Monday, 5 July 2021 10:24

שmodules-

96

14. Lecture 14. Correction about Verdier Specialization functor

14.1. **Deformation to the normal cone.** Let X be a smooth variety, $Y \subset X$ a closed smooth subvariety. Consider a normal bundle N_Y to the subvariety Y and denote by N_YX the total space of this bundle.

Informal remark . Consider Y as a subvariety in X and in N_YX (zero section). Then tubular neighborhoods of Y in these two spaces are very close.

Formally this means that there exists a deformation of the space $N_Y X$ to X.

Claim. There exists a smooth algebraic variety Z with the action of G_m and a morphism $p: Z \to \mathbb{A} = \mathbb{A}^1$ such that

- (i) p is G_m equivariant.
- (ii) $Z_0 = p^{-1}(0)$ is isomorphic to $N_Y X$ compatible with the action of G_m .
- (iii) The complement $Z^* = p^{-1}(\mathbb{A}^*)$ is isomorphic to $G_m \times X$ compatible with the action of G_m .

Construction of the deformation Z.

Consider the variety $W = \mathbb{A} \times X$ and a subvariety $Y = Y \times 0 \subset W$. The variety W has natural G_m action. We define Z' to be a blow-up of W at $Y, p: Z' \to Y$ the natural projection.

We get Z by removing from Z' closed subset that is blow-up of $0 \times X$ at Y.

98

14.1.1. Nearby cycles. Let $p:Z\to \mathbb{A}$ be a projection. denote by t the corresponding function on Z.

We define the functor $\Psi: Hol(Z^*) \to Hol(Z_0)$

Starting with a holonomic module M consider the module $M' = M \cdot t^s$ over the ring k[[s]].

Then we set $\psi(M)$; = $Cone(j_1(M') \to j_*(M'))$.

This functor is also defined on the category $D_h(\mathcal{D}_X)$.

Definition. Let X be a smooth variety and $Y \subset X$ a smooth subvariety. We define the **Specialization** functor

 $Sp: D_h(X) \to D_h(N_Y X \text{ as } Sp(M) = Psi \circ q^!(M))$ where $q: Z^* \to X$ is the projection.

Gu equivarient D-woduce.

Let Gu at on variety W

M-Dw-module.

Suppose Gen acts on W as

0-wochele and compet

with outer and or

Dw' N - M is bur invariant.

Such module is colled

weathy Gu equivariant.

2d 564e en de tre souland

eservator.

Two ortions of San H

1) 8(9) -derivation of the author of Gen

2\ 5 -> NEX = Dw

5(5) aven of varty.

de: 5(1) -5(5): M-2M 13 a more

of D-modeles.

cospecialization.

2050 + Due (4) - Due (Nigh)

For : 0 (N, x) - 0 (N, x).

let V - 1 & fe a vet luck Vx dual Bindle.

TV - trace space.

Four: D(TV) => D(TV)

V-vetr (fac. x ... 24 V* -cook &1... &n... 9 (V)= k[x, --]i? D (VM = k[x], 4] ==]e.

np

consider as the line A

a water Drunder La

consequent to function es

Lo= {e [8cae}

1, V + V* ~ A

m*(L4) e D (V*V*)

D(V) ~ D(V*)

M eD(V) ~ P! (M) eD(V*V*)

~ Ly & P!*(M)

endules Four maps PS taks.

COSPID(X) - Du (N's X)

COSP (Mafror (Sp(A))

Susperture,

Hethe (X).

Then for any yCX

app (M) C Hae (N's X)

gr H (N's X)

N's K C T'X

(i) V/c compt & V/c grot for any is true varies are equal

100

Coller's trevery

Definition. E-algebra às an omn, algebra (t usa 1 and EA) str Etm