D-modules-Lecture2

Monday, 5 April 2021 10:22

D-

modules-

13

2. Regular singular D-modules

We have seen that the the category $M(D_X)$ of Dmodules contains a very important subcategory $Hol(\mathcal{D}_X)$ of holonomic D-modules. This subcategory has many
wonderful properties. In particular, on this subcategory
(more precisely on its derived version) we can define six
Grothendieck functors.

It turns out that the subcategory $Hol(\mathcal{D}_X)$ contains another important subcategory $RS(\mathcal{D}_X)$ - subcategory of regular singular D-modules.

This category is important in analytic applications since distribution solutions of RS D-modules have very good analytic behavior. The category RS is also preserved by all functors.

2.1. Regular singularity in dimension 1. Consider the case when X is a smooth curve. Let F be a holonomic D-module on X. After removing several points we can assume that F is smooth.

Let \bar{X} be the smooth closure of X. Fix a point $a \in \bar{X}$. We would like to analyze the structure of F near point a.

First consider analytic picture. Choose a parameter t at point a and identify some analytic neighborhood of a with unit disc D. We set $D^* = D \setminus a$.

We get the following analytic picture. D –open unit disc, E-trivial vector bundle on D^* . A section of E we consider as a holomorphic vector function on D^* (or some open subset W of D^*).

We would like to describe sections satisfying the following ODE

 $(\Xi) \qquad \partial_t f = B(t) \cdot f,$

where B(t) is a meromorphic matrix valued function on D holomorphic on D^* .

- (i) Local existence.
- (ii) V is the fiber of E at some point $b \in D^*$. Monodromy operator $\mu: V \to V$.

Remark. Classical theory about an operator of order n

 Ξ as df = Af where A is a holomorphic function on D.

Examples 2.1.2. (i) Suppose E is one dimensional and A is a constant function λ .

The solution is given by $f = t^{\lambda}$.

(ii) Suppose that A(t) is the constant matrix function. We can assume that A is a Jordan matrix. The solution is explicitly written. It has entries $t^{\lambda} \cdot (\ln t)^k$

We will prove the following

Proposition 2.1.3. Consider a Fuchsian system $df = A(t) \cdot f$.

Then it is meromorphically equivalent to a Fuchsian system with constant matrix A'

Remark. It is not correct that this equivalence can be made holomorphic at 0.

17

A solution f of the ODE Ξ is a multivalued holomorphic function. We can consider it as a function of t and log(t). In case of Fuchsian system this function has tempered grows, i.e. it satisfies inequality of the type $|f(t)| \leq C|t|^{-n} \cdot (\ln t)^k$.

Definition. A system of equations Ξ is called **Regular singular** or **RS** if all its solutions have tempered growth.

We will see that any RS equation Ξ is meromorphically equivalent to a Fuchsian equation.

18

2.1.4. Algebraic definition of Regular singularities for curves.

If we have Frehren

an enjugate it

of din >1 then

We would like to give a purely algebraic definition of this notion.

Let X be a smooth curve, $s \in X$. Set $U = X \setminus a$. We denote by $j: U \to X$ the open imbedding.

Choose a local parameter t at point s and consider the vector field $d = t\partial_t$ on X. Denote by \mathcal{D}'_X the sheaf of subalgebras in \mathcal{D}_X generated by \mathcal{O}_X and the operator d.

Let E be a smooth D-module on U. Consider \mathcal{D}_{X} module $F = j_*(E)$.

Definition. We say that E is **RS** at point s if F has an \mathcal{D}'_X -submodule E' that is O-coherent and its restriction to X^* equals E. Such a module E' we will call a **lattice** in F.

We say that E is RS if it is RS at all points s in the

smooth completion of ${\cal U}$

It is clear that if E' is a lattice , then for any $k \in \mathbb{Z}$ the sheaf $t^k E'$ is also a lattice. This implies that if E is RS then any O-coherent submodule of F lies inside some lattice in F.

2.1.5. RS D-modules in dimension 1.

Definition. Let X be a curve, F a \mathcal{D}_X -module. We say that F is RS if it is holonomic and its restriction E to an open dense subset U is RS at all points s of the smooth completion Y of the curve U.

A complex F of \mathcal{D}_X -modules is called RS if it is holonomic and all its cohomology modules are RS.

Proposition 2.1.6. In dimensions 0 and 1 the categories D_{RS} are preserved by all functors \mathbb{D} , π_* , $\pi^!$, $\pi_!$, π^* .

2.1.7. Regular singularity along smooth divisor.

Consider now more general situation.

Let X be a smooth algebraic variety of dimension n, $S \subset X$ a closed smooth divisor, $U = X \setminus S$, $j : U \to X$ the open imbedding.

We denote by \mathcal{D}'_X the sheaf of subalgebras of \mathcal{D}_X generated by \mathcal{O}_X and by vector fields tangent to S

Let E be a smooth \mathcal{D}_U -module, $F := j_*(E)$. We call an S-lattice in F and \mathcal{D}_X -submodule E' such that

- (i) Restriction of E' to U coincides with E
- (ii) E' is \mathcal{D}'_X -invariant.

Definition. We say that E is RS with respect to S if the sheaf F has a lattice.

In the same way as before this implies that any Ocoherent subsheaf of F lies inside some lattice.

To 2.16 Ti: X - y , 14.5 - earves

To 2.16 Ti: X - y , 14.5 - earves

The dominant.

The helpen Dy-module.

Then re is RS iff

The re is RS

a test curve the morphism $\nu:(C,s)\to (X,S)$, where C is a smooth curve, $s\in C, \nu:C\to X$ a morphism such that $nu(s)\in S$ and $nu(C\setminus s)\subset U$.

We will prove the following key criterion of RS

Proposition 2.1.9. E is RS with respect to S iff for any test curve $\nu:(C,s)\to(X,S)$ the D-module $\nu*(E)$ is RS at the point s.

sing the Do-wodule.

Suppose the S is EUNChrister and Eis RS near some point & ES. Then it is RS on the whole of 3.

Precisely we have often MC + , WDS,

Then Ed RS web S.

Prof. Consider E CF(W)
a lattere. Then E'is

Or schevent and

D'-invariant.

Set E= l*(E") 1 F CF

Set E = l*(E") 1 F CF

Set E = l*(E") 1 F CF

This follows from

Lemma. Let X the als. var. Knows.

Vex open (to cotion XIV is x

>1. Let & be a coherent

On-module without terson.

Then Co () is coherent

bx-module

F=j*f

E' = f|w

en B' 1 F

S = 60 V)

Lin S \ (Sn W) = down S = down x - 2

Not cohenent subnot N

for E' = ept 1 F =

99

= ext nixt

NCS, NCX-W

E'c direct runge of

E'ly u W

X smooth ouve JEX

b= Xx. E-emisten a

F=1*E>E'-Cottere

En le file E. fideu. spend

en et lis spece and

its eigen dulues und

multiplacitées.

Pr = R. UR+1) V(R1+2),...-P1+(c-1).

En her factuation

E = E0 2 E. 2 ... 2 En

P (E/E) = R (E/E) V R(E, E) U. REMEN

E (E: (E: m) = 2 (E: 1/E) +1

(dit) = t

フィー タル=Ro x- 24, 12,21,. , 24+1 E' definer a cabact in c RG = 2+2, ... Pu+2 RED does not depend on chose of E' Einen two choices ZE' site OS Parli < 1 for all?