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11. LECTURE 11. MORE ABOUT RS-MODULES

11.1. Analytic proof of Deligne’s criterion.

Proposition 11.1.1. Deligne’s criterion.

Let X be a smooth irreducible projective algebraic
variety of dimension n, D its closed subset, U = X \
D. Let E be a smooth Dy-module. We would like to
consider the restriction of E to curves.

Let Dy denote the set of smooth points of D of di-
menston n — 1. Suppose we know that the restriction
of E to any curve that intersects Dy is RS at the point
of intersection.

Then E is RS (i.e. its restriction to any curve is

RS).
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Proof

Step 1. RH correspondence for U implies that there
exists a smooth algebraic RS Dy-module E' and an iso-
morphism of analytic D-modules v : E,,, — E/ .

Step 2. Consider an algebraic D-module H = Homg(E, E’)
(Hom over Op). Then we can consider v as a flat holo-
morphic section of the sheaf H,, on U.

Let us denote by H’ the direct image of H to X.

Step 3. Since both E and E" are RS along the smooth
divisor Dy the D-module H is also RS along D.

This implies that the section v extends to a mero-
morphic section of the sheaf H! on the open subset
V=UUD,CX.

Step 4. Since the complement X \ V' C X has codi-
mension > 2 the general theorem implies that the section
v is meromorphic on the whole of X.

Step 5. Since X is projective the section v is alge-
braic. Hence the morphism v : E — E’ is algebraic.

The same considerations show that the morphism v !
is algebraic. Hence E ~ E'is RS. ¢
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11.2. Gabber’s Involutivity theorem. Let X be a
smooth algebraic variety of dimension n, M a finitely gen-
erated Dx-module. The singular support S = SS(M)
1s a closed conical subset of the total space T*X of the
cotangent bundle of X.

So far in the study of D-modules we only used the
dimension of this set. But in fact it has some interesting
structures important for the study of D-modules.

The space T™ X has canonical symplectic form — it is
a symplectic variety. It turns out that the subset S =
SS(M) is always coisotropic.

Coisotropic here means that for any smooth point s €
S the tangent space T5(.5) is a coisotropic subspace of the
tangent space T(T*X).

This of course immediately implies that if S # () then
dim(S) > n.

We present a proof of much more general result due to
0. Gabber. Let us formulate some preliminary notions.
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11.2.1. Filtered and graded algebras and modules. Let
A be a an associative algebra with 1. We consider the
increasing algebra filtration (A;) of A. Here we have either
Z or Z filtration.

We always assume

(i) Ai- A C Ay 1€ Ay

(i) A = UA;

(i) If we work with Z-filtration we assume that A is
complete with respect to induced topology.

Usually we fix a filtration on an algebra A. Afterwards,
given an A-module M we can consider corresponding fil-

trations (M;) on M.

Associated graded object is defined by gr(A) = G A;/A; 1,

gr(M) = &M;/M;_,.

Graded algebra, graded modules.
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Rees algebra, Rees module and associated graded alge-
bras and modules.
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We assume that the algebra A is quasi-commutative,
that means that gr(A) is commutative. We also assume
that gr(A) is Noetherian.

Good filtration of an A-module M.

Let Z := Spec(gr(A)).

For any module with a good filtration M we define
(i) A singular support SS(M) C Z

(i) A characteristic cycle Ch(M) as an element in

K*(2).
Claim. SS(M) and Ch(M) are well defined, i.e. do

not depend on a choice of a good filtration.
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11.2.2. Poisson structure on Z. .

Operation P(a,b) on gr(A)
Claim. Let M = A/J. Set J" = gr(J) C gr(A).

Then the ideal J° is closed under the Poisson bracket.

Theorem 11.3. Gabber’s Involutivity Theorem.

Suppose the algebra gr(A) is Noetherian over the
field k of characteristic 0.

Let M be a finitely generated A-module, S = SS(M) C
Z = Spec(gr(A)). Then this subset S is Poisson.

This means that the ideal I C gr(A) is closed with
respect to the Poisson bracket P.
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What does this mean in the case of D-modules.
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Proof of Gaber’s theorem
The proof is based on the following proposition.

Let us consider the algebra of dual numbers D =
kle]/e2.

For any D-module L we set L = L/eL.

We have canonical morphisms L — L — L. This lifts
to a short exact sequence iff the D-module L is free over

D.

Let A be a D-algebra, that is free as D-module. Sup-
pose that the algebra A is commutative. Then we can
define the Poison bracket on the algebra A.

Let Z = Spec(A). For any finitely generated A-
module M define its support S(M) C Z by S(M) =
Supp(M).

Proposition 11.3.1. Suppose A that A is a finitely
generated D-algebra and M a finitely generated A-module.
Assume that A and M are free as D-modules and
that the algebra A is commutative.

Then the subvariety S = S(M) C Z s coisotropic,
e.i. the corresponding ideal in the algebra A is closed
with respect to the Poisson bracket.



