EXERCISE 7 IN D-MODULES I

DMITRY GOUREVITCH AND JOSEPH BERNSTEIN

Let X be a smooth algebraic variety and $Z \subset X$ a (Zariski) closed subvariety. Let $i: Z \hookrightarrow X$ denote the embedding.
(1) Let X be a smooth affine variety, and $Z \subset X$ be a closed smooth subvariety. As in the lecture, define a functor $i^{\prime}: \mathcal{M}^{r}\left(\mathcal{D}_{X}\right) \rightarrow \mathcal{M}^{r}\left(\mathcal{D}_{Z}\right)$ by

$$
i^{\prime}(\mathcal{F}):=\operatorname{Hom}_{\mathcal{D}_{X}}\left(\mathcal{D}_{Z \rightarrow X}, \mathcal{F}\right)
$$

Show that
(i) For affine $X, i^{\prime}(M)$ is isomorphic as an \mathcal{O}_{Z}-module to the subspace $\operatorname{Ann}_{M} I(Z)$ of M consisting of elements annihilated by the ideal $I(Z)$.
(ii) $i^{\prime} i_{0} N \simeq N$ for any $N \in \mathcal{M}\left(\mathcal{D}_{Z}\right)$.
(iii) i_{0} is left adjoint to i^{\prime}.
(2) (P) Let V be a vector space, and M be a \mathcal{D}_{V}-module supported at $\{0\}$. Let $E:=\sum x_{i} \partial_{i} \in \mathcal{D}(V)$ be the Euler operator. Show that all the eigenvalues of E on M are negative.
$U R L$: http://www.wisdom.weizmann.ac.il/~dimagur/DmodI_3.html

