D-modules-Lecture-11

Monday, 14 June 2021 10:04

modules-

73

11. Lecture 11. More about RS-modules

11.1. Analytic proof of Deligne's criterion.

Proposition 11.1.1. Deligne's criterion.

Let X be a smooth irreducible projective algebraic variety of dimension n, D its closed subset, $U = X \setminus$ D. Let E be a smooth \mathcal{D}_U -module. We would like to consider the restriction of E to curves.

Let D_0 denote the set of smooth points of D of dimension n-1. Suppose we know that the restriction of E to any curve that intersects D_0 is RS at the point of intersection.

Then E is RS (i.e. its restriction to any curve is RS).

Proof

- **Step 1.** RH correspondence for U implies that there exists a smooth algebraic RS \mathcal{D}_U -module E' and an isomorphism of analytic \mathcal{D} -modules $\nu : E_{an} \to E'_{an}$.
- **Step 2.** Consider an algebraic \mathcal{D} -module $H = \operatorname{Hom}_O(E, E')$ (Hom over O_U). Then we can consider ν as a flat holomorphic section of the sheaf H_{an} on U.

Let us denote by H' the direct image of H to X.

Step 3. Since both E and E' are RS along the smooth divisor D_0 the \mathcal{D} -module H is also RS along D_0 .

This implies that the section ν extends to a **meromorphic** section of the sheaf H'_{an} on the open subset $V = U \cup D_0 \subset X$.

- **Step 4.** Since the complement $X \setminus V \subset X$ has codimension ≥ 2 the general theorem implies that the section ν is meromorphic on the whole of X.
- **Step 5.** Since X is projective the section ν is algebraic. Hence the morphism $\nu: E \to E'$ is algebraic.

The same considerations show that the morphism ν^{-1} is algebraic. Hence $E \approx E'$ is RS. \diamond

H*= Morns (K.c).

Se K defines a worthism

K* ~ 000

cean K* is severated (anders)

by firite number of sertich

ker {Si...Sir}.=>

S: H ~ 00°

S (5) - werm. on U

D weromorthat new 2

W C 1= 00

75

11.2. **Gabber's Involutivity theorem.** Let X be a smooth algebraic variety of dimension n, M a finitely generated \mathcal{D}_X -module. The singular support S = SS(M) is a closed conical subset of the total space T^*X of the cotangent bundle of X.

So far in the study of \mathcal{D} -modules we only used the dimension of this set. But in fact it has some interesting structures important for the study of \mathcal{D} -modules.

The space T^*X has canonical symplectic form – it is a symplectic variety. It turns out that the subset S = SS(M) is always **coisotropic**.

Coisotropic here means that for any smooth point $s \in S$ the tangent space $T_s(S)$ is a coisotropic subspace of the tangent space $T_s(T^*X)$.

This of course immediately implies that if $S \neq \emptyset$ then $\dim(S) \geq n$.

We present a proof of much more general result due to O. Gabber. Let us formulate some preliminary notions.

11.2.1. Filtered and graded algebras and modules. Let A be a an associative algebra with 1. We consider the increasing algebra filtration (A_i) of A. Here we have either \mathbb{Z}_+ or \mathbb{Z} filtration.

We always assume

- (i) $A_i \cdot A_j \subset A_{i+j}, 1 \in A_0$
- (ii) $A = \bigcup A_i$
- (iii) If we work with Z-filtration we assume that A is complete with respect to induced topology.

Usually we fix a filtration on an algebra A. Afterwards, given an A-module M we can consider corresponding filtrations (M_i) on M.

Associated graded object is defined by $gr(A) = \bigoplus A_i/A_{i-1}$, $gr(M) = \bigoplus M_i/M_{i-1}$.

Graded algebra, graded modules.

gr A- graded alactro qr 4- graded qr A workels

M M;
M=20 for i 4<0
Filtr. M; in bounded below

Rees algebra, Rees module and associated graded algebras and modules.

A, A:

RIRICA[E, E'] - Wasd pla,

It Hi RIMI = MIC. E] P(M) 13 P(H) graded meduce, RIM DE = +. 6 TERRY is a certific claverto Not o liver == R(a) in unless. P(A) /-R/AI=WAI R(M) TER(M)= qvm toli depen we can that filtered seguent sommutative of greatis We wrilly arme get is Northeran

cecin. Let (A. A:) be a closest em.

algebra. Then que = B it rebusely

a loisson algebra

P: B'. B' -> B'*-1

a f(i', e f(i')

[a.c.] = ac-ca f(i+1)

P(ā, E) = [a.c.]

A= Diff[se.,.., xu, D.,... Du]
Filtretin by order of operator.

pre-cer (7)id, pre-

78

We assume that the algebra A is quasi-commutative, that means that gr(A) is commutative. We also assume that gr(A) is Noetherian.

Good filtration of an A-module M.

Let Z := Spec(gr(A)).

For any module with a good filtration M we define

- (i) A singular support $SS(M) \subset Z$
- (ii) A characteristic cycle Ch(M) as an element in $K^+(Z)$.

Claim. SS(M) and Ch(M) are well defined, i.e. do not depend on a choice of a good filtration.

qu'H is qu'A- mobile.

2 = Sper qu'Al.

qu'H : a sheaf on II

Supp qu'H = S c Z - elevel

Supp SS (N) = Supp Ench!

cerir SS(N) = Supp Ench!

vepend on choice if

Good perform.

G= 55(N) = US; - Ewd. emp.

or M(S; & generally

or fourte vank ni

ch (M):- \(\S \);

79

11.2.2. Poisson structure on Z. Operation P(a, b) on gr(A)

Claim. Let M = A/J. Set $J^0 = gr(J) \subset gr(A)$. Then the ideal J^0 is closed under the Poisson bracket.

Theorem 11.3. Gabber's Involutivity Theorem. Suppose the algebra gr(A) is Noetherian over

Suppose the algebra gr(A) is Noetherian over the field k of characteristic 0.

Let M be a finitely generated A-module, $S = SS(M) \subset Z = Spec(gr(A))$. Then this subset S is Poisson.

This means that the ideal $I \subset gr(A)$ is closed with respect to the Poisson bracket P.

What does this mean in the case of \mathcal{D} -modules.

Proof of Gaber's theorem

The proof is based on the following proposition.

Let us consider the algebra of dual numbers $D = k[\varepsilon]/\varepsilon^2$.

For any D-module L we set $\bar{L} = L/\varepsilon L$.

We have canonical morphisms $\bar{L} \to L \to \bar{L}$. This lifts to a short exact sequence iff the D-module L is free over D.

Let A be a D-algebra, that is free as D-module. Suppose that the algebra \bar{A} is commutative. Then we can define the Poison bracket on the algebra \bar{A} .

Let $Z = Spec(\bar{A})$. For any finitely generated A-module M define its support $S(M) \subset Z$ by $S(M) = Supp(\bar{M})$.

Proposition 11.3.1. Suppose A that A is a finitely generated D-algebra and M a finitely generated A-module.

Assume that A and M are free as D-modules and that the algebra \bar{A} is commutative.

Then the subvariety $S = S(M) \subset Z$ is coisotropic, e.i. the corresponding ideal in the algebra \bar{A} is closed with respect to the Poisson bracket.