EXERCISE 3 IN D-MODULES I

DMITRY GOUREVITCH AND JOSEPH BERNSTEIN

- (1) Exterior products of \mathcal{D} -modules. Consider to affine spaces X, Y. Let M be a $\mathcal{D}(X)$ -module and N be a $\mathcal{D}(Y)$ -module.
 - (a) Consider the vector space $M \otimes_k N$ and define on it a structure of a $\mathcal{D}(X \times Y)$ -module. This module is called the exterior product of M and N and denoted $M \boxtimes N$.
 - (b) Prove that $d(M \boxtimes N) = d(M) + d(N)$ and $e(M \boxtimes N) = e(M)e(N)$.
- (2) Tensor product over \mathcal{O} . Let M, N be $\mathcal{D}(X)$ -modules (where X is an affine space). Consider the space $M \otimes N := M \otimes_{\mathcal{O}(X)} N$ and define the structure of a $\mathcal{D}(X)$ -module by Leibnitz rule.
 - (a) Show that $M \otimes N$ is canonically isomorphic to the module $\Delta^0(M \boxtimes N)$, where $\Delta : X \to X \times X$ is the diagonal embedding
 - (b) Interpret the analytic meaning of this algebraic operation. Show that the inner tensor product $M \otimes N$ of finitely-generated \mathcal{D} -modules is not always finitely generated.
- (3) (P) Show that if M, N are holonomic then $M \otimes N$ is also holonomic.
- (4) (P) Let M be a left $\mathcal{D}(X)$ -module and N be a right $\mathcal{D}(X)$ -module. Define a natural structure of a right $\mathcal{D}(X)$ -module on $M \otimes N$. Explain the analytic meaning of this construction. Convince yourself that there is no natural tensor product of right $\mathcal{D}(X)$ -modules.
- (5) (P) Let X be a real vector space. Fix a real polynomial P on X. Fix a not very singular distribution ξ on X (e.g. a finite sum of differential operators applied to continuous functions) and define a family of generalized functions $G(\lambda) := P^{\lambda} f$ for $\operatorname{Re} \lambda >> 0$. Show that if ξ is holonomic then the family extends meromorphically to the whole complex plane. More precisely, show that there exists a differential operator $d \in \mathcal{D}(X)[\lambda]$ and a polynomial $b \in C[\lambda]$ such that $d(\lambda)G(\lambda+1) = b(\lambda)G(\lambda)$.
- (6) (P)
 - (a) Similarly to the previous problem, show that the function $G(\lambda, \mu) = P^{\lambda}G\mu\xi$ has a meromorphic continuation in two variables λ, μ .
 - (b) Show that the function $b(\lambda,\mu)$ can be chosen to be a product of linear functions.
- (7) (P) Let T be a differential operator with constant coefficients on \mathbb{R}^n . Show that there exists a distribution f with $Tf = \delta_0$. Moreover, f can be chosen to be a tempered holonomic distribution.
- (8) (P) Let M be a \mathcal{D}_n -module generated by a finite subset S. Let $I \subset \mathcal{D}_n$ be the annihilator of S, and let $J \subset k[x_1, \ldots, x_n, \xi_1, \ldots, \xi_n]$ be the ideal generated by the symbols of the elements of I. Show that the associated variety AV(M) is the zero set of J.
- URL: http://www.wisdom.weizmann.ac.il/~dimagur/Dmod1.html

Date: August 10, 2016.