EXERCISE 9 IN D-MODULES I: HOMOTOPY CATEGORIES

SHACHAR CARMELI

For an abelian category \mathcal{C} , let $K(\mathcal{C})$ denote the homotopy category of \mathcal{C} and $D(\mathcal{C})$ the derived category. If $f : A \to B$ we denote by $\operatorname{Cone}(f)$ the mapping cone, and by $\pi_f : B \to \operatorname{Cone}(f)$ the inclusion to the second factor.

- (1) Prove that $\operatorname{Cone}(\pi_f) \cong A[1]$.
- (2) Prove that $H^i(A) \xrightarrow{f_*} H^i(B) \xrightarrow{(\pi_f)_*} H^i(\operatorname{Cone}(f))$ is exact. Deduce that a distinguished triangle induces a long exact sequence on cohomologies.
- (3) (P) Prove that $f : A \to B$ is a homotopy equivalence if and only if Cone(f) is contractible (i.e. isomorphic to 0 in $K(\mathcal{C})$).
- (4) Prove that $f: A \to B$ is a quasiisomorphism if and only if Cone(f) is acyclic.
- (5) (*) Prove that every distinguished triangle in $K(\mathcal{C})$ is isomorphic to a short exact sequence. Deduce once again that a distinguished triangle induces a long exact sequence on cohomologies. Is every short exact sequence a distinguished triangle in $K(\mathcal{C})$? Prove that in $D(\mathcal{C})$, every short exact sequence is a distinguished triangle.
- (6) (P) Prove that for $g: C \to B$ and $f: A \to B$, $g = f \circ g'$ if and only if $\pi_f \circ g = 0$. State and prove a dual statement.
- (7) (P) Define the complex Hom(A, B), and prove that $H^0(Hom(A, B)) = Hom_{K(\mathcal{C})}(A, B)$. Prove that Hom(X, C(f)) = C(Hom(X, f)). Use this to solve the last exercise much faster!

URL: http://www.wisdom.weizmann.ac.il/~dimagur/Dmod1.html

Date: January 11, 2021.