
LECTURE 15 IN D-MODULES II - BEILINSON-BERNSTEIN LOCALIZATION

1. Semi-simple Lie algebras

Let g be a Lie algebra over k, and let U(g) be its universal enveloping algebra, i.e.
the associative algebra generated by g with relations xy − yx = [x, y]. The functor
g → U(g) is the left adjoint functor to the forgetful functor from associative algebras
to Lie algebras. U(g) is a quotient of the free algebra T (g) =

⊕
i g

⊗i, and the natural
grading on T (g) defines a filtration on U(g) called the Poincare-Birkhoff-Witt filtration.
Let S(g) = O(g∗) denote the symmetric algebra of g.

Theorem 1 (Poincare-Birkhoff-Witt). The natural map S(g) → GrU(g) is an iso-
morphism.

A Lie algebra g is called solvable if the sequence g0 = g, gn := [gn−1, gn−1] is eventu-
ally 0. g is called simple if it has no ideals, i.e. is simple as a module over itself.

All the simple non-trivial algebras are classified:

sln, son, spn, E6, E7, E8, F4, G2

On g = gln we have the natural trace form: 〈X,Y 〉 = tr(XY ). It is symmetric
and g-invariant: 〈[Z,X ], Y 〉 = −〈X, [Z, Y ]〉. Any g maps into gln using the adjoint
representation. This defines the Killing form on g: 〈X,Y 〉 := tr(ad(X) ◦ ad(Y )).

Definition 2. g is called semi-simple if it satisfies one of the equivalent conditions:

(i) g has no solvable ideals
(ii) The Killing form is non-degenerate
(iii) g =

⊕
i gi with gi simple and non-trivial.

From now on we assume that g is semi-simple, and G is some connected algebraic
group with Lie algebra g. For example, g = sln, G = SLn.

Definition 3. A Cartan subalgebra is a maximal commutative subalgebra h such that
ad(x) is diagonalizable for any x ∈ h.

Definition 4. Borel subalgebra = a maximal solvable subalgebra. Denoted b.

Example: g = sln, h = diagonal matrices, b=upper-triangular matrices. These
choices are non-unique, but all Cartan subalgebras are conjugate, and so are all Borel
subalgebras. The group corresponding to a Borel subalgebra is called a Borel subgroup.
It is self-normalizing.

Definition 5. Flag variety X := B = G/B := the variety of all Borel subalgebras.

Example: for SL2 it is P1. For sln, it is the variety of all flags. A flag is a sequence
of vector spaces V0⊂V1⊂...⊂Vn with dim Vi = i. The flag variety is always projective.

Let T⊂G be the connected algebraic group corr. to h, and NT⊂G be its normalizer.

Proposition 6. W := NT /T is a finite group.
1



2 LECTURE 15 IN D-MODULES II - BEILINSON-BERNSTEIN LOCALIZATION

W is called the Weyl group. For GLn and SLn it is permutations.

Example 7. g = sl2. Spanned by {e, h, f} where

e =

(
0 1
0 0

)

h =

(
1 0
0 −1

)

f =

(
0 0
1 0

)

[h, e] = 2e [h, f ] = −2f [e, f ] = h

Cartan: h = Span{h}, Borel: b = Span{e, h}.

Exercise 8. Let V be a finite-dimensional irreducible representation of sl2.

(i) V contains a highest-weight vector, i.e. a non-zero vector v with ev = 0 and
hv = λv.

(ii) λ = dim V − 1
(iii) V is spanned by v, fv, . . . , f λv.
(iv) Describe the action of e and of h in this basis.
(v) Conclude that for every integer λ ≥ 0 there exists a unique irreducible represen-

tation Vλ of highest weight λ.

Explicitly: Vλ = homogeneous polynomials in 2 variables of degree λ. e acts by x∂y,
f by y∂x and h by x∂x − y∂y. Hint: use the Casimir operator:

Δ = h2 + 2h + 4fe ∈ z := z(U(g)).

Exercise 9. For every (semi-simple) g, we have z := z(U(g)) ∼= S(g)g = O(g∗)g.

Notation 10. Let χ0 : z → k denote the evaluation at 0 ∈ g∗, and let z+ denote the
kernel of χ0. Let M(g, χ0) denote the category of g-modules with central character χ0,
and Mf (g, χ0) denote the subcategory of finitely-generated g-modules.

2. Beilinson-Bernstein localization - formulation

Let G act on X. This gives g→ Γ(X,DX), and thus U(g) → Γ(X,DX). This defines
functors Loc(M) : M(g) ↔ M(DX) : Γ by Γ(F) := F(X) and Loc(M) := DX⊗U(g)M .

Exercise 11. Loc is left adjoint to Γ.

From now on we let X be the flag variety. In this case we know that Γ and Loc
are equivalences of categories. Beilinson and Bernstein proved this in general. In more
detail:

Theorem 12.
0 → U(g)z+ → U(g) → Γ(X,DX) → 0

Theorem 13. ∀F ∈ M(DX), ∀i > 0, Hi(X,F) = 0 and Loc(F)� F .

For G = SL2 we already know that both theorems hold.

Corollary 14. Γ and Loc induce equivalence of categories M(DX) → M(g, χ0), that
maps coherent modules to finitely-generated ones.

Proof. Step 1 The canonical map M → Γ(Loc(M)) is an isomorphism ∀M ∈ M(g, χ0).
M(g, χ0) is the category of modules over the algebra U(g)/z+U(g), which by
Theorem 12 is isomorphic to Γ(X,DX). Thus we have Γ(X,DX)I � M , and
thus

Γ(X,DX)J → Γ(X,DX)I → M → 0
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Since Loc is right-exact, and by Theorem 13 Γ is exact, we have

Γ(X,DX)J // Γ(X,DX)I // M //

��

0

Γ(X,DX)J // Γ(X,DX)I // Γ(Loc(M)) // 0

Step 2 The canonical map F → Loc(Γ(F)) is an isomorphism ∀F ∈ M(DX).
By Theorem 13, the map is onto. Let K denote its kernel:

0 → K → F → Loc(Γ(F)) → 0

By the exactness of Γ we have

0 → Γ(K) → Γ(F) → Γ(Loc(Γ(F))) → 0,

and by Step 1 the last map is an isomorphism. Thus Γ(K)=0. By Theorem 13
this implies K = 0.

Step 3 Coherent ↔ finitely generated. Exercise.
�

3. Applications to Harish-Chandra modules

Let K⊂G be a symmetric subgroup, i.e. K = Gθ, where θ is an automorphism of G
with θ2 = Id. In the applications, G and K are defined over R, and K(R) is a maximal
compact subgroup in G(R).

Definition 15. A (g, K)-module is a g-module with a compatible action of K.
Compatible means that the two actions coincide on k = Lie(K), and that

∀k ∈ K and ∀α ∈ g we have τ(k)π(α)τ(k−1) = π(Ad(k)α).

Denote the category of all finitely generated (g, K)-modules with central character
χ0 by M(g, K, χ0). Harish-Chandra proved that they are all K-admissible, i.e. that
the multiplicities of all irreducible representations of K are finite (possibly zero). For
G = SLn, we have K = SOn. Example: G = SL2, M = SpanC({z2n}), as complex
valued even functions on the unit circle. Then

ez2n =
in

2
z2n−2+inz2n+

in

2
z2n+2, hz2n = nz2n−2−nz2n+2, fz2n =

in

2
z2n−2−inz2n+

in

2
z2n+2

The category M(g, K, χ0) is equivalent to the category of certain smooth represen-
tations of G(R) (proved by Casselman-Wallach). In the example above, M corresponds
to C∞(P1). In general, the equivalence sends a smooth representation π to the space
of its K(R)-finite vectors. Thus, modules in M(g, K, χ0) (Harish-Chandra modules)
are algebraic skeletons of smooth representations.

Under the Beilinson-Bernstein localization they correspond to K-equivariant DX-
modules.

Definition 16. A K-equivariant DX-module is a DX-module F with an isomorphism
p0

2F ∼= a0F satisfying the cocycle condition. Here, a, p2 : K × X → X are the action
map and the projection. M(DX , K):=the category of all K-equivariant modules.
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A weakly equivariant DX-module is a DX-module F with an action of k s.t.

∀U⊂X, ξ ∈ F(U), d ∈ DX(U), k ∈ K we have dk(π(k)ξ) = π(k)(dξ).

On such a module we have 2 actions of k = Lie(K)-one by deriving the action of K,
and another one from k→ DX(X).

Exercise 17. (i) A weakly -equivariant module F is equivariant if and only if the
two actions of k coincide.

(ii) DX is weakly equivariant, while OX is equivariant.
(iii) ∀F ∈ Mcoh(DX , K), SingSupp(F)⊂

⋃
x∈X CNX

Kx

(iv) If K has finitely many orbits on X then any F ∈ Mcoh(DX , K) is holonomic,
and irreducible modules correspond to irreducible representation of component
groups of stabilizers of points:
ρ ∈ Irr(Kx/K

0
x) → local system on Kx → DKx−module →!∗-extension.

Proposition 18 (Classical). K = Gθ has finitely many orbits on the flag variety X.

Exercise 19. Prove this for G = SLn.

Exercise 20. The functors Loc and Γ give Mf (g, K, χ0) ∼= Mcoh(DX , K)

Corollary 21. (i) Any M ∈ Mf (g, K, χ0) has finite length.
(ii) Mf (g, K, χ0) has finitely many classes of irreducible objects.
(iii) Classification of irreducibles in Mf (g, K, χ0) - atlas program.

Example 22. Trivial g-module corresponds to OX and to the open orbit U on X.
It lies in (jU )∗OU , which is the principal series representation. It consists of K-finite
smooth functions on X.

Casselman proved that any irreducible M ∈ Mf (g, K, χ0) can be embedded into the
principal series. He used asymptotics of matrix coefficients. Beilinson and Bernstein
can deduce the Casselman embedding theorem from their localization theorem above.
As an intermediate step they prove that all the modules in Mcoh(DX , K) are regular
singular. This is proved orbitwise, using the fact that K is reductive.

3.1. Other central characters. For any central character χ : z → k, we can define
Dχ

X-the algebra of twisted differential operators (TDO), as we have done for the projec-
tive space. For χ in some lattice these are differential operators on a certain invertible
sheaf Oχ on X.

Theorem 23 (Beilinson-Bernstein).
(i) Γ : M(Dχ

X) → M(g, χ) is exact and essentially surjective.
(ii) If χ is regular then Γ is an equivalence of categories.

4. Center, nilpotent cone, and Springer resolution

Let N⊂g∗ ∼= g denote the nilpotent cone.

Theorem 24 (Kostant). (i) N = zeroes(z+S(g))
(ii) N is normal.
(iii) G has finitely many orbits on N .
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For SLn: (i) follows from the fact that z+ is generated by the coefficients of the
characteristic polynomial (viewed as polynomials in the matrix entries), and (iii) from
Jordan’s theorem. Part (ii) follows for any G from the fact that orbits have even
dimension. This in turn holds since they are symplectic manifolds.

To resolve the singularities of N we will need the momentum map m : T ∗X → g∗.
To define it, let x ∈ X. Then the action gives ax : G → X, and dax : g→ TxX. Now,

m(x, ξ)(α) := ξ(dax(α))

Explicitly, the stabilizer of x is a Borel subgroup B⊂G with Lie algebra b⊂g, and

mx : T ∗
xX ∼= (g/b)∗ ∼= b⊥⊂N (g∗)

Theorem 25 (Springer). m is a resolution of singularities.

Sketch of proof. On an open set we have an isomorphism, since regular nilpotent ma-
trices belong to only one Borel subalgebra (preserve only one flag). The map is proper
since X is complete. �

5. Proof of Theorem 12

Φ : U(g) → Γ(DX), gr Φ : S(g) → Γ(grDX).

Proposition 26. 0 → z+S(g) → S(g) → Γ(grDX) → 0

Proof. S(g) = O(g∗), grDX
∼= O(T ∗X). gr Φ is given by m : T ∗X → g∗. We have

m = m′ ◦ i : T ∗X
m′

→ N
i
⊂g∗,

where m′ is a resolution of singularities, i is a closed embedding, and N is normal.
Thus m′∗ : O(N ) ∼= O(T ∗X) is an isomorphism, and i∗ : O(g∗) � O(N ) with kernel
z+O(g∗). �

Proposition 27. ∀z ∈ z, Φ(z) = χ0(z) Id.

Proof.

Step 1 Φ(z) ∈ Γ(X,DX)G

Step 2 Γ(X,DX)G = k Id
O(N )G = k, since there is a unique open orbit. m′∗ : O(N )G → O(T ∗X)G.
Since G preserves the filtration on DX , we obtain by induction that

Γ(X,FiDX)G = k ∀i

Step 3 ∀zz+, z1X = 0.

�

Proof of Theorem 12. For any p ≥ 0 define

Ip := z+ ∩ Up(g), Jp := z+U ∩ Up(g) =
∑

i+j=p

Ui(g)Ij

It is enough to prove exactness of the complex

Jp → Up(g) → Γ((Dx)p) → 0
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for any p ≥ 0. We prove by induction. The base p = 0 is easy: U0(g) = k = Γ(OX) =
Γ((DX)0). Also, I0 = J0 = 0. For the induction step let p > 0 and define

Kp := S(g)z+ ∩ Sp(g) =
⊕

j>0

S(g)p−jS(g)gj

We have the following commutative diagram

0

��
Jp−1

//

��

Up−1(g) //

��

Γ((DX)p−1) //

��

0

Jp
//

��

Up(g) //

��

Γ((DX)p) //

��

0

Kp
//

��

Sp(g) //

��

Γ(gr(DX)p) // 0

0 0

All the rows and columns are complexes. We need to show that the second row is
exact. The 1st row is exact by the induction hypothesis, and the 3rd row by Proposition
26. Thus, The 2nd column is exact by the PBW theorem, and the 3rd by left exactness
of Γ. Thus, it is enough to show that the first column is exact, i.e. Jp � Kp. For
this it is enough to show that Ij � S(g)gj for any j > 0. Since Uj(g) � Sj(g) is a
finite-dimensional map of g-modules, we have z ∩ Uj(g) = Uj(g)

g � Sj(g)
g. Thus, any

a ∈ Sj(g)
g is the symbol of some z′ ∈ z∩Uj(g). Set z := z′−χ0(z

′) ∈ z+∩Uj(g) = Ij . �


