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1. D-MODULES ON AFFINE SPACES

Notation 1.1. D,, := (xq,...,T,,01,...,0,) is the algebra of polynomial differential
operators.

Definition 1.2. Let M be a finitely generated D,-module. Then a solution of M is a
homomorphism from M to some D,,-module of functions (say, C* (R") or C~>° (R")).
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Example 1.3. To any linear system of PDEs {L,;f =0,..., Lyf = 0}, we associate
the D,-module D,,/ (Ly, ..., Lg).

Fix an algebraically closed field K of characteristic 0.

Definition 1.4. D, is the subalgebra of Endg K [z, ..., z,] generated by derivations
and multiplication operators.

Exercise 1.5.
Dn = <£L’1, ey Ly 81, Ce ,8n> / <[IL’Z, {L‘j] = O, [81, aj] = O, [8¢,1’j] = 51J> .
Exercise 1.6. The center is: Z (D,,) = K.

Notation 1.7. M is the category of left D,-modules, M is that of right modules, M/
— finitely generated left modules.

1.1. Dimension.

Lemma 1.8. For any M € M (D,,) either M =0 or dimg M = co.

Proof. 0 = tr[zy,0,] = tr1 = dimg M. O
This motivates other ways of measuring the “size” of a module.

Definition 1.9. A filtered algebra is an algebra A equipped with an increasing sequence
of subspaces [A,i > 0, F'A C F'HA, |, F'A = A, such that 1 € F°A and F'A -
FIA C F"A. A filtration is called good if F?A is f.g. over F'A, and F*""'A =
F1A . F'A for i > 0 (i large enough).

Example 1.10. A =K|yy,...,yn], F'A = {deg < i}.
Example 1.11. Bernstein filtration: F*D,, := span {:1:0‘85 ‘ la| + 18] < z}

Definition 1.12. For a filtered algebra (F*A) the associated graded algebra is Grp A :=
@, (FIA/F1A), F71A = 0.

Example 1.13. GrD,, = K|z, ..., 20, Y1, -, Yn)-
Let A be a good filtered algebra.

Definition 1.14. A filtered A-module M is a module equipped with an increasing
sequence of subspaces F'M, such that F*A-FIM C FIM, \J;, F*M = M. A filtration
is called good if F*M are finitely generated over F'A, and F*H'M = F'A . F'M for
1> 0.

Exercise 1.15. Any two good filtrations are comparable, i.e. Fi=™M C ®'M C
Fitm AT

Proof. Suppose that Vi : FNTIM = (FLA)' FNM. Since FNM is finitely generated
over F°A, and U; ®'M = M, one can assume that FNM C @V M. WLOG, &V M =
(F'A)' ®N'M. By the same argument, ®N'M c FN'M. Now FN¥'M c &N T M C
FN"+)M for all i > 0. O

Remark 1.16. A filtered algebra is good iff it’s good as a module over itself.

We define Grp M for a filtered module in a similar way as for algebras. We will
sometimes write A® for FA and Mfor F*M if the filtration is understood.
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Exercise 1.17. Assume that A’ is a good filtered algebra. Then FM is good iff
Grg M is finitely generated over Grg A.

Proof. Suppose that M? := F*M is good, and M**t = A'M? starting from some N.
Take generators m; of MY over A°. Then they their symbols generate Gr M over
Gr A. Conversely, suppose that Gr M is finitely generated over Gr A by elements m;,
degm; = d;. Then the filtras M are obtained by iterated extensions from M7 /M7=,
which are finitely generated over A%, so M* are also finitely generated over A”. On the
other hand,

AlMi/Mi ~ (Al/AO) (Mi/MiA)
and if A is good then

MM =Y (Az‘—j+1/Az‘—j) (Mj/Mj—l) -

(Al/AO) Z (Aifj/Aifjfl) (Mj/qu) _ (Al/AO) (Mi/Mzel)

where j runs through the degrees of the generators of Gr M over Gr A and ¢ is assumed
to be larger than the maximum of these degrees. 0

Exercise 1.18. Fix a good filtered algebra. M admits a good filtration iff it’s finitely
generated.

Proof. Suppose first that M admits a good filtration. Then Mt = A'M? for i > N
and M™"is finitely generated over A°. Thus the generators of M~over A° generate M.
Conversely, assume M is generated by a finite set x;¥_; and consider the filtration
M? .= Az + -+ + A'my,. Since A’ is finitely generated over A%, M' is also finitely
generated over A%, and M = A'M' as long as A"t = AlA’ Since any element
m € M is representable as Y% | a;z;, we have m € M", where n is big enough so that
a; € A" Therefore M = |J; M. O

Definition 1.19. For a filtered module F*M and a short exact sequence 0 — L —
M — N — 0, define induced filtrations on L and M by F'L := F*M N L and F'N :=
F'M/F'L. A map f: A— B of filtered modules is called strict if f (A") = f (A)NB".

Exercise 1.20. Let L —+ M — N be an exact sequence of filtered modules and strict
maps between them. Then the corresponding sequence Gr L — Gr M — Gr N is also
exact.

Exercise 1.21. For a good filtered module F?M and a short exact sequence 0 — L —
M — N — 0, the induced filtration on N is good, and if Gr A is Noetherian then so is
the induced filtration on L.

Proof. Note that all maps in 0 - L - M — N — 0 are strict. Thus Gr N is a factor
of Gr M, so it’s finitely generated over Gr A; and Gr L is a submodule of Gr M, so if
Gr A is Noetherian then Gr L is finitely generated over it. OJ

Remark 1.22. The category of filtered modules is not Abelian — say, the shift map
doesn’t have a cokernel.

Theorem 1.23. Suppose that A is good and Grg A is Noetherian. Then so is A.
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Proof. Let M be a finitely generated A-module, and L. C M. Pick a good filtration
F. Then Grp M is finitely generated, Grgp A is Noetherian, hence Grg L is finitely
generated, so F'L is good, so L is finitely generated over A. O

Corollary 1.24. D, is Noetherian. The universal enveloping algebra of any finite
dimensional Lie algebra is Noetherian.

Notation 1.25. If f,g: N = Z wesay f~qgif f=gfori>0. Af(i):=f(i+1)—
/().

Fact 1.26. Integer-valued polynomials have the form f (i) = S9_, cx (;), cy € 72.
Theorem 1.27 (Hilbert). Let R = @ R’ be a graded finitely generated K [zy, ..., z,]-

module. Then b(i) := dimg R’ is eventually polynomial of degree < n, called the
functional dimension of R.

Proof. Define (R[1])" := R™*!,
0 — kerx, — R R[1] — cokerz,, — 0

This is a morphism of graded modules, so kerz, and cokerz, are graded modules.
Thus: ' '

dimg (ker z,,)" — dimg R’ + dimg R — dimg (coker z,,)" = 0
On the other hand, x,, acts by 0 on both ker and coker, so by induction on n we know
that A dimg R is eventually polynomial, therefore so is dimg R'. 0

Corollary 1.28. Let F'M be a good filtered D,-module. Then by (i) := dim F*M is
eventually polynomial of degree < 2n.

Proof. byr = bgr ar, and note that GrD,, ~ K[z, ..., Zn, Y1, .., Yn]. O

Remark 1.29. Now since for any two filtrations F©™*M C ®' M C F™* M, the degree
and leading coefficient are invariant (for a fixed filtration of the algebra).

Definition 1.30. The degree of by (i) is called the dimension of M and denoted d(M),
and the leading coefficient of d(M)!by (i) is called the (Bernstein) degree of M and
denoted e (M).

Theorem 1.31 (Bernstein inequality). Let M be a finitely generated D,,-module. If
M #0 thenn < d(M) < 2n.

Remark 1.32. Note that d(M) # 0 is equivalent to dimg M = oo, so Bernstein’s
inequality can be viewed as a generalization of that.

1.2. Proof of Bernstein’s inequality. Define N° := kerx, C M, N* := 9‘N°.
They are viewed as D,,_i-modules.

Lemma 1.33. 9" : N° ~ N* and N* are linearly independent.
Proof. Let m € N° my := °m. Then since [xn, aﬂ = —(0'71, we have

Ty = —fmyp_q

Thus x, “inverts” 8, on N* (like in reps of sly). Thus 9 : N ~ N*.
N* are linearly independent because they are different eigenspaces of x,,0,,. U
>

Corollary 1.34. Ifkerx, # 0 and Bernstein’s inequality holds for D,y then d (M)
n.
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We use notation D! := FD,,.

Proof. Let m # 0, m € kerx,,. Then D¥m > @_, ' D" m = ®'_, D! _,0im. Thus
dim D*m > ¢dim DY_,m > const (" . O

Corollary 1.35. If coker x,, # 0 and Bernstein’s inequality holds for D,,_y then d (M) >
n.

Proof. By the previous corollary we can assume ker z,, = 0. Now, coker z,, = M [z, M
is a D,,_;-module. Assume it’s finitely generated. Then dim F'M — dim z, F*"*M >
m—1

ci" . If it’s not finitely generated then take a finitely generated submodule. Thus
Adim F'M > ¢i"™*, so d (M) > n. O

Exercise 1.36 (Amitsur-Kaplansky lemma). Let L be an uncountable algebraically
closed field. Let V be an LL-vector space of countable dimension. Then any linear
operator on T : V' — V has nonempty spectrum, i.e. 17" — Aisnot invertible for some
Ael.

Proof. Assume by way of contradiction that the spectrum of T is empty. Let v € V be
a non-zero vector. Then (7" — )\)71 v, A € L is an uncountable set. Thus it is linearly
dependant. Picking a dependence and bringing it to a common denominator we obtain
p(T)v = 0, for some polynomial p. On the other hand, p is a product of linear factors,
thus p(7') is invertible and has no kernel. Contradiction. O

Proof of Bernstein inequality. Extend the field so that it becomes uncountable. By the
previous lemma, x,, — A is not invertible for some A\. Now apply the automorphism
Tp — T, — A. Now the theorem follows by induction from the previous corollaries. [

2. HoLONOMIC MODULES, AND AN APPLICATION.
2.1. Another proof of Bernstein inequality.
Lemma 2.1. (Ezc). The center of D, is K.

Lemma 2.2. Let F*M be a good filtration on a D,,-module M. Then the action defines
an embedding of D!, into Homy(F"M, F* M).

Proof. The map is defined by definition of filtration. Let us prove that it is an embed-
ding by induction on 7. For ¢ = 0 this is obvious. For a bigger i, let d # 0 lie in the
kernel. Since d is not scalar and thus not central, there exists [ such that [d,z;] # 0
or [d, 0] # 0. Assume WLOG [d, 7] # 0. Then [d,z;] € Di~'and by the induction
hypothesis [d, z1]v # 0 for some v € FI='M. However, [d,z1]v = dziv — x1dv = 0,
since v, z1v € F*M. We arrived at a contradiction and thus d = 0. O

Joseph’s Proof of Bernstein inequality. Suppose by way of contradiction that d(M) <
n — 1. Then dim Homy(F'M,F*M) < ¢i"'(2i)""' = ¢4**7>. On the other hand
dim D;, > ¢”i*". This contradicts the previous lemma. O

In the nest section we will state without proof a deep geometric theorem that implies
the Bernstein inequality.

Definition 2.3. A finitely generated D,-module M is called holonomic if d(M) = n.
Exercise 2.4. If M is holonomic then it has length at most e(M).
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Corollary 2.5. (Ezc). Let M be a D,-module, and let F*M be a (not necessary good,)
filtration on M. Suppose that dim F'M < e(fl) for somee. Then it is finitely-generated.
Moreover, it is holonomic and of length at most e.

We are now ready to give the first application to the theory of distributions. Let P
be a polynomial in n real variables. Let A € Cwith ReA > —1 and consider the locally
integrable function | P|*.

Theorem 2.6. (Bernstein, Gelfand, Gelfand, Atiya, ...) Consider |P|* as a family
of generalized functions. Then this family has meromorphic continuation to the entire
complex plane with poles in a finite number of arithmetic progressions.

This theorem follows from an algebraic statement saying that there exists a differen-
tial operator d with polynomial coefficients (that depend also on \), and a polynomial
b in Asuch that d|P|* = b|P|*!. Let us formulate this algebraic statement more
precisely, over any field, and prove it.

Notation 2.7. Fix a polynomial P € k[xy,...,z,]. Let K := k(\) be the field of rational
functions. Consider the D, (K)-module Mp := M, @n K, where M, := span@P !,
where @ € klxy ...,z, A\ and | € Zs, with the relations PP*! = P> and the
action of D, [\] given by

0i(QP) = 0,(Q)P + Q(A = 1)o,(P) P!
Lemma 2.8. The module Mpis finitely generated, and, moreover, holonomic.
Proof. Define a filtration on Mp by
F'Mp := QP 's.t.degQ < (deg P + 1)i.

It satisfies dim F*Mp < ci™. It’s not clear whether this is a good filtration, but by the
Corollary above we still get that Mpis finitely generated and holonomic. O

Corollary 2.9. There exist d € k[xy,...,2,,01 ...,0, N and b € k[N s.t. dP* =
bP 1L,
Proof. Consider the increasing chain of submodules
D, (K)P* C D, (K)P* ' C....
This chain has to stabilize. Thus dP*~* = P*~*~1 for some d € D, (K). Applying the

automorphism A — \ + lwe get that dP* = P> for some d € D, (K). Now, we can
decompose d = %. O

Finally, let us show that holonomic modules are cyclic.

Theorem 2.10. Let R be a simple Noetherian non-Artinian ring, and M a finitely
generated Artinian left R-module. Then M is cyclic.

Proof. By induction on length, we assume that M = R (u,v) with Rv simple. Since R
is not Artinian, there is d, such that du = 0. On the other hand, since R is simple,
R = RdR, so there is b, such that dbv # 0. Now M = R (u+ bv). d(u+ bv) = dbv C
Ruv, so since Rv is simple, (u + bv) D Rv. Thus bv € (u + bv), so u € (u + bv). O

Corollary 2.11. Holonomic D,,-modules are cyclic.
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3. ASSOCIATED VARIETIES AND SINGULAR SUPPORT
Let A be a finitely-generated commutative K-algebra without nilpotents.

Definition 3.1. Let M be an A-module. Denote by Ann M the annihilator ideal
AnnM := {a € AlaM = 0} and define the support SuppM to be the zeros of AnnM
in the maximal spectrum Specm A.

If M is finitely generated then SuppM is the support of the coherent sheaf on Spec A
that corresponds to M. This follows from Nakayama’s lemma. If A = K[zq,...,z,]
then Specm A = A",

The algebra D,, is not commutative, and in order to associate a variety to a finitely-
generated D,, module we will use the associated graded algebra K[xy, ..., 2., &1, ..., &)

Definition 3.2. Two modules M, N over the same algebra are called Jordan-Holder
equivalent if there exist two increasing chains of the same finite length of submodules
O=MycCcMyC---CM,,=Mand0= Ny C N, C---C N,, =N and a permutation
o € Symy, s.t. M;/M;_1 ~ Ny;)/Ny@iy—1 for any i.

Lemma 3.3. Let F,® be two good filtrations on a D,-module M. Then GrgM and
GreM are Jordan-Holder equivalent.

Proof. Case 1. F,® are neighbors, i.e. FIM C ®'M C F"™'M C ®*1M . In this case
we have a well-defined map ¢ : GrpM — GreM, and Ker¢p ~ CoKer¢. Thus GrpM
and GreM are Jordan-Holder equivalent.

In the general case, one can construct a sequence of neighboring filtrations F*M +
O M, which starts with F' and ends with a shift of ®. O

Lemma 3.4. Let 0 - L — M — N — 0 be a short exact sequence of A-modules.
Then SuppM = Supp/N U SupplL.

Proof. Clearly Ann M C Ann NN Ann L. Now, if a € Ann NN Ann L then for any m €
M we have am € L and thus a®?m = 0. This shows that Ann NN Ann L C Rad Ann M.
So Ann M C Ann N NAnn L C Rad Ann M and thus their zero sets coincide. OJ

Corollary 3.5. If two A-modules are Jordan-Holder equivalent then they have the same
support.

Definition 3.6. The associated variety AV (M) of a finitely-generated D,-module M
is the support of GrrpM for some good filtration F'.

By definition, AV (M) is a closed subset of the affine space A**. By Theorems 3.3
and 3.5 it does not depend on the choice of a good filtration.

Lemma 3.7 (Bernstein). Let M be a D,,-module generated by a finite subset S C M.
Let I € D,, be the annihilator of S, and let J C A :=K[zy,...,xpn, &1, ..., &) e the ideal
generated by the symbols of the elements of 1. Show that the associated variety AV (M)
is the zero set of J.

Proof. We first show that J vanishes on AV(M). Let S = {my,...,ms}. Define a
good filtration on M by F;(M) = Bymy +...B;m, where B; C D,, is the i—th Bernstein
filtration. If d € I N B; satisfies dm; = 0 for any m; € S, then for any ¢ € B; we have

dcmj = [da C]ml + Cdml = [d, C]ml S Fi+j71M-
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Thus, o(d)m; = 0 where o : D, — A is the symbol map, and m, is the image of
my in grpM. Since {my};_, generate Grp M, we get that o(d) C Ann(Grp(M). Thus
J C Ann(Grp(M) and thus J vanishes on AV (M).

Let us now show by induction on s that Ann(Grp(M) C Rad(J). It is enough to
show that for any homogeneous polynomial a € Ann(Grg(M), there exist a natural
number ¢ and an operator d € I such that o(d) = a'.

For s = 1 note that by definition of Grg M, there exist operators ¢, € D, such
that ¢ € Bieg(a), ¢ € Baeg(a)-1, 0(c) = a, and cm; = ¢'my. Then d := ¢ — ¢ € I and
o(d) = a.

For the induction step, we will repeatedly use the for any submodule L C M, we
have AV(L) C AV(M). This is so since Grpr L C Grp(M), where F’ is the induced
filtration on L. Note also that a vanishes on AV (M).

Let Sy := {mq,...,ms 1}, let Iy C D, denote its annihilator, and L; denote the
submodule of M generated by S;. Since AV (L) C AV (M), a vanishes on AV (L)
and thus the induction hypothesis implies that there exist d; € I; and a power t; such
that o(dy) = a'. Let Sy := {dyms} and Ly be the submodule of M generated by it.
Since AV(Ly) C AV(M), a vanishes on AV(Ls) and thus the base of the induction
implies that there exist dy € D,, and a power ¢, such that dadyms = 0 and o(dy) = a'.
Now take d := dody and t := t1 + t». O

Now we would like to argue that the dimension of AV (M) equals d(M). This follows
from Hilbert’s definition of dimension.

Definition 3.8. Let X C A" be an affine algebraic variety and let I C A := K|z, ..., ;]
be the ideal of functions vanishing on I. The standard filtration on A induces a good
filtration F* on A/I. By Theorem 1.27, the function f(i) := dim F*(A/I) is eventually
polynomial. Define dim X to be the degree of this polynomial.

Exercise 3.9. For any M € M/(D,,), dim AV (M) = d(M).

3.1. Digression on several definitions of dimension of algebraic varieties. Let
us first define dimension by properties and then discuss several equivalent definitions.

Definition 3.10. A dimension is a correspondence of a non-negative integer to every
algebraic variety such that

(i) dim(A™) =n

(ii) For a (locally closed) subvariety Y C X, dim(X) = max(dim Y, dim(X \ Y)).
(iii) For a finite epimorphism ¢ : X — Y, dim X = dim Y.

The uniqueness of dimension follows from the Noether normalization lemma.

Lemma 3.11. For any affine algebraic variety X, there exists a finite epimorphism
w: X — A" for some n.

A finite morphism is a morphism ¢ : X — Y such that for any open affine U C Y,
the preimage ¢ '(U) is affine and the algebra O(¢!(U)) of regular functions on it is
finitely-generated as a module over O(U). Finite morphisms are proper and have finite
fibers.

There are several constructions of the dimension function. One of them is the Krull
dimension: the maximal length of a strictly increasing chain of closed irreducible non-
empty subsets, minus one. Another is the Hilbert dimension: define the dimension of
a variety as the maximal among the dimension of open affine subvarieties, and for an
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affine subvariety use Definition 3.8. Another way is to define the dimension of an affine
variety to be the transcendence degree of its field of rational functions (over K).

3.2. The geometric filtration. There is another very natural filtration on the algebra
D, - filtration by the degree of the differential operator. In other words, degx; =
0, deg 9; = 1. This filtration is called the geometric filtration.

Note that the associated graded algebra by this filtration is again isomorphic to
Klzy,..., 20, &1, ..., &), but with a different grading. Note also that this is a good al-
gebra filtration, and all the lemmas we proved about the arithmetic filtration hold for
the geometric filtration, with one exception: the geometric filtras are infinite dimen-
sional. Thus we cannot define a "geometric dimension”, but we can define a "geometric
associated variety”. It is called the singular support, or the characteristic variety.

Definition 3.12. Let M € M/(D,) and let F be a filtration on M which is good
with respect to the geometric filtration on D,,. Define the singular support of M to be
SingSupp(M) := Supp(Grg M).

Proposition 3.13. d(M) = dim SingSupp(M).
We will now sketch an elementary proof, and give a deeper proof in the next section.

Sketch of proof. It is enough to prove the proposition for a cyclic module M = D, /I.
Consider a sequence of filtrations F} on D,, given by deg,(x;) = 1, deg;(9;) = . Then
for any d € I and for [ big enough, the symbol of d with respect to F; is the highest
homogeneous summand of the symbol of d with respect to the Bernstein filtration.
Thus it is enough to show that dim Supp Grp, M = dim Supp Grg,, M for every I,
where F!M = F/(D,)/(I N F}/(D,). By Hilbert’s definition of dimension this amounts
to computing that the eventual-polynomial functions dim F!M and F/™ M have the
same degrees.

Warning: the filtrations F; on D,, are not good by our definition. However, they are
still “almost” good, namely the Rees algebra @,c;t'F;D, is finitely generated. It is
possible to work with such filtrations in a similar way to good filtrations. 0

3.3. Involutivity of the associated variety. The affine space A?" has a natural
symplectic form. On the tangent space at zero it is given by

w(wiz;) = wlysy;) = 0,w(ziy;) = dij-
Extending this formula by Leibnitz rule we get the Poisson brackets on the whole alge-
bra k[z1,...,Zn, Y1, .,Ys]. In fact, these Poisson brackets can be obtained from D,,:
for any two homogeneous polynomials a,b € k[z1,...,x,,&1,. .., & choose differential

operators ¢, d € D,, with symbols a,b. Then, a,b is the symbol of [a,b]. Another way
to obtain this form is to identify A%" with the cotangent bundle T*A".

Definition 3.14. An algebraic subvariety X of A%" is called coisotropic or involutive
or integrable if the ideal of polynomials that vanish on X is stable under the Poisson
brackets.

Remark 3.15. This is equivalent to saying that the tangent space to X at every smooth
point includes its orthogonal complement inside the tangent space to A?® w.r. to the
symplectic form.

Theorem 3.16 (Gabber, Kashiwara-Kawai-Sato). For any M € M/(D,,), both AV (M)
and SingSuppM are coisotropic.
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Note that any coisotrpoic subvariety has dimension at least n, and thus this theorem
implies the Bernstein inequality.

The proof of this theorem is outside the scope of our course. It is not difficult in
fact to show that AnnGr(M) is closed under the Poisson brackets. The difficulty is
to show that so does its radical. We will not use the theorem and the corollary, this
was just to give a geometric intuition. This theorem has applications to the theory of
invariant distributions, in addition to the ones that Bernstein’s inequality does.

Since SingSuppM is (almost by definition) invariant under homotheties in &, . .., &,,
Theorem 3.16 implies the following corollary.

Corollary 3.17. For any holonomic M € M/ (D,), SingSuppM is a finite union of
conormal bundles to closed subvarieties of A?".

3.4. Irreducible non-holonomic D,-modules. We will now show that there are
many irreducible non-holonomic D,,-modules.

Definition 3.18. We call a coisotropic homogeneous closed subvariety of A?® minimal
if it’s minimal among such.

Theorem 3.19. Let d € D,,, such that o (d) is irreducible, and Z (o (d)) is coisotropic
and minimal. Then the left ideal D,d is mazimal, so that D, /D,d is irreducible of
dimension 2n — 1 over D,,.

Proof.
0—D,d— D, —D,/D,d—0

0— GrD,d— Klxy,...,x9,] = Gr(D,/D,d) — 0
Ann Gr (D,,/D,d) ~Klxy,...,x,] 0 (d)
Assume that D, d C J for some J # D,,. Then
0— J/D,d — D,/D,d — D,/J =0
Z(a(J) ¢ Z (o (d))

because otherwise rad (o (J)) = rad (o (d)) = (0 (d)), in which case J = (d). But then
by minimality of Z (o (d)), we should have Z (o (J)) = @, so that J = D,,. O

Theorem 3.20 (Bernstein-Luntz). The property {Z (f) is minimal} holds generically.

4. OPERATIONS ON D-MODULES

1. Fourier transform maps Schwartz functions into Schwartz measures and vice versa.
It also maps tempered generalized functions to tempered distributions. It also maps
product into convolution and lT]Tf = (i/2m)0; 8/;76 = 2ixz; f.

The corresponding operation on D,-modules is just switching the actions of x; and
0;. Let us give an application to PDE. Let d be a differential operator on R" with
constant real coefficients, and h be a smooth function. We are looking for a solution
of the equation df = h. First of all, it is enough to find a solution for d§¢ = ¢y in
distributions, because then the convolution £ x f will solve the original equation. Now,
applying Fourier transform we get the equation pg = 1, where p is the polynomial
obtained from d by replacing all 9; by 27miz;, and g is the unknown generalized function.
Then it is clear for us that g should be p~!. This is not well-defined a-priory, since
p might have zeros. However, (p*)*, as we have shown, is defined as a meromorphic
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distribution-valued function in A. It might have a pole at A = —1/2, but then we take
the principal part (the lowest non-zero coefficient in the Laurent expansion).

2. One can multiply a distribution by a smooth function. Formally, the result is
given by f&(h) := &(fh). The corresponding operation on D,-modules is tensor product
over O, := O(A") = k[z1,...,z,). Note that a product of a smooth function and a
generalized function (= functional on smooth measures) is a generalized function, a
product of a function and a distribution is a distribution, and a product of a smooth
measure and a distribution is not defined. Similarly, a product of two left D,,-modules
is a left D,,-module, a product of a left D,,-module by a right D,-module is a right D,,-
module, and a product of right D,-modules is not defined. The D,-module structure
of a product of two (left) D,-modules is defined via Leibnitz rule: 0;(m ® n) = oym ®
n+m® d;n. One can always turn a left D,,-module to a right one using tensor product
with the (right) D,-module of (algebraic) top differential forms.

3. For a polynomial map of affine spacest : X — Y | we can pullback smooth
functions from Y to X. If the map is submersive then we can even pull generalized
functions. Let us define pullback of D,-modules as well. Let M be an Oy-module.
As an Ox-module we define 7°(M) := Ox ®o,, M. The action of the vector fields
Ty is defined using the natural morphism 7x — Ox ®@, Ty, which on every fiber is
defined using dr. In coordinates: £(f @ m) = &(f) @ m+ X, f&(n*(y;)) ® Oym. By the
well-known properties of pullback of Ox-modules we get that (77)° = 7°7°, and that
pullback is strongly right-exact, i.e. right-exact and commutes with arbitrary direct
sums.

Exercise 4.1. Let A B be rings. Let F': M(A) — M(B) be a strongly right-exact
functor. Then F(A) has a natural structure of an A — B-bimodule and F' is isomorphic
to the functor M — F(A) ®4 M.

Notation 4.2. Dx_y := 7°(Dy).

Remark 4.3. The intuition here is that Dx_,y is the (Dy, Dy )-bimodule of Ox-valued
differential operators on Oy . For a general commutative algebra A and an A-module M
an < n-th degree differential operator on A with values in M is a K-linear operator D :
A — M, such that [ay, [ag, ..., [ans1, D]]] = 0 for all ay,...,a,+1 € A. Apparently, in
nice cases Dx_,y, defined this way, coincides as an (Ox, Dy )-bimodule with O x®e, Dy .
From here it follows that for any Dy-module M we have Dx_,y ®p, M ~ Ox ®o,
Dy ®p, M ~ Ox ®0, M.

Remark 4.4. Functoriality amounts to the natural map Dx_,y ®p, Dy_z — Dx_z
being an isomorphism. Since Dx_y ~ Ox ®o, Dy , this is automatic.

Theorem 4.5 (Bernstein). The pullback of a holonomic Dy-module is a holonomic
D -module.

We divide the proof into several lemmas.

Lemma 4.6. Any map w7 : X — Y, where Y ~ A", can be decomposed into a standard
embedding, an isomorphism, and a standard projection.

Proof. Take the maps X - X XY - X xY =Y,z (2,0), (z,y) = (z,y + 7 (x)),
(z,y) = y. O

Lemma 4.7. Let X, Y be affine spaces. The pullback under the standard projection
p: T xY =Y of a holonomic module is holonomic.



12 DMITRY GOUREVITCH

Proof. In this case the pullback is the exterior product Op ®; M. It is easy to see that
exterior product of holonomic modules is holonomic. O

Lemma 4.8. The pullback under an isomorphism v : X — Y of a holonomic Dy -
module is a holonomic Dx-module.

Proof. In this case we can consider the pullback as the same space, just a different
action. If F*M is a good filtration for the original action and r := deg 7, then ®*M :=
FT Mis a filtration for the new action, and it satisfies dim®'M < (crd)id. 0J

Lemma 4.9. The pullback under the standard embedding i - X — X x A of a holo-
nomic Dxyp1-module is a holonomic Dx-module.

This lemma is the difficult one. Indeed, in this case the pullback of a finitely-
generated module might be not finitely-generated. Indeed, for X = pt we get i°(Dx)
To prove it, we will need another important lemma, that we in fact proved in the first
lecture.

Lemma 4.10 (Kashiwara). Let N be a Dxyp1-module. Denote by t the coordinate of
Al. Assume that t acts locally nilpotently on N and let R := Kert, R; := 0!R. Then
N = @, R; and t0; acts on R;by the scalar —(i + 1).

Proof of Lemma 4.9. Let N be a holonomic D x s1-module. Denote by ¢ the coordinate
of A'. Then M :=i°(N) = N/tN. Denote by N°the submodule consisting of elements
annihilated by powers of t. Then, by Kashiwara’s lemma, we have t Ny = Ny. Thus
i°(N) = 1°(N"), where N’ = N/N,. Now, N’ is also holonomic and ¢ has no kernel on
N’. Choose a good filtration F?N’ and define the corresponding good filtration F*M
by projection. Then dim F'M < dim F'N’ —dim tF* !N’ = dim F'N’ — dim F*" 1N’ <

CidimX ) 0

Theorem 4.5 follows now from Lemmas 4.6,4.7,4.8, and 4.9.
Corollary 4.11. If M, N € Hol (Dx) then M ®o, N € Hol (Dx).
Proof. M ®@x N =A% (M ®x N), A: X — X x X is the diagonal. O

4. For a polynomial map of affine spaces 7 : X — Y | we can pushforward smooth
compactly supported measures from Y to X, by integration by fibers.Note that we
indeed push measures and not functions. This hints that the pushforward 7y should
be defined for right D x-modules.

Definition 4.12. For M € M"(Dx) define mo(M) := M Qp, Dx_,y € M"(Dy).

This operation also preserves holonomicity. This can again b shown by decomposing
the map into three parts. The difficult case now will be the standard projection.
However, we will prove this differently using a trick.

Exercise 4.13. Let M € M"(Dy) and let F(M) € M!(Dy-) denote the module
obtained from M by swapping the actions of x;and 0;. Let T': V — W be a linear
map, and let T* : W* — V*denote the dual map. Then F(ToM) = (T*)°(F(M)).

Corollary 4.14. Pushforward of a holonomic module is holonomic.

Proof. For isomorphisms it is easy. The standard embeddings and projections are linear
maps, and thus for them it follows from Exercise 4.13 and Theorem 4.5. O]
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Let us now examine how does pushforward look like. For p : A' — pt we have
po(M) = M/Md;. For i : pt — Alwe have io(k) := @ kS, with §'9, = §and
5t =6 L
Example 4.15. p : A' — {pt}. po(M) = M/M9,. For i : {pt} — AL "(M) =
@KW is the D-module of distributions supported at {pt}. @9, := 90+ §0)¢ .=
i§(=b,

Lemma 4.16. Let £ € S*(R™) be a tempered distribution, p be a positive polynomial,
and p — oo at 0co. Then \ — <§,pA> converges for R\ < —r for some r.

Lemma 4.17. Let £ be holonomic. Then there exist rational functions qi,...,q €

C (M), such that
(&) =2 a (&)

Proof. Take the D-module M generated by the distribution p*~%¢ over the fieldC ()).
It is holonomic. Thus its pushfoward to the point is holonomic. On the other hand, the
pushforward to the point is M/OM (Dx_p = O (X)). Being holonomic over a point
means that it’s a finite-dimensional vector space over C (\). Thus p**¢ are C (\)-
linearly dependent modulo M. The integral on M vanishes, thus [ &p* satisfies this
linear dependence. O

5. HOMOLOGICAL PROPERTIES
Let C be an abelian category.

Definition 5.1. We say that C has homological dimension < d if for any M € C and
any projective resolution Py — -+ — Py — M — 0, the kernel ker (Py_1 — Py_) is
projective.

Theorem 5.2. The following are equivalent for C:

(1) Any object has a projective resolution of length < d.

(2) Ext™™ vanishes for all i > 1.

(8) The derived functor Ly, ;F vanishes for any right exact functor F and alli > 1..
(4) hdC < d.

Definition 5.3. Let V be a vector space, and let a4,...,a, : V — V be commut-
ing operators. The Koszul complex of C' (V,ay,...,a,) is the complex (numbered by
n,...,0)

0= AK'@V = A""'K'@V = =2 AK'@V =0
with differential ), a% ® a;, where a% is the interior product with the basis vector &;.

Definition 5.4. A sequence (a;) is regular if a; has no kernel on V/ (a,V + -+ - + a;1V),
for all 7.

Theorem 5.5 (Proof-Exercise). If the sequence (a;) is reqular then the Koszul complex
is acyclic outside 0, and H® (C) =~ V/(a,V + -+ -+ a,V).

Let A :=Klzy,...,z,).

Theorem 5.6 (Hilbert’s syzygy). The homological dimension of A =K [xq,...,x,] is
n.
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Proof. The Koszul complex of x1,...,x, acting on A is a free resolution of the module
A/ (xq,...,2,) A. For an arbitrary module M let x; act on A @k M by
ri(a®@m):=zx,a @m+a® x;m.

This defines an A-module structure on A ®x M. This module is free (exercise). Thus

the complex
C(A xy,...,z,) @ M

is a free resolution of M. O

Lemma 5.7 (Graded Nakayama’s lemma). Let M be a finitely generated graded A-
module with M = (xq,...,2,) M. Then M = 0.

Proof. Since M is f.g. and M = (xy,...,x,) M, the Nakayama’s lemma implies that
0 € supp M. Since M is graded, supp M is conical and thus empty. U

Corollary 5.8. Any graded projective finitely generated module P over K[zy, ..., x,]
is free.

Proof. Choose a basis vy, ...,v, for P/mP, where m := (z1,...,x,). Lift v; to homo-
geneous elements p; € P. By the graded Nakayama’s lemma, p; generate P. Thus we
have a s.e.s. of graded modules 0 -+ K — A™ — P — 0. Here A™ has its grading

shifted according to the degrees of p;. Since P is projective, this sequence splits. So
A" ~ K@ P. Thus K/mK =0, so K =0. O

Corollary 5.9. Any graded finitely generated A-module has a free graded resolution of
length < n.

Definition 5.10. For a Noetherian ring R we denote by M/ (R) the category of finitely-
generated left R-modules, and by hd(R) the homological dimension of this category.

Exercise 5.11 (*). hd(M(R)) = hd(R).

Exercise 5.12. Let R be a ring and M € M/ (R) with a good filtration. Then

(i) for some [ there exists a good filtration on R' and a strict epimorphism R' — M.
(ii) If Gr M is free then M is free.

From Corollary 5.9 we obtain
Corollary 5.13. hdD,, < 2n.

Proof. Let M € M/(D,)). Choose a good filtration on M. By Exercise 5.12(i) there
exists a free D,,-module F} with good filtration and a strict epimorphism ¢, : F} —
M. Let Ly be the kernel of ¢; with induced filtration and choose a free F; again
using Exercise 5.12(i). Continuing in this way we obtain an exact sequence of finitely-
generated filtered modules with strict maps:
00— Loy 1—>Fop 1 —--—F—M—0,
with F; free. By Exercise 1.20, the associated graded sequence
0—>Grlyy1—GrFy, 1 —--—>GrM—0

is also exact. By Hilbert’s syzygy theorem, Gr Lo, _1 is projective, and thus free. By
Exercise 5.12(ii), Lo,_1 is free and the above sequence is a free resolution of M of
length 2n. 0

Now we want to show that hd D,, = n.
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Corollary 5.14. Let R be a Noetherian ring with hd R < oo, and M be a finitely
generated R-module. Then hd M < d iff Ext" (M, R) = 0Vi > d.

Proof. Let M € M/ (R) with Ext’ (M, R) = 0Vi > d. We have to show that Ext’ (M, ) =
0Vi > d. Take any finitely generated X, and consider 0 — L — R’ — X — 0. Thus:

Ext’ (M, R) — Ext’ (M, X) — Ext™" (M, L) — Ext™" (M, R')

Thus for i > d we have Ext’ (M, X) ~ Ext"™ (M, L). By induction on i descending
from hd M, Ext™® (M, -) = 0. O

Let A:=K[xy,...,2,], M be a f.g. A-module. Denote E* (M) := Ext’ (M, A).
Theorem 5.15 (Serre ?7). Let d :=d (M). Then E* (M) =0,Yi < n —d.

Proof. Induction on n. Take B := K|[xy,...,z,_1]. If M is finitely generated over B,
take

N=M{t]~AoyM
Then E' (N) ~ Ext’ (M, B) [t]. Thus E* (N) =0 fori <n —1—d, and E""'"¢(N) is
free over K [t]. Now we have a s.e.s.

0N3"N-sM-—0
Thus
En_2_d (N) N En—l—d (M) £> En—l—d (N) tin En—l—d (N)

The rightmost map has trivial kernel, so the arrow in the middle is 0. Now E" 274 (N) =
0 implies E"~1=4 (M) = 0.

Now we treat the general case when M is not necessarily finitely generated over B. If
d (M) = n then there is nothing to prove, otherwise by Noether’s normalization lemma
there exists a linear coordinate change y; = T'x; such that A/ Rad(Ann(M)) is finite
over Klyi,...,yn—1]. Then M is finitely generated over K|y, ..., y,—1], and we reduce
to the previous case. 0

Lemma 5.16. Assume that M is graded. Then
d (M) < d(coker (z,|nm)) + 1.

Proof.
M E8 M — (coker (2,3)) T = 0
Thus Ady (i) < deoers, (i + 1). O
Corollary 5.17. Assume that ker (x,, [p) = 0. Then
d(M) < d(coker (z,|p)) + 1.

Proof. 0 — M *% M — cokerz, — 0. Introduce a filtration on M, pass to the
associated graded module.

0—-GrM — GrM — Greokerz,, — 0

Note that Grcoker x,, = coker (x,, [grar), and use the lemma on graded modules. [

Corollary 5.18. d (M) < max (d (ker (x,|ar)) , d (coker (x,]ar)) + 1).
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Proof. We can assume that d (ker (z, [)) < d(M). Then d (U, ker (z¢|n)) < d(M).
Indeed, U; ker (2% I,/) stabilizes at a finite union, and

ker ($;|M) / ker (x;_1|M) ~ ker <$n|M/ker(x;1rM)> ,
whose d is < d(M). Thus d (M) = d(N), where
N := M/ Jkera},

Now ker (z, [ N) =0, so we reduce to the previous corollary. O
Lemma 5.19. supp E*(M) C supp M

Proof. Ann M C Ann E*M. O
Theorem 5.20 (Ross ??). For any M € M/(A), d(E°M) <n —1.

Proof. We prove by induction on n. Consider first the case when M is finitely generated
over B=K|zy,...,0,1]. N:=M[t]~ AR M, E'(N) = Ext' (M, B) [t] thus by the
induction hypothesis
d(E'(N))<n—1-it+l=n~—i
Now,
0=NZ3"NsM—=0
Thus
o= BTV (M) S EFY(N) = BV (N) = EN(M) = E'(N) = EV(N) — . ..
The map E""' (M) — E"!'(N) is 0 because t — x,, has zero kernel. For any v €
E=N (M), (t —x,)v = 0, but t — 2, has no kernel in E'~' (N) because E’(N) =
Ext"™! (N, B) [t] and t — x, shifts the degree by 1.
Now introduce a filtration on E*~! (N) that is a grading in ¢. Then

0= F/ (E'N) — FIt (E7IN) — FIY (E'M) — 0
Thus d(E°M) =d(E"'N)—1<n—(i—1)—1=n—1.
The next case is that x,, : M — M is injective. Then
0—M=3M-—L—0
Thus
E'L - E'M 3 E'M — E'T'L
By the last corollary, d (E*M) < max (d (E'L),d (E*" L) +1) <n —i.
Finally, in the general case

0—+K—->M-—=L—0
where x,, is nilpotent on K and z,, [ is bijective Thus
o+ - FE'L—-E'M—EK—...
Thus d (E'M) < max (d (E°L) ,d (E*K)) < n — i by the previous cases. O
Corollary 5.21 (Ross ??). Let M € M/ (D,). Then
(1) Ext' (M,D,) =0, Vi < 2n—d (M)
(2) 2n — d (Ext' (M, D,)) > i
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Proof. As we proved before, M has a resolution of length 2n consisting of free finitely
generated filtered modules and strict maps:

0—Fop = -+ = Fo—0
Taking Hom into D,, we get

0—=>F —--—=F, —0
Passing to associated graded we have

0—=>GrFi —---—=Grk;, =0

The cohomologies of the latter sequence are isomorphic both to Exti(Gr M, A) and to
Gr(Ext'(M,D,)). The statements now follow from Theorems 5.15 and 5.20. O

Corollary 5.22. hd M/ (D,)) < n. For any M € M/ (D,), Ext” (M, D,) is holo-
nomic. For a holonomic module Ext<" (M, D,,) = 0.

Proof. d(E"""M) < n — i, so by Bernstein’s inequality, E""M = 0 for i > 0. For
i =0 we get d(E"M) = n. For holonomic M we have n —i < 2n — d(M) and thus
Ext"™"(M,D,) = 0 for any i > 0. O

Definition 5.23. Define D : Hol’ (D,,) — Hol" (D,,) by Ext" (-, D,).
Theorem 5.24. D is is an equivalence of categories, and D o D ~ id.
Proof. To prove that D o D =~ id, take a free resolution of M:

0> F,—---—F—0

and dualize it by Hom (-, D,,). Since M doesn’t have smaller Ext’s, this will be a free
resolution of DM . Finally, DoD ~ id implies that D is an equivalence of categories. [

Theorem 5.25. For any M € M/ (D,) there is a canonical embedding 0 — D (Ext™ (M, D,,)) -
M ; moreover its image is the mazximal holonomic submodule of M.

Proof. H = Ext" (M, D,,). Let 0 - P, — --- — Fy — 0 be a free resolution of M.
Dualize it:

0O—->F —---—=FP —0
Now consider a free resolution of H:

0=Q,— - —>Qy—0

H is the last cohomology of P*, so it is a factor of P*. Now step by step we lift this
to a map of complexes P* — (). Dualizing, we get maps Q* — P. By Corollary 5.22,
H is holonomic and thus Ext<"(H,D,) vanish. Thus Q* is a resolution of DH. Thus
we get a map DH — M whose image is a holonomic submodule of M.

The map DH — M is injective because the right-exact functor Ext" (-, D,,) maps it
to the identity map. Finally, for any holonomic submodule L C M we have an onto
map H — DL and thus an embedding L C DH. OJ

Remark 5.26. Everywhere in this section we could have used the geometric filtration on
D,, instead of the Bernstein filtration. Together with Theorem 5.21 this gives another
proof of Theorem 3.13.
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6. D-MODULES ON SMOOTH AFFINE VARIETIES

Let X := Spec A be an affine algebraic variety, and for x € X let K, := A/m,.
T:X := m,/m2. We start with several well-known definitions and theorems from
algebraic geometry.

Definition 6.1. Let Der O (X) denote the algebra of derivations of O(X), i.e. linear
endomorphisms of O (X) satisfying the Leibnitz rule. Elements of Der O (X) are called
(algebraic) vector fields on X.

Theorem 6.2. The following are equivalent:

(1) K, has finite homological dimension as an A-module.
(2) Gry, A =@ (mi/mi) is a polynomial algebra.
(3) dimT;X = dim, X.

(4) Locally around x there is a quasi-coordinate system.
Definition 6.3. We say that X is smooth at x if these conditions hold.

Definition 6.4. A quasi-coordinate system of an affine variety U at z € U is:

(1) A collection of functions zy,...,z, € O (U);
(2) a collection of vector fields 0, ...,0, € Der O (U),

such that
(a) &-xj = 5”,
(b) dx; span T X for all u € U.

Theorem 6.5. The set of smooth points is open and dense.
Definition 6.6. D="! (X) := 0,
D=F(X) := {d € Homg (O (X),0(X)) |Vf € O(X) : [f,d] € D= (X)}.
Similarly, for O (X)-modules M, N define D=F (M, N).
Example 6.7. D=0 (X) = 0O (X), D! (X) = O (X) ® Der O (X).

The algebra of algebraic differential operators is defined by D(X) := U, D'(X). We
will show that if X is smooth then D (X) is Noetherian and generated by O (X) and
Der O (X).

Exercise 6.8 (*).

(1) If X = {3, 22 = 0} then D (X) is Noetherian but not generated by D=! (X).
(2) If X = {3, 23 = 0} then D (X) is not Noetherian.

From now on we assume that X is smooth.

Theorem 6.9. Let M, N € M(O(X)), let d € D=F(M,N) and f € O(X). Then it
uniquely defines d' € D<F (My, Ny).

Proof. Define d (f~*m) by induction on i and k:
d’( —im) — f—ld/ (f—i+1m) . f—l [d,,f] ( —im)

Corollary 6.10. If M is finitely generated then (D (M, N)); ~ Do, (My, Ny).
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Proof. To construct the map in the only nontrivial direction Do, (My, Ny) — (D (M, N))
take the common denominator of the generators of M. 0

f7

Definition 6.11. Define the sheaf Dy of differential operators on X by Dx(Xy) :=
D(Xy).

By Corollary 6.10, Dy is a quasi-coherent sheaf.

Remark 6.12. In general, a good calculus of fractions is guaranteed by the Ore con-
dition. For a ring A and a multiplicative set S, the Ore condition is that for any
a € A;s € S there are a’ € A,s' € 9, such that as’ = sa’ (i.e. s7'a = da/s’™'). For
S={f"},f € Ox, A= Dy, it is satisfied.

Recall that 7x denotes the tangent sheaf of X. Note that the existence of a quasi-
coordinate system implies that 7y is coherent and locally free.

Theorem 6.13. ¥ := GrD (X) ~ O (T*X) := Sym 7y (X) ~ Sym (D= (X) /O (X)).
Proof. Define ©¢ := Sym‘ 7x (X). For d € D! consider its symbol
(od) (fr,--- fo) = ld, A] .- f]-

The form od is symmetric in f;, and is a derivation in each f;. Thus od is an element
of Sym’ (7x (X)) .

Clearly, d — od is an embedding. To show that it is onto, just take the product of
vector fields to produce a given symbol. O

Remark 6.14. Incidentally, this also proves that vector fields generate Der O (X)) locally,
i.e. as a sheaf. Since on affine varieties sheaf cohomology vanishes, this is also true
globally.

Corollary 6.15. D(X) is Noetherian and hd(D(X)) < 2dim X.

Exercise 6.16. The structure of a left D(X)-module on an O(X)-module M is the
same as the structure of a 7x-module on M satisfying

(f&)m = f(&m) and £(fm) — f(Em) = &(f)m.

The structure of a right D(X)-module on an O(X)-module M is the same as the
structure of a module over the opposite of the Lie algebra 7x satisfying

(f&)m = f(§m) and {(fm) — f(Em) = —£(f)m.
By module over the opposite Lie algebra we mean the identity & (&am) — &(&m) =
—[&1,&2)m.

Exercise 6.17. The module of top differential forms Q% with the action o := —Liecax
(Lie derivative) is a right D(X)-module. Moreover, M — M ®¢, Q% defines an
equivalence of categories M(D(X)) ~ M"(D(X)).

The push and pull functors are defined for affine varieties in the same way as for affine
spaces. Namely, for 7 : X — Y and N € M(D(Y)) define 7n°(N) := O(X) ®o) N,
with the action of 7(X) given by the morphism 7(X) — O(X)®oxy)7(Y). As before, 7
is strongly right-exact and thus 7°(N) = Dx_,y ®py) N, where Dy_,y = 1°(D(Y)) =
O(X) ®O(Y) D(Y) For M € M(D(X)) we define WO(M) =M ®D(X) DX*)y.
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7. D-MODULES ON GENERAL SEPARATED SMOOTH VARIETIES

Fact 7.1. For a variety TFAE:
(i) For any affine U,V the intersection U NV s affine, and O (U) ®x O (V) —
O (UNYV) is onto.
(7i) There is an open affine covering (U;), s.t. the previous property holds for each
Ui, U;
(1) AX C X x X is closed.
Varieties that satisfy these properties are called separated.

Definition 7.2. Let X be a smooth separated variety. Define the quasi-coherent sheaf
of Ox-algebras Dx by the property Dx(U) = D(U) for every open affine U C X.

A Dx-module is a sheaf of modules over the sheaf of algebras Dx that is quasi-
coherent as a sheaf of Ox-modules. That is, it’s a quasi-coherent sheaf F, such that
F (U) have compatible structures of Dy (U)-modules. We will denote the category of
Dx-modules by M(Dx) and the category of quasi-coherent sheaves by M(Ox).

Serre’s theorem implies that for an affine X, M (Dx) ~ M (D (X)).

Definition 7.3. A morphism of algebraic varieties 7 : X — Y is called affine if 7=1(U)
is affine for any open affine U C Y.

Example 7.4. Open and closed embeddings are affine.

Definition 7.5. For an affine morphism 7 : X — Y, define the functors 7° and
Ty gluing from affine pieces. In other words, 7°(G)(7~1(U)) := (7|z—11))°(G(U) and
mo(F)(U) := (7|1 0))o(F(m~1(U)) for any open affine U C Y.

Example 7.6. Let 75 : Z — X be a closed embedding of a smooth subvariety. One

can choose local coordinates x;, such that Z is given by z,,41 = -+ =2, =0, D (X) ~
O(X)@xgK[Dy,...,0,],0(Z2)~0O(X)/J, J:={Tms1,--,2Tn). Then i°F = F/J.
Exercise 7.7. Let V C X be an open subset and let ¢ : V' < X denote the embedding.
Then

(i) io(F)(U) = F(VNU) for any F € M(Dy) and any open U C X.

(ii) The functor iy : M(Dy) — M(Dyx) is right-adjoint to the restriction functor

Resy - M(Dx) — M(DU)

(iii) The functors iy and Resy are exact.

Fact 7.8. For a coherent sheaf TFAE:

(1) It is locally free
(ii) It is projective
(iii) The dimension of the fiber is locally constant.

For non-affine X, the categories of Ox-modules and Dx-modules do not have enough
projectives, but:

Fact 7.9. M (Ox) and M (Dx) have enough injectives.

Proof. Let us show this for Dx-modules, since the proof for Ox-modules is identical.

First we prove for affine X. For a projective right Dx-module P the module
Homg (P, K) is an injective left Dx-module. For any projective P and P — Homg (M, K) —
0 we have embeddings

M — Homg (Homg (M, K),K) — Homg (P, K).
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For non-affine varieties, choose a finite open affine cover X = {J; U;, and consider

9 : M (DUj) — M (Dx). The functor iy is exact and maps injective sheaves to
injective ones. Since J [y, embeds into injective @;, F embeds into €; 1;.Q);. O

Definition 7.10. A Dx-module is called coherent if it is locally finitely generated.
Recall that for an affine variety X, GrD(X) = O(T*X).
Definition 7.11. For F € My, (Dx) choose a good filtration on F, and define
Sing suppy, F' := supp Gr F (U) C T* X, and Singsupp F := | J Sing supp, F.
U

By Theorems 3.3 and 3.5 this does not depend on the choice of a good filtration on F.
Theorem 3.16 holds for singular support as well, though we won’t prove it.

Theorem 7.12 (Kashiwara-Kawai-Sato, Gabber). For any F € Mo (Dx), Singsupp F
is a coisotropic subvariety of T*X.

This implies the Bernstein inequality, namely dim Singsupp F > dim X if F # 0.
Another way of proving the Bernstein inequality is to reduce it to affine varieties, then
to affine spaces, then use Proposition 3.13 to reduce to the classical Bernstein inequality
for the arithmetic filtration (Theorem 1.31 above).

However, we are going to give a direct proof of the Bernstein inequality in the next
section.

8. KASHIWARA’S LEMMA AND ITS COROLLARIES

Let Z C X be a closed smooth subvariety and let ¢ : Z < X denote the embedding.
Let MY, (Dx) denote the category of right Dx-modules supported at Z. Our goal in
this section is to prove and use the following theorem.

Theorem 8.1 (Kashiwara). The functor iy is an equivalence M* (Dyz) ~ M, (Dx).
For the proof we will need some constructions and lemmas.
Definition 8.2. Define i’ : M" (Dx) — M" (D) by
i' (F) := Homp, (Dz_x,F).
For F € M" (Dx) define 'z (F) (U) :={&{ € F(U) | supp€ C Z}.

Exercise 8.3. (i) For affine X, ¢/ (M) ~ Anny, I (7).
(ii) ¢"igyH ~ H for any H € M (Dy).

(iii) ¢ is left adjoint to 7.

From the adjunction, we have a counit map iyi’ F — F.
Lemma 8.4. Let M € M (D). Assume M = J;kerz*. Then M = @, 0" ker z.
Proof. 1. We note that (0x + 1) 9 (ker x) = 0. Indeed, [x,0'] = —i0" !, s0 (Oz + 1) &' =
ity

2. 20" (kerx) = —id" ! (kerx). Thus 9" ker x C ker 2™

3. (0z +i)kerx™ C kerz’. Indeed, for m € kerz'™', z (0x +i)m = (i — 1) xm +
Oz*m = (0z +i — 1) xm C ker z'~! by induction.
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4. O'ker x are the different eigenspaces of dx, so the sum is direct. Now we show

that
i—1
ker z* = @ & ker x

Jj=0

Take m € ker 2'*'. Them (dz + i) m € ker 2, so by induction (8z + i) m € @’ &’ ker .
Again, by induction, zm € @'_( & kerz, so dxrm € @_, & kerx. Thusm € @)_; & ker z.
0

Example 8.5. Distributions on R supported at 0 are sums of derivatives of the ¢-
function.

Lemma 8.6 (Standard in algebraic geometry). For any x € Z, there is an open
netghborhood U C X and a quasi-coordinate system x; on U, such that Z NU 1is given
by Tpyr = -+ =, =0, and det (Ox;) # 0.

Theorem 8.7. ¢ :igi’F — 'z (F) is an isomorphism.

Proof. 1t’s enough to show this locally. Choose a quasi-coordinate system on X (or an
open subset of it), such that Z = {x;,41 = --- = x, = 0}. We can assume i = m + 1
by induction (locally there is a flag of smooth subvarieties, constructed using z;). The
induction step will be for Z C Y C X:

(Z=Y),Y = X),(Y 5 X)) (Z=Y)F(Z-=Y),Iy(Z—>Y)Fx~

~(Z—=Y)y(Z—=Y)TyF =T IyF ~TzF

The nontrivial equality here follows by noting that I'y consists of sections supported
at Y, and (Z — Y)' consists of the sections killed by I (Z).
Finally, define Z := {z, = 0}. Let M be a right D (X)-module, and N :=T'z (M).

i' M = ker (z,, [ar)

and ig’ M = @;i'M 8’ because Dy_,x ~ Oz Qo Dx ~ Dx/x,Dx ~ Dy @x K|[0,,].
By Lemma 8.4,

Pker (z, [n) 0 ~N
J
O
Corollary 8.8 (Kashiwara). The functors iy and i’ define an equivalence of categories
M (Dy) ~ MY, (Dx).
8.1. Corollaries.
Lemma 8.9 (Exercise). For H € Mcon (Dz), ioH € Meon (Dx) and
Sing supp (i¢H) = {(z,£) € T*X | (z, p.£) € Singsupp H},
where p, : (TX)* — (TZ)* is the dual map to the embedding T,Z — T,X.

Corollary 8.10 (Bernstein’s inequality). For any F € Mcon (Dx), dim Sing supp F >
dim X.
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Proof. Let F € ML, (Dx). Suppose that dim Sing supp F < dim X. Let px : T*X —
X be the canonical projection. Let Z := (px (SingsuppF)) € X. Then dimZ <
dim X. There is U C X, such that Z’ := U N Z is nonsingular (and nonempty). F' :=
F . Then supp F' C Z’'. By Kashiwara’s lemma, F' ~ i¢i’ 7', where i : Z' — U. By

induction hypothesis, dim Sing supp ¢/ 7 > dim Z’. Thus

dim Sing supp ipi’ F' > dim Sing supp 7' F' + dim U — dim Z’ > dim X.
But dim Sing supp F' < dim X by assumption. This leads to a contradiction. O

Lemma 8.11. Let F € M., (Dx). TFAE:
(1) Singsupp F C X x {0} C T*X
(2) F e Mcoh (Ox)
(3) F is locally free of finite rank over Ox

Proof. 3 = 2 is obvious, 2 = 1 is obvious (just take the generators over Ox and use
them to construct a good filtration).

1 = 2: Choose local coordinates in an open affine U C X. Let M = F (U). Choose
generators vy, ...,v, of M over Dy. Then we assume that Z (o ann {v;}) = U x {0}
(where o is the symbols, and Z is the variety of zeros). Then for any i, j there is ¢;;,
such that

05 <l
0;7v; € Dy 7 {vr, ..., vn}

Let S := {afl O | < Eij}. Then this set generates F (U) over Oy, so F' is
coherent over Ox.

2 = 3: We can assume that X is affine. Let ¢ := min, dim F,. Then there is
some U C X, such that dim F, = ¢ for all x € U (we assume that X is connected
and irreducible). Suppose U # X, i.e. there is x € X, such that dim F,, > ¢. Then
there is a smooth affine curve v : C' — X passing through = (cf. curve selection
lemma), such that all the other points of this curve are in U. Take the Ds-module
WE. It’'s Og-coherent because it’s the pullback of O-modules, and this operation
preserves coherence. On the other hand, O¢ is a Dedekind domain, so since M = 1°F
is not locally free, it must have torsion. The torsion part M is also a Dg-module,
and it has finite support i : Z C C. Thus M®*" = 34V for some Dz-module V. But i,V
is not finitely generated over O¢ unless V' = 0. 0

Definition 8.12. Ox-coherent Dx-modules are called smooth.

Corollary 8.13. Let F be a holonomic Dx-module. Then there exists an open dense
U C X, such that F [y is smooth (possibly trivial).

Proof. Sing supp F is n-dimensional, so it consists of a part of the form U x {0} and
something else that projects to a lower-dimensional subvariety of X. 0

Definition 8.14. For a closed subvariety X C A" define the category of Dx-modules
as the category of Dyn-modules supported at X.

Theorem 8.15. This definition doesn’t depend on the embedding.

Proof. Let v : X — A", u : X — A™. Take the embedding v x p : X — A™t™,
Then there is p : A" — A™, such that u = pr. Thus we have a closed embedding

i=1id xp: A" — A" Then Mx (Dyn) = My (Dynim). O
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Definition 8.16. Define D-modules on general varieties by gluing affine ones. Note
that for affine ones the notion is local.

For F € Mx (Dpn) define Sing suppy (F') := px (Sing supp F'), where px : T*A" [x—
T X.

9. D-MODULES ON THE PROJECTIVE SPACE

VOVELP(V)
For an Op(yy-module F define
p'F = Oyx Qo F, F = j.p*F.

There is an action of G,, on F by dilation, so it defines a grading on the global sections
. N
I'(F),and I (F) = (I' (7)) .

Let Fy — F» — F3 be an exact sequence of Dpgyy-modules. Then p*F; — p°F, —

pF; is exact. While F; — F» — F3 may not be exact, the homology # is supported
at 0. Thus H ~ igL, where L is a vector space, and i : {0} < V.
Let £ := 3 x;0; € D (V) be the Euler operator.

Exercise 9.1. On I' (ipL), E has negative eigenvalues.

(T (iL))° = 0, thus (T (H))’ = 0, so

(P(A) = (0 (%) = ()
is exact. On the other hand, (F]:})O ~ ['F;. Thus:

Lemma 9.2. The functor of global sections
Iev) : M (Dpr) = M (I'(Dpr))
1S exact.

Exercise 9.3. Dpn ~ D% /DYE | where D? is the zero-part of the grading on D, given
by the commutator with the Euler vector field. In other words, degx; = 1, deg0; = —1.

Exercise 9.4. For any graded K |xy, ..., z,]-module we define a quasicoherent sheaf
on the projective space M’ by M’ (U) := (M (P~ (U)))°, where P : A"\ {0} — P"
is the canonical projection. Any quasicoherent sheaf on P is obtained this way. More
precisely,

M (Opn) = M (Opn) [ Mgy (Onn)

(quotient w.r.t. a Serre subcategory).

Hint. K[z, ...,z =~ Pgso ' (P", Opn (d)), where Opn (d) is the sheaf on P obtained
by shifting by d the grading in the graded module K[z, ...,,] (alternative descrip-
tion: Opn (—1) is the canonical line bundle, Opn (1) is its dual, and Opn (d; + dg) =~
Opr (d1) @opn Opn (d2)).

Take a sheaf F, and the module Mz := @450 ' (P", F (d)), where F (d) := F ®@0,n
Opr (d). Now take the sheaf M’ corresponding to Mpr. We claim that M ~ F. After
that we prove that the kernel of the functor M +— F consists of the sheaves supported
at 0. U
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Lemma 9.5. I'pyy : M (Dpn) — M (I'Dpn) is faithful.

Proof. Since I'p(yy is exact, it is enough to show that I' (F) # 0 for F # 0.

Let j be such that supp M7 ¢ {0} and supp M* C {0} VI with |[¢| < j. We want to
show that 7 = 0. Suppose first that j < 0 and let £ € M7, such that supp¢ ¢ {0}.
Then there is 0 < 7 < n, such that supp z;€ ¢ {0}. But ;&€ € M7™!, so this contradicts
our assumption. Similarly, for j > 0, take £ € M/, jé = E€ = Y, 2;0;€, so there is i,
such that supp 9;¢ ¢ {0}. But 9;£ € M?~!, so again we get a contradiction. O

Lemma 9.6. Hom (Dpn, F) ~ T (F).
Proof. The internal Hom is F, so the categorical Hom consists of its global sections. [

Corollary 9.7 (Bernstein-Beilinson, 7?). Dpn is a projective generator of M (Dgpn),
and thus T' : M (Dpn) — M (I'(Dpr)) is an equivalence.

Theorem 9.8 (Bernstein-Beilinson, ??). I'(Dpn) = Dpn (P*) ~ DY, /EDY. |, where
DY ., is according to the grading degx; = 1,degd; = —1, and E is the Euler field.

For the proof we will need some lemmas.

Exercise 9.9. There is a natural map DY, /EDY | — Dpn (P).
Exercise 9.10. Gr (DY,,/ED,,) ~ Opr (T*P").
Lemma 9.11. For all smooth X, Gr Dx (X) — Op-x (T*X).

Proof. 0 — D' — Dy — Symg, 7x — 0, 50 0 = I'D' — I'Dy — I'Symg, _7x. On
the other hand, &, Sym’bx Tx = Op«x. L]

Proof of the Theorem. ¢ : DY, /EDY — Dpn (P"). It’s enough to show that Gr is
an isomorphism. Now, DY, /ED) ~ Orpwpn (T*P"), and Dpn (P") is embedded into
Opspn (T*P™), so we get the inverse map. O

9.1. Twisted differential operators on the projective space. In Theorem 6.6
we defined the algebra of differential operators on any module over the algebra of
polynomials on an affine variety. Later we showed that this definition commutes with
localization by polynomials. This gives the definition of the sheaf of algebras of dif-
ferential operators on a coherent sheaf over any algebraic variety X. The obtained
algebra is well-behaved only if the sheaf is locally free. If the sheaf is invertible (i.e. is
a line bundle), this sheaf of algebras is locally isomorphic to Dpn.

Definition 9.12. A sheaf of twisted differential operators on a (smooth, separated)
algebraic variety X is a sheaf of Ox-algebras that is locally isomorphic to Dx (in short

a TDO on X).

Let us consider the case X = P". Any invertible sheaf on P" is isomorphic to O(s)
for some s € Z. One can define O(s) to correspond the construction in Theorem 9.4
to the graded module M = K[zy,...,z,] with grading shifted by d. Another way
to define an invertible sheaf F is describe the automorphism of O(U; N U;) given by
the identifications F(U;) ~ Ox(U;) for some open affine cover {U;} of X on which F
trivializes. For O(s) we can choose the standard cover U; := {x; # 0} = A™ of P", on
which the automorphisms are given by multiplication by (x;/z;)°.
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Let us describe O(s) by coordinate changes. We have to compute what happens to
O when we twist it by (z;/z;)°.

(1) (@3/a5) 7" Ok - (wi)5)* = Oy + 5O (i /az) - (wi/a;) 7
Since D, is generated as a Klzy,...x,]-algebra by &, ...,&,, this formula defines a

sheaf of twisted differential operators on P". In fact, we could put any scalar A € K
instead of s in (1) and obtain a TDO on P".

Exercise 9.13. Any TDO on P" is given by the coordinate changes
0ij(O) = Ok + NOk(zi/2;) - (wi)x;) "

Exercise 9.14. Denote by Dpn(s) the sheaf of differential operators on Opn(s). Then
the global sections functor I' : M(Dpn(s)) = M(I'(Dpn(s))) is exact for s > —n and
faithful for s > 0.

Let us find a formula for obtaining TDOs from invertible sheaves on arbitrary
(smooth, separated) varieties. Recall that a 1-form on an affine variety X is an O(X)-
module morphism 7x — O(X). A 1-form A is called closed if its differential d\ vanishes.
The differential can be defined as the two-form given by

A, m) == E(A) = A(E(m) = A[&:n]), V& n € 7x.

Exercise 9.15. Let X be affine. For a closed 1-form A on X and n € 7x define
ox(n) :==n+ An) € D(X). Then ¢, extends (uniquely) to an automorphism of D(X)
as an O(X)-algebra. Moreover, all automorphism of D(X) as an O(X)-algebra are
obtained in this way.

For non-affine X, this exercise and the Chech cohomology yield that the TDOs on X
are described by H' (X, QL), where QL is the sheaf of closed 1-forms on X. The group
of invertible sheaves on X (a.k.a. the Picard group) is isomorphic to H' (X, O%), where
Ox is the sheaf of invertible regular functions on X. The logarithmic derivative gives
a morphism of sheaves of abelian groups O% — Q! which in turn gives a group ho-
momorphism H'(X, 0%) — H'(X, Q). This homomorphism describes the correspon-
dence between invertible sheaves and TDOs. For X = P" we have H'(P", O3,) = Z

and H'(P", Q},) = K. Thus Theorem 9.15 generalizes (1).

10. THE BERNSTEIN-KASHIWARA THEOREM ON DISTRIBUTIONAL SOLUTIONS OF
HOLONOMIC MODULES

Let X be a smooth algebraic variety defined over R, and let S denote the Dx-
module of tempered distributions on X. More precisely, for every open U C X we
take S%(U) := S*(U(R)), the space of continuous functionals on the Fréchet space of
Schwartz functions on U(R). Let My (Dx) denote the category of holonomic Dx-
modules. Our goal in this section is to prove and use the following theorem.

Theorem 10.1 (Bernstein-Kashiwara). Let F € My, (Dx). Then
dim Hom (F,SY) < oc.

Lemma 10.2 (Exercise). Let j : Z C X be a closed embedding of smooth affine
algebraic varieties defined over R. Then §* (Z) ~ j'§* (X).

Corollary 10.3. [t is enough to prove Theorem 10.1 for the case when X is an affine
space.



THE ALGEBRAIC THEORY OF D-MODULES 27

Proof. Let X = U;_, U; be an open affine cover. Then

by restriction. Let 7; : U; — A" be closed embeddings. Then S* (U;) ~ 7;S* (A™).
Hence by the adjunction,

Hom (F (U;),S8* (U;)) ~ Hom (F (U;) , 7/S* (A™)) ~
~ Hom ((7;), F (Us) , S" (R™))
Recall that the pushforward preserves holonomicity. O

From now on let X =V :=R"” and M be a holonomic D,,-module.

Definition 10.4. Let w be the standard symplectic form on V & V*. Denote by
py : VaV*—=Vand py : V& V* — V* the natural projections. Define an action of
the symplectic group Sp(V @& V*,w) on the algebra D(V') by

(00)" = 7(9)(u) = pv+(9(v,0)) +0py w0y, W = 7(g)w := py=(g(0,w))+Tpy (g0,w))
where v € V, w € V*, 0, denotes the derivative in the direction of v, and elements
of V* are viewed as linear polynomials and thus differential operators of order zero.

For a D(V)-module M and an element g € Sp(V @& V*), we will denote by MY the
D(V')-module obtained by twisting the action of D(V') by 7(g).

Since the above action of Sp(V @ V*) preserves the Bernstein filtration on D(V'), the
following lemma holds.

Lemma 10.5. For M € M/ (D(V)) and g € Sp(V@®V*) we have AV(M9) = gAV (M).
Lemma 10.6. For any g € Sp (V@ V*), S(V)! ~S(V), and thus S* (V)? ~ S* (V).
We will prove this lemma in §10.1.

Lemma 10.7. Let C C V @& V* be a closed conic subvariety of dimension n. Then
there exists a Lagrangian subspace W C V @& V*, such that the projection of C' onto
(V@ V*)/W is a finite map.

Proof. First we prove that there is a Lagrangian subspace L, such that LN C' = 0. For
that £ denote the variety of Lagrangian subspaces and consider

Y :={(a,8) € P(C) x L | a C B},

where P (C) is the space of lines inside C' (i.e. the projectivization). We have maps
q:Y = P(C)and ¢ : Y — L, and we need to show that ¢’ is not onto. For this it’s
enough to show that dimY < dim £. Now we see that

1
dim £ = o (n+1), and dimY = dim ¢(X) + dim¢ ' (),
where ¢~! () is a generic fiber, so we calculate:
1
dim X = 3" (n+1)—1<dim L.

Now we prove the following fact: over C, if W C U are vector spaces, and C' C U is
a conic subvariety, such that C' N W = 0, then the projection C' — U/W is finite. By
induction on dimension we can reduce to the case dim W =1 (if it’s true for dim W ={
then take iterated projections, first w.r.t. W, then w.r.t. a larger subspace).
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Let p be a homogeneous polynomial vanishing on C' but not on W. Then

N
p(xh s 7xn) = sz (xlu s 7In—l> xiu
=1

where z; are linear coordinates, s.t. W = {x; = --- = x,_1 = 0}. Thus z,, [¢ satisfies a
monic polynomial over O (U/W). Indeed, the leading term py is constant — otherwise
this leading term would vanish on W, so by homogeneity would have deg, .  pi>0
for all i, so p would vanish on W. Now since on O (C') the element x,, satisfies a monic
polynomial over O (U/W), the ring extension O (U/W) — O (C) is integral, so the
map C — U/W is finite.

Tanking U := V @ V* and W := L, such that the projection of C' onto V & V*/W
is a finite map. O

Corollary 10.8. For any M € My, (Dy) there exists g € Sp(V & V*) such that M9
is smooth.

Proof. Since M is holonomic, we have dim AV(M) = n. Thus, by the lemma, there
exists a Lagrangian subspace W C V @ V*, such that the projection of AV(M) onto
(V@ V*)/W is a finite map. Since Sp(V @& V*) acts transitively on the variety of
Lagrangian subspaces, there exists g € Sp(V @ V*) such that ¢~ '(W) = V*, and
thus gAV (M) is finite over V. By Theorem 10.5, AV(M?9) = g(AV(M)). Thus MY is
finitely-generated over O(V) and thus smooth. O

Lemma 10.9. Let M be a smooth D(C™)-module of rank r. Embed the space An(C™)
of analytic functions on C" into D*(R™) using the Lebesque measure. Then

Hom(M, D*(R")) = Hom(M, An(C")) and dim Hom (M, D*(R")) = rank M,
where rank M is the rank of M as a vector bundle.
Proof. Let May, := M ®o(cry An(C") and D4, (C") := D, ®o(cny An(C") be the ana-
lytizations of M and D,,. Then
Homp, (M, D*(R")) = Homp,, ) (Man, D*(R")).
Since My, is also smooth, My, = An(C")". Thus it is left to prove that
Homp,,,,cm (An(C"), D*(R")) = Homp,,, cr) (An(C"), An(C"))

and the latter space is one-dimensional. This follows from the fact that a distribution
with vanishing partial derivatives is a multiple of the Lebesgue measure. 0

Corollary 10.10. If a distribution generates a smooth D-module then the distribution
is an analytic measure.

Proof of Theorem 10.1. By Theorem 10.3 we can assume that X = V = R". By
Theorem 10.8 there exists g € Sp(V @& V*) such that F9 is smooth. By Theorem 10.6
we have

Hom (M,S8* (V) ~ Hom (M7, (S* (V))?) ~ Hom (M?,S8* (V)).
Finally, dim Hom (M9, S8* (V')) < oo by Lemma 10.9. O

Let an algebraic group G act algebraically on a smooth algebraic variety X, both
defined over R.

Corollary 10.11. If G has finitely many orbits on X then dim (S* (M))© < cc.
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Proof. The Lie algebra g acts on X by vector fields £,,a € g. Define a Dx-module
Fon X by F(U) :=Dx (U)/Dx (U){& Tv}. Then the solutions of this D-module
with values in S§ are exactly the G-invariant distributions. Now modulo the previous
result, it remains to show that F is holonomic. By construction we have

Singsupp F' C {(z,¢) € T*M |Va € g : (p,& (7)) = 0} = JCNG,

where CNg, is the conormal bundle of the orbit Gz. Since there are finitely many
orbits, this is a finite union. All conormal bundles have dimension dim X, so the same
is true for their finite union. OJ

A bit more careful argument actually proves a bit stronger statement.

Theorem 10.12 (Aizenbud-Gourevitch-Minchenko). If G has finitely many orbits on
X and & is an algebraic G-equivariant bundle on X then for anyn € N there is C,, € N,
such that for any n-dimensional g-module T,

dim Homg (7,8 (X, €)) < C,.
Exercise 10.13. Let R act on RP! by shifts. Compute the dimension of (S* (RP))*.

This exercise does not use the technique of this section, but rather demonstrates the
nature of the question considered in the last theorem.

10.1. Proof of Theorem 10.6. This section requires some knowledge of representa-
tion theory.

Definition 10.14. Let V := R" and let w be the standard symplectic form on W,, :=
V @& V*. The Heisenberg group H, is the algebraic group with underlying algebraic
variety W,, x R with the group law given by

(w1, 21)(we, z2) = (w1 + wa, 21 + 22 + 1/2w(wy, wy)).

Define a unitary character x of R by x(z) := exp(2miz).
Definition 10.15. The oscillator representation of H,, is given on the space L?(V') by

(2) (o(z,0,2) )W) = x(p(y) +2)) f(x +y).

Note that the center of H, is 0 x R, and it acts on ¢ by the character x, which can
be trivially extended to a character of V* x R.

It is easy to see that o is the unitary induction of (the extension of) the character x
from V* xR to H, = (V@& V*) xR.

Lemma 10.16. The space of smooth vectors in o is S(V'), and the Lie algebra of H,
acts on it by

(3) o) f:=0,f, o(p)f = wf, o(2)f = 2mizf.

Proof. Formula (3) is obtained from (2) by derivation. Now, it is known that the space
of smooth vectors in a unitary induction consists of the smooth L? functions whose
derivatives also lie in L?. O

Theorem 10.17 (Stone-von-Neumann). The oscillator representation o is the only
irreducible unitary representation of H, with central character x.
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Idea of the proof. Let me ignore all the analytic difficulties. Consider the normal com-
mutative subgroup A :=V x R. Conjugation in H,, defines an action of V' on the dual
group of A. This action has only two orbits. The closed orbit is the singalton {1} and
the open orbit O is the complement to the closed one. The restriction 0|4 decomposes
to a direct integral of characters in O, each “with multiplicity one”. The restriction
of any non-zero subrepresentation p C o to A will also include y, and thus the whole
orbit O of x. Thus p = ¢ and ¢ is irreducible.

Now let 7 be any irreducible unitary representation of H,, with central character y.
Then the restriction of 7 to A will again include all the characters in O with multiplicity
one. Thus 7 is the induction of an irreducible representation of the stabilizer of x in
H,,. However, this stabilizer is A and thus 7 ~ o. 0

Note that the symplectic group Sp(V @& V*) acts on H,, by automorphisms, preserving
the center. Thus the theorem implies the following corollary.

Corollary 10.18. For every g € Sp(V @& V*) there exists a (unique up to a scalar
multiple) linear automorphism of S(V') such that

Since the Lie algebra of H,, generates D,,, this corollary implies Theorem 10.6.

Remark 10.19. The uniqueness part of Theorem 10.18 follows from Schur’s lemmas.
Theorem 10.18 defines a projective representation of Sp(V @& V*) on S(V), i.e. a map
7 : Sp(V & V*) — GL(S(V)) such that 7(gh) = A\,n7(g)7(h). It is not possible
to coordinate the scalars in order to obtain an honest representation of Sp(V @ V*),

but it is possible to obtain a representation of a double cover é;)(V @ V*), called the
metaplectic group. This was shown by A. Weil.

11. DERIVED CATEGORIES
Let A be an abelian category, and C(A) the category of complexes over A.

Definition 11.1. Let ¢ : C' — D be a morphism in C(.A). We say that ¢ is homotopic
to zero if there exists a collection of maps Ay : Cyi1 — Dy such that
YE = )\k @) dkc + defl ¢) )\k—l‘

We say that two morphisms of complexes are homotopic difference is homotopic to
zero. Define the homotopy category of A (denoted K(.A)) to have complexes as objects
and morphisms given by

Homy (A)(C, D) := homotopy equivalence classes in Home()(C, D).
We say that two complexes are homotopy equivalent if they are isomorphic in IC(.A).

The category K(A) is additive but not abelian.

Definition 11.2. A morphism ¢ : C — D in C(A) (or in K(A)) is called a quasi-
isomorphism if the cohomologies H* (i) are isomorphisms for any k.

The derived category will be defined as the localization of K(.A) by quasiisomor-
phisms. The idea is that this category includes slightly more information the the
cohomologies of the complexes. We will also define derived functors between derived
categories, and they will carry more information than the usual derived functors. In
particular, we will be able to compose them, and in this way derive the composition of
a left exact functor and a right exact functor.
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In order to show that the derived categories are well defined we will show that the
quasiisomorphisms satisfy the Ore condition. For this we will need the cone construc-
tion.

Definition 11.3. For (C,d) € C(A) define (Cone(C), Cone(d)) € C(A) by
Cone(C); :==C; ® Ci11, Cone(d)(a,b) := (da + b, —db).

Lemma 11.4. Ezxercise

(1) Cone(C) is homotopy equivalent to zero.
(2) ¢ : C'— D is homotopic to zero if and only if it can be extended to a morphism
@' : Cone(C) — D.

Lemma 11.5. Any morphism of complexes is homotopy equivalent both to an epimor-
phism and to a monomorphism.

Proof. Since cones are homotopy equivalent to zero, any ¢ : C' — D is homotopy
equivalent to the monomorphism ¢’ : C'— Cone(C)@® D given by ¢ (a) := (a,0, ¢x(a))
and to the epimorphism ¢” : C' @ Cone(D) — D given by ¢} (a,b,c) := ¢r(a) +b. O

Let us give some geometric intuition on cones. For every topological space X one
can define a contractible space that includes it by Cone(X) := X x [0,1]/(X x {1}).
Moreover, for any continuous map v : X — Y we can define Cone(v) to be the quotient
of (X x ([0,1]) 1Y) by the equivalence relation (z,0) ~ v(z). Then Cone(v) includes
Y and the quotient is the suspension S(X) = X x [0,1]/(X x {0} UX x {1}). By this
analogy we will now define the cone of a morphism.

Definition 11.6. Let ¢ : C'— D be a morphism in C(A). Define Cone(yp) € C(A) by
Cone(p) := (Cone(C) ® D)/AC. In other words:

Cone(yp); = D; ® C;1, with differential given by d(a,b) = (da + ¢(b), —db).
Notation 11.7. For (C,d) € C(A) and k € Z, denote by C[k] the complex given by
Clkl; = Clk +1i], d[k]; = (—1)*dj.
Lemma 11.8 (Exercise). (1) The following short sequence of complezes is exact
0 — D — Cone(p) — C[1] = 0.

Moreover, the connecting morphism in the corresponding long exact sequence of
cohomologies is H™ ().

(2) Cone(D — Cone(yp)) is homotopy equivalent to C[1].

(3) Cone(Cone(p) — C[1]) is homotopy equivalent to D[1].

The triple C, D, Cone(yp) is called an exact triangle.

Corollary 11.9. ¢ is a quasi-isomorphism if and only if Cone(p) is an acyclic com-
plex.

Proposition 11.10. The system of quasiisomorphisms in KC(A) satisfies the Ore con-
ditions. In other words for any quasi-isomorphism pu : C' — D and any morphism
q: E — D there exists a quasi-isomorphism v : L — E and a morphism p : L — C
with pop=gqouv.
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Proof. By Theorem 11.5 we can assume that u @ ¢ : C' @& E — D is an epimorphism.
Let L := Ker(u® q), and let v : L — E and p : L — C be the projections. From the
short exact sequence 0 - L — C'® E — D — 0 we obtain the long exact sequence

- = H7Y(D) - H(L) - H(C) o H(E) — HY(D) - H"" (L) — ...
Since 1 is a quasiisomorphism, HZ(C’) is mapped isomorphically to H'(D), which implies
that the morphism H'(L) — H'(E) is onto. Since .Hz_l(C’) is mapped isomorphically
to HY(D) ‘we obtaine that the map H'"!(D) — H'(L) is zero and thus the morphism
H'(L) — H'(F) is an isomorphism. Thus v is a quasiisomorphism. O

Definition 11.11. Let C,D € K(A). A (C,D)-triple is a triple (E,v, ), where
v: E — C is a quasiisomorphism and ¢ : £ — D is a morphism.

We say that two (C, D)-triples (E, v, @) and (E',V/,¢) are linked if there exists an
(E, E')-triple (L, o, ) such that both « and § are quasiisomorphisms and

voa=fov, poa=foy.

For L €€ K(A), a join of a (C, D)-triple (E, v, ) and a (D, L)-triple (M, u, 1)) is
defined to be the (C, D)-triple (N,v o a9 o 3), where (N,a, ) is an (£, M)-triple
satisfying ¢ o « = p o 3. Note that the triple (N, «, 5) satisfying the condition always
exists by Theorem 11.10.

Lemma 11.12. The link relation is an equivalence relation, and the equivalence class
of the join of two equivalence classes of triples is well-defined, i.e. does not depend on
the representatives and on the choice of the triple (N, a, [3).

This lemma follows from Theorem 11.10. We leave the deduction as a long exercise.

Definition 11.13. The derived category D(.A) is defined by Ob(D(A)) = Ob(KC(A))
and for C, D € Ob(D(A)),

Homp4)(C, D) = {equivalence classes of (C, D) — triples}.
Lemma 11.14. The derived category D(A) is additive.

Proof. Let C,D € Ob(D(A)), and let n = (E,v,¢) and ¢ = (L,p, ) be (C,D)-
triples. Theorem 11.10 implies that there exists an (E, L)-triple (M, «, ) such that
both o and 3 are quasiisomorphisms and v o « = p o . Then 7 is equivalent to
(M,voa,poa)and ¢ to (M, o1 of3). We define their sum to be (the equivalence
class of) (M,voa,poa+1of). O

Note that the derived category is not abelian. Rather, it is a triangulated category.
Note that we have well-defined cohomology functors H' : D(A) — A.

Definition 11.15. The truncation functors are defined as
(X)) = ( — X"t —>ker(X”—>X"+1) —0— )

TZn(X) = (.-.—>O—>coker(X”_1—>Xn> — X" _>)

Then we have natural transformations 75" (X) — X, X — 72" (X)), which are isomor-
phisms if X H*(X) = 0 for any k > n (resp. k < n).

>n Sn)

7" (resp. T is a (co)reflection onto the subcategories of complexes bounded
from above (below). For any X the morphisms 75"X — X — 72""1X form an exact
triangle.
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Definition 11.16. For a subset S C Z define D(A) to be the subcategory of D(A)
consisting of objects C' with H*(C') =0 for k ¢ S. Define D°(A) := Ugnies D° (A).

Remark 11.17. Db(A) is equivalent to the category of bounded complexes, with link
relation through bounded complexes. We will not have time to prove that.

Lemma 11.18. A = D{0}(A4)

Proof. The functors are given by A+ (--- -0 — A — 0 — ...) and C — H°(O).
One composition is the identity. To see that the other composition is isomorphic to
identity consider the isomorphisms C' — 72°C and H’(C) — 72°C. O]

We will say that an object is glued from two others if together they form an exact
triangle. We will say that it is glued from some set S of objects if it is glued from two
others, each of which is glued from some proper subset of S.

Exercise 11.19. Let a < b € Z and let I := Z N [a,b]. Then any D’(A) is glued from
DI@ (), D1 (4), ... DO (A).

Definition 11.20. A bicomplex in Ais a collection of objects B;; € A parameterized
by Z? and two collections of morphisms dilj : Bij — B;y1,; and déj : Bij — B; j4+1 such
that d? = 0, d3 = 0, and dydy + dad; = 0.

For a bicomplex B = (B;;,d?,dy) define its total complex (Tot(B),d) by

(TOt(B))k = @ Bij’ d= d1 -+ dg.
i+j>k
Note that we can obtain a bicomplex from a complex of complexes by changing the
sign of differentials in every odd column.

Lemma 11.21 (Grothendieck). Let (B,dy,ds) be a bicomplez, and assume that dy is
acyclic, and on any diagonal i +j =k, B;; = 0,49 > 0. Then its total complex Tot B
is acyclic.

Proof. Let ¢ € Tot(B)y with de = 0. Let N be s.t. B;y_; =0 for all i > N.

We want to show that ¢ = dx for some = € Tot(B);_1. We do this by induction on
lst. cix—s =0foralli <N+ 1—1. Asa base we take [ = 0. Then ¢ = 0. For the
induction step, assume ¢;;—; = 0 for all ¢t < N +1 —1[, and let o := cnp1-1p-N—1+1-
Then dia = 0, thus a = d; 8 for some 8 € Byy1_1p-n+i1.- Then ¢ ~ ¢ 1= ¢ —df, and
Nng11x-n-_14 = 0. Thus ¢ = dz’ by the induction hypothesis. Now, ¢ = d(f+2'). O

Corollary 11.22. If v : B — B’ is an isomorphism of bicomplexes that satisfy the
support condition as above. Suppose v is a dy-quasi-isomorphism. Then Totv is a
quasi-isomorphism.

Corollary 11.23. If B is acyclic except at row O and satisfies the support condition
as above then Tot B is quasi-isomorphic to the cohomology compler H**(B).

Proof. Let B,; denote the j-th column of B. Consider the exact triangle of complexes:
7'<OB.]‘ — B.j — TZOB.]'.

The first one is acyclic, and thus B.; — 7=°B,; is a quasi-isomorphism. We get a d;-
quasi-isomorphism of bicomplexes B — 72B. By the previous corollary this implies
a quasi-isomorphism Tot(B) — Tot(t"=°B).
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In the same way, the exact triangle
7<Y(r2°B,;) = 72°B,; — 7' B,;.

gives a quasi-isomorphism 7<}(72°B) — 729B and by taking total complexes, a
quasi-isomorphism H%*(B) — Tot(72°B). Together, we get isomorphisms in the
derived category between Tot(B), Tot(72°B) and H**(B). O

Now we would like to define derived functors. Suppose that A has enough injective
objects.

Lemma 11.24. Any C € C=°(A) has an injective resolution, i.e. is quasi-isomorphic
to a complex consisting of injective objects.

Proof. First of all, let us show that C' can be embedded into an injective complex.
Embed Cj into an injective Iy, and C} into (an injective) I;. Then the composed map
Co — I can be lifted (by the injectivity of 1) to do : Iy — I;. Then we embed C5 into
(an injective) I, and lift the map C,/d§(Cy) — I to a map dj : I1/do(Iy) — I. We
continue building I by induction.

Now we embed C' into an injective complex I°, then I°/C into I' and so on. In
this way we construct a bicomplex 0 — Iy — I; — .... By Theorem 11.23 the total
complex will be quasi-isomorphic to C. 0

Lemma 11.25 (Exercise). Let I,J be bounded on the left complexes consisting of
injective objects, and let p : I — J be a quasi-isomorphism. Then ¢ is an isomorphism
in the homotopic category.

Let FF: A — B be a left-exact functor.

Definition 11.26. For any C' € D(A) choose an injective resolution I and define
DF(C) := F(I). This defines a functor DF' : D(A) — D(B).
We say that an object X € A is F-acyclic if F(X) € DI%B.

Proposition 11.27 (Exercise). Let C' be a bounded on the left complex consisting of
F-acyclic objects. Then DF(C) = F(C).
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