D-modules-Lecture-4

Monday, 19 April 2021 10:11

modules-

29

4. Lecture 4. Main theorem about regular singular \mathcal{D} -complexes

Let us denote by I(X) the set of isomorphism classes of simple holonomic \mathcal{D}_X -modules. Any holonomic \mathcal{D}_X module F has finite length, so it defines a finite subset $Cont(F) \subset I(X)$ (content of the module F). If F is a holonomic \mathcal{D}_X -complex we define its content Cont(F) := $\cup_i Cont(H^i(F))$ (union of contents of its cohomologies.

Our goal is to show the following

Theorem 4.1.

- 1. Subcategory D_{RS} is a triangulated subcategory closed under extensions.
- 2. Categories of RS complexes are preserved by all functors

 $\pi^!, \pi_*, \pi_!, \pi^*, \boxplus, \mathbb{D}$.

- 3. A holonomic \mathcal{D}_X -complex is RS iff cont(F) consists of RS-modules. In particular, this holds iff its cohomology complexes are RS.
- **4.** The subcategory $RS(\mathcal{D}_X) \subset M(\mathcal{D}_X)$ is an abelian subcategory closed with respect to subquotients and extensions.

Discussion

- 4.2. First properties. Step 1. Categories RS are closed with respect to extensions.
- **Step 2.** Functors $\pi^!$ preserve RS. Functor \boxplus preserves RS.
- **Step 3.** If $j: Z \to X$ is a locally closed imbedding then the functor j_* preserves RS.

If $\pi: X \to Y$ is a finite morphism then the functor π_* preserves RS.

Step 4. Let Z be a smooth irreducible affine variety, E a smooth RS \mathcal{D} -module on Z and $j:Z\to X$ be a locally closed embedding. Then the \mathcal{D}_X -module $j_*(E)\subset M(\mathcal{D}_X)$ is RS. We call such a module an elementary RS \mathcal{D}_X -module.

Every RS-complex is glued from elementary RS-modules (and their homological translates).

-belonant. we can choose to cit. smooth offine alved E= Si (F) is comoth. F-RS, Esist or moth Rs. Elementary RS - modele a medula je (31, STU IK is offer, smooth, was ER RS module on U. Every PS complere on X & qued from elem modules one their cehow shitts. jev -> x, v-effer >> : Mine lor. Noved rented. Sites a D-medule.

4.3. **Good competifications.** Our proof uses deep results from Algebraic Geometry related to resolution of singularities of algebraic varieties over a field of characteristic 0.

Definition. Let U be an irreducible smooth affine algebraic variety. A **good compactification** of U is a smooth projective variety \bar{U} equipped with an open imbedding $j: U \to \bar{U}$ such that the complement $S = \bar{U} \setminus U$ is a divisor with strict normal crossings.

Theorem 4.4. Any smooth affine irreducible variety

Moreover, if we have a morphism $\pi: U \to P$, where P is a projective variety, then we can find a good compactification \bar{U} such that the morphism π extends to a morphism $\pi': \bar{U} \to P$.

32

Good compactifications are useful since for them we have very explicit description of some RS modules.

Let $X = \overline{U}$ be a good compactification of U and $S \subset X$ be a divisor with normal crossings.

Let F be a \mathcal{D}_X -module. We say that F is algebraically RS with respect to S if it is a union of \mathcal{O}_X -coherent $\mathcal{D}_{X,S}$ -modules.

Claim. 1. Let E be a smooth RS \mathcal{D}_U -module, $F = j_*(E)$. Then F is a \mathcal{D}_X -module, such that it and all subquotients of it are algebraically RS. In particular, they are all RS.

2. Let ν be the natural morphism $\nu: j_!(E) \rightarrow j_*(E)$. Then the modules $L(S, E) = Im(\nu)$ and $Coker(\nu)$ are RS.

Due cot - a. L.I I

sleptran gener. fy Cop and vester fields tempert to 5.

4.5. **direct image preserves** RS. We would like to show that the functor of direct image preserves RS.

Step 5. Reduction to the following

Claim. X is a good compactification of a surface U, $F = j_{C}$ where E is a smooth RS \mathcal{D}_{U} -module, $p: X \to Y$ a morphism of X onto a smooth projective curve Y. Then the complex $p_*(F)$ on Y is RS.

Proof of Vedention.

To: X — y , F-Is D. com.

Wast k=TixP i2 Ds

(i) Con arame X. 4 are affire

liil can arame X=RM, y=A⁴

To: X— y projection

Siil X— y voicition

REFES RS,

Vire THUIT

CHESKY

WAXE , Seite Cis a consul 770 E-priestra UCX Pren, Ean O-OS \$ smooth 4-smoth curve. Ti:0 -77 ToxEx OS