcal{F}, \mathcal{H}) \cong \mathbb{D} \mathcal{F} \otimes_{\mathcal{D}_{X}}^{L} \mathcal{H}[-\operatorname{dim} X]$, it is enough to show that $\mathbb{D} \mathcal{F} \otimes_{\mathcal{D}_{X}}^{L} \mathcal{H}[-\operatorname{dim} X] \cong(\mathbb{D} \mathcal{F} \otimes!\mathcal{H}) \otimes_{\mathcal{D}_{X}}^{L} \mathcal{O}_{X}$.
(5) Show that $\mathcal{F} \otimes!\mathcal{O}_{X} \cong \mathcal{F}$.
(6) (P) Radon transform: let V be a vector space over $\mathbb{K}, X=\mathbb{P}(V)$, and $X^{\prime}=\mathbb{P}\left(V^{*}\right)$. For any $y \in X^{\prime}$ denote by $H_{y} \subset X$ the hyperplane on which y vanishes. Let $I=\left\{x \in X, y \in X^{\prime} \mid x \in\right.$ $\left.H_{y}\right\}$. Let $U:=X \times X^{\prime} \backslash I$ and let j denote the embedding $j: U \subset X \times X^{\prime}$.

Define $\tilde{R}: D^{b}\left(\mathcal{M}\left(\mathcal{D}_{X}\right)\right) \rightarrow D^{b}\left(\mathcal{M}\left(\mathcal{D}_{X}^{\prime}\right)\right)$ by the kernel $j_{*} \mathcal{O}_{U}$.
Show that the functor \tilde{R} is an equivalence of categories, with pseudo-inverse given by $j_{!} \mathcal{O}_{U}$. Hint: Show that $K:=j_{*} \mathcal{O}_{U} * j_{j} \mathcal{O}_{U} \cong\left(\Delta_{X}\right)_{*} \mathcal{O}_{X}$ in two steps:

1. $\forall x \neq y \in X, i_{(x, y)}^{!}(K)=0 \quad$ 2. $\Delta_{X}^{!} K \cong \mathcal{O}_{X}$.
(7) (P) Let $\mathbb{K}:=\mathbb{C}$, and $j: \mathbb{A}^{1} \backslash\{0\} \subset \mathbb{A}^{1}$. Compute $j_{!} \mathcal{F}$ and $\operatorname{Cone}\left(\varphi_{\mathcal{F}}\right)$ if \mathcal{F} is the $\mathcal{D}\left(\mathbb{A}^{1} \backslash\{0\}\right)$ module generated by the function f on $\mathbb{R}_{>0}$ where:
(a) $f(x)=x^{\lambda}$ for some $\lambda \in \mathbb{C}$
(b) $f(x)=\log x$
(8) This optional problem illustrates non-exactness of Γ for \mathcal{O}-modules. Let $X:=\mathbb{A}^{2} \backslash\{0,0\}$ and $Z:=\mathbb{A}^{1} \backslash\{0,0\}$. Note that Z is affine while X is not, and $\mathcal{O}_{X}(X)=\mathbb{K}[x, y], \mathcal{O}_{Z}(Z)=\mathbb{K}\left[x, x^{-1}\right]$.
(a) Show that the map $\varphi: \mathcal{O}_{X} \rightarrow i_{\bullet} \mathcal{O}_{Z}$ is onto, while $\Gamma(\varphi)$ is not onto.
(b) Find the kernel $K:=\operatorname{Ker} \varphi$.
(c) Compute $H^{1}(X, K)$ using the Chech resolution with respect to X_{x} and X_{y} - the complements to $x=0$ and to $y=0$ respectively.
(d) Compute the boundary map $\Gamma\left(\mathcal{O}_{Z}\right) \rightarrow H^{1}(X, K)$.
$U R L$: http://www.wisdom.weizmann.ac.il/~dimagur/DmodI_3.html
