EXERCISE 3 IN D-MODULES I

DMITRY GOUREVITCH AND JOSEPH BERNSTEIN

(1) Exterior products of \mathcal{D}-modules. Consider to affine spaces X, Y. Let M be a $\mathcal{D}(X)$-module and N be a $\mathcal{D}(Y)$-module.
(a) Consider the vector space $M \otimes_{k} N$ and define on it a structure of a $\mathcal{D}(X \times Y)$-module. This module is called the exterior product of M and N and denoted $M \boxtimes N$.
(b) Prove that $d(M \boxtimes N)=d(M)+d(N)$ and $e(M \boxtimes N)=e(M) e(N)$.
(2) Tensor product over \mathcal{O}. Let M, N be $\mathcal{D}(X)$-modules (where X is an affine space). Consider the space $M \otimes N:=M \otimes_{\mathcal{O}(X)} N$ and define the structure of a $\mathcal{D}(X)$-module by Leibnitz rule.
(a) Show that $M \otimes N$ is canonically isomorphic to the module $\Delta^{0}(M \boxtimes N)$, where $\Delta: X \rightarrow X \times X$ is the diagonal embedding
(b) Interpret the analytic meaning of this algebraic operation. Show that the inner tensor product $M \otimes N$ of finitely-generated \mathcal{D}-modules is not always finitely generated.
(3) (P) Show that if M, N are holonomic then $M \otimes N$ is also holonomic.
(4) (P) Let M be a left $\mathcal{D}(X)$-module and N be a right $\mathcal{D}(X)$-module. Define a natural structure of a right $\mathcal{D}(X)$-module on $M \otimes N$. Explain the analytic meaning of this construction. Convince yourself that there is no natural tensor product of right $\mathcal{D}(X)$-modules.
(5) (P) Let X be a real vector space. Fix a real polynomial P on X. Fix a not very singular distribution ξ on X (e.g. a finite sum of differential operators applied to continuous functions) and define a family of generalized functions $G(\lambda):=P^{\lambda} f$ for $\operatorname{Re} \lambda \gg 0$. Show that if ξ is holonomic then the family extends meromorphically to the whole complex plane. More precisely, show that there exists a differential operator $d \in \mathcal{D}(X)[\lambda]$ and a polynomial $b \in C[\lambda]$ such that $d(\lambda) G(\lambda+1)=b(\lambda) G(\lambda)$.
(6) (P)
(a) Similarly to the previous problem, show that the function $G(\lambda, \mu)=P^{\lambda} G \mu \xi$ has a meromorphic continuation in two variables λ, μ.
(b) Show that the function $b(\lambda, \mu)$ can be chosen to be a product of linear functions.
(7) (P) Let T be a differential operator with constant coefficients on \mathbb{R}^{n}. Show that there exists a distribution f with $T f=\delta_{0}$. Moreover, f can be chosen to be a tempered holonomic distribution.
(8) (P) Let M be a \mathcal{D}_{n}-module generated by a finite subset S. Let $I \subset \mathcal{D}_{n}$ be the annihilator of S, and let $J \subset k\left[x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{n}\right]$ be the ideal generated by the symbols of the elements of I. Show that the associated variety $A V(M)$ is the zero set of J.
URL: http://www.wisdom.weizmann.ac.il//्dimagur/Dmod1.html]

[^0]
[^0]: Date: August 10, 2016.

