# EXERCISE 7 IN D-MODULES I: DERIVED CATEGORIES 

SHACHAR CARMELI

For an abelian category $\mathcal{C}$, let $K(\mathcal{C})$ denote the homotopy category of $\mathcal{C}$ and $D(\mathcal{C})$ the derived category. Let $D^{+}(\mathcal{C}), D^{-}(\mathcal{C}), D^{b}(\mathcal{C})$ be the subcategories of complexes bounded from below, above and from both sides respectively. If $f: A \rightarrow B$ we denote by $C(f)$ the mapping cone, and by $\pi_{f}: B \rightarrow C(f)$ the inclusion to the second factor.
(1) Prove that $C\left(\pi_{f}\right) \cong A[1]$.
(2) Prove that $H^{i}(A) \xrightarrow{f_{*}} H^{i}(B) \xrightarrow{\left(\pi_{f}\right)_{*}} H^{i}(C(f))$ is exact. Deduce that a distinguished triangle induces a long exact sequence on cohomologies.
(3) (P) Prove that $f: A \rightarrow B$ is a homotopy equivalence if and only if $C(f)$ is contractible (i.e. isomorphic to 0 in $K(\mathcal{C})$ ).
(4) $\left(^{*}\right)$ Prove that every distinguished triangle in $K(\mathcal{C})$ is isomorphic to a short exact sequence. Deduce once again that a distinguished triangle induces a long exact sequence on cohomologies. Does every short exact sequence is a distinguished triangle in $K(\mathcal{C})$ ? Prove that in $D(\mathcal{C})$, every short exact sequence is a distinguished triangle.
(5) (P) Prove that for $g: C \rightarrow B$ and $f: A \rightarrow B, g=g^{\prime} \circ f$ if and only if $\pi_{f} \circ g=0$. State and prove a dual statement.
(6) (P) Define the complex $\operatorname{Hom}(A, B)$, and prove that $H^{0}(\operatorname{Hom}(A, B))=\operatorname{Hom}_{K(\mathcal{C})}(A, B)$. Prove that $\operatorname{Hom}(X, C(f))=C(\operatorname{Hom}(X, f))$. Use this to solve the last exercise much faster!
(7) $\left(^{*}\right)$ Prove that in $D(\mathbb{Z})$ every object is isomorphic to a complex with zero-differentials.
(8) (P) Prove that if $I \in K^{+}(\mathcal{C})$ is a complex of injective objects, and $M \in K^{+}(\mathcal{C})$ is acyclic, then $\operatorname{Hom}_{K(C)}(M, I)=0$. Deduce that for every complex $A, \operatorname{Hom}_{D^{+}(\mathcal{C})}(A, I) \cong \operatorname{Hom}_{K^{+}(\mathcal{C})}(A, I)$.
(9) Recall that $\operatorname{RHom}(A, B):=\operatorname{Hom}(A, I)$ where $B \cong I$ in $D^{+}(\mathcal{C})$ and $I$ is a complex of injectives. Alternatively, if we work in $D^{-}(\mathcal{C})$ it is $\operatorname{Hom}(P, A)$ where $A \cong P$ and $P$ is a complex of projectives. Prove that $\operatorname{Hom}_{D^{+}(\mathcal{C})}(A, B)=H^{0}(\operatorname{RHom}(A, B))$, and similarly for $D^{-}(\mathcal{C})$.
(10) (P) Prove that for every $A \in D^{-}(A b), \operatorname{RHom}(\operatorname{RHom}(A, \mathbb{Z}), \mathbb{Z}) \cong A$. Thus, if $\mathbb{D}(A):=$ $R \operatorname{Hom}(A, \mathbb{Z})$, then

$$
\operatorname{Hom}_{D^{-}(A b)}(A, B) \cong \operatorname{Hom}_{D^{-}(A b)}(\mathbb{D}(B), \mathbb{D}(A)) .
$$

(11) $\left(^{*}\right)$ Find an example of a complex which is not quasi-isomorphic to a complex with zerodifferentials.
(12) (P) Let $k$ be a field. Let $\mathcal{C}=\operatorname{Mod}(k[x, y])$. Let $A$ be the complex

$$
k[x, y] \xrightarrow{x} k[x, y] \rightarrow k[x, y] /\left(x^{2}\right)
$$

and $B$ be the complex

$$
k[x, y] /\left(y^{2}-x\right) \xrightarrow{\cdot y^{2}} k[x, y] /\left(y^{2}-x\right) \rightarrow k[x, y] /(x, y) .
$$

Compute the cohomologies of $\operatorname{RHom}(A, B)$ and $A \stackrel{L}{\otimes} B$.
$U R L$ : http://www.wisdom.weizmann.ac.il/~dimagur/Dmod1.html

