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3. LECTURE 3. RS IN HIGH DIMENSION

We have discussed the notion of RS in dimensions < 1.

How to define the notion of RS in higher dimensions?

Recall, that in case of holonomic modules and com-
plexes we could give a definition using restrictions to points.
So we can define RS using restrictions to curves. Later we
will discuss other approaches.

Let X be an algebraic variety. A test curve on X
18 a morphism v : C' — X, where C' is a smooth curve.
Definition. . A D-complex F on X is called RS if it
is holonomic and for any test curve (C| v) the restriction
(F)is RS on the curve C.

We denote by Dye(Dy) the category of RS-complexes
(a full subcategory of D(Dy)).

A Dx-moduleis called RS if it is RS as a Dy-complex.
These modules form a full subcategory RS(Dy) of M(Dy).

Discussion — Pro and contra of this definition.
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Our goal is to show the following

Theorem 3.1.

1. Subcategory Drs is a triangulated subcategory
closed under extensions.

2. Categories of RS compleres are preserved by all
functors

7t ., m, ™, B,D,.

3. A Dx-complex I’ is RS iff all its cohomology
modules are RS.

4. The subcategory RS(Dyx) C M(Dx) is an abelian
subcategory closed with respect to subgquotients and ex-
lensions.

22

3.2. RS for smooth modules. We know that holo-
nomic complexes can be generated by images of smooth
‘D-modules. So it is natural to study the notion RS first
for smooth D-modules.

Let X be a smooth variety, £ a smooth D-module on
X. We can think about E as a vector bundle with a flat
connection V.

For any test curve v : C' — X we see that Dg-complex
'(E) up to cohomological shift coincides with the vector
bundle v*(E) with induced connection. Hence E is RS iff
it satisfies the following condition
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23
Let us consider slightly more general sitnation.

3.2.1. Regular singularity along o closed subset S. Let
X be a smooth algebraic variety of dimension n, S C X
a closed subset (usually it will be a divisor).

Set U = X \ S and denote by j : U — X the open
imbedding.

Let K be a smooth Dy-module. We would like to define
a notion that £ is RS along the subset S.

In this situation we consider pointed test curves
Namely, this is a pointed smooth curve (C,s) equipped
with a morphism v : C" — X such that v(s) € S and
v(C'\s)CU.

We say that E is RS along S if it satisfies the fol-
lowing condition

(RS) For any pointed test curve (v, C,s) the bundle
v'(E)on C'\ sis RS at the point s.

In the study of smooth RS-modules important role is
played by the following informal

Principle. If the condition RS holds for many
pointed test curves then it holds for all pointed
test curves.
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3.22. RS along smooth divisor S. Let us consider the
important case when X is smooth and S C X is a smooth
divisor. We denote by Dy g the sheaf of subalgebras in Dx
generated by Oy and by vector fields tangent to S.

Locally we can choose coordinate system xq, ..., 2, on
X such that S is defined by equation ¢ = 0, where t = .
Then the algebra Dy g is generated by Oy and vector
fields 9; fori=1,...,n—1 and d = t9,

Let E be a smooth Dy-module, where U = X'\ .S. We
set F' = j,(F).

Definition. 1. We call an S-lattice in F' a coherent
Oy-submodule E' such that the restriction of E' to U
coincides with E.

2. We say that the S-lattice E' is admissible if is
Dy g -invariant.

3. We say that the smooth D-module E is alge-
braically RS along S if the sheal F' has an admissible
S- lattice.

[t is easy to prove the following

Lemma 3.2.3. (i) Any two S-lattices E', E" are (lo-
cally) t-equivalent, i.e. there exists a number N such
that E" C tNE' and E' c t—"E"

(i) If F' has an admissible S-lattice, then any Ox-
coherent subsheaf F' C F' is contained in an admissible

S-lattice. ,
~=g 97 U=
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We will prove the following key criterion of RS

Proposition 3.2.4. E is algebraically RS along S iff
it is RS along S, i.e. ils restriction to any test curve

is RS. B nihed
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Corollary 3.2.5. Let S be a smooth divisor.

Suppose there exists an open dense subset S' C S
and its open neighborhood W in X such that the re-
striction of the smooth Dy module E to W is RS along
S'. Then E is RS along S.

Proof
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3.2.6. Divisor with normal crossings.
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Deligne’s criterion
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