EXERCISE 3 IN D-MODULES II

JOSEPH BERNSTEIN AND DMITRY GOUREVITCH

(1) Let X be an irreducible algebraic variety of dimension n and M a coherent O_X -module without torsion.

Definition 1. We will call a semi-small extension of M a coherent O_X -module N without torsion that contains M, such that the support supp(N/M) has dimension $\leq n - 1$. We call this module a small extension if supp(N/M) has dimension $\leq n - 2$.

- (i) Show that semi-small extensions $N \supset M$ are naturally realized as coherent O_X -submodules of the module $M_K = K \otimes_{O_X} M$, where K denotes the field of rational functions. In particular they form a partially ordered set.
- (ii) Let us set $M^* := Hom(M, O_X)$. Show that this is a coherent O_X -module. Construct a canonical morphism $i: M \to M^{**}$ and show that M does not have torsion if and only if $i: M \to M^{**}$ is an embedding.
- (2) (P) Let X be isomorphic to the affine space \mathbb{A}^n .
 - (i) Let M be a free O_X -module. Show that M has no proper small extensions. **Hint.** Reduce to the case when $X = \mathbb{A}^n$ and $S = supp(N/M) \subset \mathbb{A}^{n-2}$
 - (ii) Show that for a semi-small extension $N \supset M$ the natural morphism $N^* \to M^*$ is injective. Show that for a small extension this morphism is an isomorphism.
- (3) (P) Let X be an irreducible algebraic variety. Show that any coherent O_X -module M without torsion has a maximal small extension, i.e. there exists a small extension $N \supset M$ that contains all other small extensions.

Hint. Reduce to the case when $X \approx \mathbb{A}^n$.

Show that in this case the coherent O_X -module M^{**} contains all small extensions of M, and itself is a small extension.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/DmodII.html

Date: May 10, 2021.