EXERCISE 4 IN D-MODULES II

JOSEPH BERNSTEIN AND DMITRY GOUREVITCH

Local analytic connections.

Consider an open unit disc $D \subset \mathbb{C}$ and denote by D^* the punctured disc $D^* = D \setminus 0$. Let E be a holomorphic vector bundle on D. We can trivialize it by choosing basis of sections.

Let ∇ be a holomorphic connection on E restricted to D^* . We say that ∇ is meromorphic if for any holomorphic section u of E the section $\nabla(u)$ is a meromorphic section (it can have a pole only at 0). We say that ∇ is regular at 0 if all sections $\nabla(u)$ are holomorphic at 0. We say that ∇ is Fuchsian if all sections $\nabla(u)$ have poles of order ≤ 1 .

If we trivialize the vector bundle E we can write the connection ∇ as $\nabla(u) = \partial(u) + B(u)$, where B is a meromorphic matrix valued function B = B(t) (here t is the parameter on D and $\partial = \partial_t$).

The connection ∇ is regular if the function B(t) is regular at 0, and is Fuchsian if the function B(t) has pole of order ≤ 1 at 0.

(1) (i) Suppose the connection ∇ is Fuchsian. Define the expansion matrix A of $\nabla A := tb(t)|_{t=0}$. Eigenvalues λ_i of this matrix are called expansion coefficients of the connection ∇ .

(ii) Show that up to conjugation the expansion matrix A (and hence expansion coefficients) do not depend on trivialization of the bundle E.

- (2) Define the monodromy operator $\mu = \mu_{\nabla}$ of the connection ∇ on D^* . Show that the matrix μ is conjugate to the matrix $\exp(2\pi i A)$.
- (3) (P) Let E, E' be holomorphic bundles with Fuchsian connections. Show that then the bundles $E \otimes E', E^*, Hom(E, E')$ also have natural connections and these connections are Fuchsian. Compute the expansion coefficients of these connections.
- (4) (P) Let E be a vector bundle with a Fuchsian connection, u a flat holomorphic section of this bundle on D^* (such sections do not always exist).
 - (i) Show that the section u extends to a meromorphic section on the whole disc D.
 - (ii) Suppose that every expansion coefficient λ of the connection has $Re(\lambda) \geq -1$. Show that the section u extends to a holomorphic section on the whole disc D.
- (5) (P) Let E, E' be two vector bundles on D with Fuchsian connections on D^* .

(i) Show that a morphism : $E \to E'$ of vector bundles compatible with connections is the same as flat section u of the vector bundle $Hom_O(E, E')$

(ii) Suppose we know that all expansion coefficients of E and E' have real parts $0 \le \lambda < 1$. Show that any isomorphism of bundles E, E' on the punctured disc D^* compatible with connections holomorphically extends to the whole disc D.

(6) (P) Suppose we have a holomorphic vector bundle with connection E^0 on the punctured disc D^* .

(i) Show that there exists a vector bundle E with Fuchsian connection on D and an isomorphism α of the restriction of E to D^* with E^0 .

Date: May 24, 2021.

(ii) Show that if we assume that all expansion coefficients of the bundle E are normalized (i.e. have real parts ≥ 0 and < 1), then this pair (E, α) is defined uniquely up to a unique isomorphism.

(7) (*) Consider an analytic variety $X = D^n$. Consider a punctured variety X^* obtained from X by removing k coordinate hyperplanes. Let E^0 be a holomorphic vector bundle on X^* with flat connection. Formulate and prove statements analogous to problem 6 in this case.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/DmodII.html