D-modules-Lecture-13

Monday, 28 June 2021 10:14

89

13. Lecture 13. Verdier Specialization

13.1. Structure of characteristic variety of a holonomic module. Let M be a holonomic \mathcal{D}_X -module, S = SS(M) its singular support.

Corollary of Involutivity Theorem.

S is a Lagrangian subvariety of T^*X

Lemma 13.1.1. Let S be a closed irreducible conic Lagrangian subvariety of T^*X .

Then there exists a smooth locally closed subvariety $Z \subset X$ such that S is the closure of the conormal bundle $N^*Z \subset T^*X$.

Thus, starting with a holonomic \mathcal{D}_X -module M, we can construct several irreducible subvarieties $Z_i \subset X$ that describe its singular support.

13.2. Other approaches to RS-modules.

Claim. A holonomic \mathcal{D}_X -module M is RS iff there exists a good filtration of M with a property that gr(M) is strictly supported on SS(M).

This means, that if we denote by $I \subset O_{T^*X}$ the ideal of functions that vanish on SS(M) then $I \cdot gr(M) = 0$

This lemma is correct but I do not know how to prove it elementary. I would like to describe some way how one can approach this proof. 13.2.1. Functor of **nearby cycles**. There are some functors important defined on holonomic modules that can not be expressed directly in terms of six Grothendieck functors.

Let \mathfrak{A} denote the standard affine line with coordinate $t, 0 \in \mathfrak{A}$ - is a closed subset of \mathbb{A} . We denote by $i: 0 \to \mathbb{A}$ the closed imbedding, by \mathbb{A}^* the punctured line $\mathbb{A} \setminus 0$ and by j the open imbedding $j: \mathbb{A}^* \to \mathbb{A}$.

Consider a holonomic module N on $|\mathbb{A}^*|$ and set $M = j_*(N)$. This is a module, and it is holonomic.

Let M' denote the maximal quotient of M supported at 0. Set $\Psi(N) := i^!(R)$.

Thus we constructed a functor $\Psi: Hol(\mathbb{A}^*) \to Hol(pt)$ via $\Psi(N) := i^!(R)$.

Carin. R= j. At (Imin =coter)

N > L- salyone f di.

Pener. M

R= M (t'z) urlange

claim (ill is on exact fantam

lil It extends to One

In fact, now we can repeat this construction in more general situation. Let X be an algebraic variety and t a regular function on X. We can interpret t geometrically as a morphism $t: X \to \mathbb{A}$.

Set $X_0 = t^{-1}(0)$ and $X^* = t^{-1}(\mathbb{A}^*)$.

Then in the same way we define the functor

 $\Psi: Hol(X^*) \to Hol(X_0).$

Exact, extends to Dhe

93

13.3. **Verdier construction.** Let X be a smooth variety and $Y \subset X$ a closed smooth subvariety.

Verdier constructs a deformation of X to the variety N^*Y – the total variety of the conormal bundle to Y in X.

Namela la constructad on almabraia registra V and a

namely ne constructed an algebraic variety A and a morphism $t:Z\to \mathbb{A}$ such that

- (i) $Z_0 = t^{-1}(0)$ is isomorphic to N_Y^*
- (ii) The variety $Z^* = t^{-1}(\mathbb{A}^*)$ is canonically isomorphic to $\mathbb{A}^* \times X$ with equivariant projection $Z^* \to \mathbb{A}^*$

Construction.

Specialization functor.

Sp: Dul (X) — Due (N) Surance

Except function

Exception: X=Ab, 4=p6

No - dual line.

Sp: 5 = 6

Sp: 72 = 5

Sg(etz)=0

M-blen. DV-wodule.

ycx le a smooth invol.

subvariety

(i) Spy (M) =0 if 4 is as one of special scores for M.

(ii) If y is a component of My then din Sp. (Ne) & neet, GAR claim. Mis RS iff there is an equal of