Monday, 24 May 2021 10:06

D-

modules-

5

8. Lecture 8. Proof of Riemann - Hilbert Correspondence

8.1. Construction of the functor Ω .

8.1.1. DeRham complex of a \mathcal{D}_X -module. Let X be a smooth algebraic variety of dimension n. Starting from a DX-module M we construct a complex of sheaves DR(M) on X as follows.

We set $DR^k(M) := M \otimes_{\mathcal{O}_X} \Omega^{k+n}(M)$ – this is a sheaf of \mathcal{O}_X -modules. The differential $d: DR^k(M) \to DR^{k+1}(M)$ is defined by standard formulas for DeRham complex - this is a differential operator of degree 1.

Note that this is an exact functor $DR: M(\mathcal{D}_X) \to Com(Sh(X))$. In fact its target category can be described slightly more precisely.

Let us denote by $M(\mathcal{O}_X)^d$ the additive category whose objects are quasi-coherent \mathcal{O}_X -modules and morphisms are differential operators. Then the functor DR is a functor $DR : Com(M(\mathcal{O}_X) \to Com(M(\mathcal{O}_X)^d)$.

JEH 45=5 = dx; ORIMIN depres -n 60

- **Claim.** (i) The complex $DR(\mathcal{D}_X)$ gives a natural locally projective resolution of the module ω in the category of right \mathcal{D}_X -modules.
- (ii) For any \mathcal{D}_X -module M we have a canonical isomorphism $DR(M) = DR(\mathcal{D}_X) \otimes M$ (tensor product over \mathcal{D}_X)

In other words, the complex DR(M) in derived category represents the derived tensor product over \mathcal{D}_X

$$M \mapsto \omega \otimes^L M$$

Using the bi-complex construction we extend the functor DR to the exact functor on the categories of complexes $DR: Com(M(\mathcal{D}_X)) \to Com(M(\mathcal{O}_X)^d)$.

8.1.2. Functor An of analytic extension. Given a smooth algebraic variety X we have a natural functor $An: M(\mathcal{O}_X) \to M(\mathcal{O}_{an})$. It is locally given by tensor product $M \mapsto \mathcal{O}_{an} \otimes M$ (tensor product over \mathcal{O}_X).

By definition this functor transforms \mathcal{O}_X -linear morphisms into O_{an} linear. But it is also clear that it maps differential operators into differential ones. Thus we can consider this functor as a functor $An: M(\mathcal{O}_X)^d \to Sh(X_{top})$.

Now we define an exact functor $\Omega: Com(M(\mathcal{D}_X)) \to Com(Sh(X_{top}))$ as a composition of functors DR and An. $\Omega(M) = An(DR(M))$.

We consider this functor as a functor $\Omega: D(\mathcal{D}_X) \to D(Sh(X_{top}))$

56

8.2. Properties of the functor Ω .

Elementary properties.

1. Functor Ω commutes with restriction to an open subset.

- 2.. Functor Ω commutes with functor $\pi^!$ if π is a projection $X = Y \times Z \to Y$ with a smooth fiber Z.
- 3. If M is a smooth \mathcal{D}_X -module then $\Omega(M) = Loc(M)[n]$, where $n = \dim(X)$.

Key property 4.

For any morphisms $\pi: X \to Y$ there exists a functorial morphisms of functors $i: \Omega \circ \pi_* \to \pi_* \circ \Omega$. If π is projective this morphism is an isomorphism.

This follows from the basic result of GAGA. We will discuss this later.

5. Let $j: U \to X$ be an open embedding such that $D = X \setminus U$ is a divisor with normal crossings.

Let M be a smooth RS \mathcal{D} -module on U.

Then we have natural isomorphisms $j_*(\Omega(M)) \longrightarrow \Omega(j_*(M))$

This is proven by explicit computations in coordinates.

57

Functor Ω commutes with all functors on the category $D_{RS}(\mathcal{D}_X)$

First we have to show that the functor DR on category $D_{RS}(\mathcal{D}_X)$ commutes with six Grothendieck functors.

Step 1. On subcategory $D_{RS}(\mathcal{D}_X)$ the functor Ω commutes with π_* .

It is enough to prove this for elementary modules. Hence it is enough to prove this for a smooth RS-module E. Using resolution of singularities we can write the morphism π as a composition of open embedding with normal crossing and a projective morphism. In these cases the statement

is correct.

Important that we already have a morphism $i: \Omega(\pi_*E) \to \pi_*(\Omega(E))$ and we only have to show it is an isomorphism.

Step 2. On subcategory $D_{RS}(\mathcal{D}_X)$ the functor Ω commutes with π_1 .

The same proof as in Step 1.

Step 3. The functor Ω commutes with functors π !

It holds for smooth morphisms. Enough to check for a closed embedding $i: Z \to X$. Set $U = X \setminus Z$. Using standard exact triangle we reduce to commuting with j_* .

Step 4. The functor Ω commutes with duality.

ATH - THA F den. AR (F) - ROLLET ISON 1127x , Em 2 アニット(生) ジューメ エード・パ2ーショ Europe to comider one HEF

T: 2 -> 4

To 2 -> 2 ~ consentes with Ti Enough to counter E: 2 > X closed embed リコメーン とでドッチーjagit H a familorial morphism

J: DR (ØF) → DJR/F) 0x -10 (60) Id -> DD

Thus we have established that on the category $D_{RS}(\mathcal{D}_X)$ the functor Ω commutes with all functors.

Step 5. Functor Ω maps $D_{RS}(\mathcal{D}_X)$ to $D_{con}(X)$

Step 6. Functor $\Omega: D_{RS}(\mathcal{D}_X) \to D_{con}(X)$ is fully faithful.

How (F,H) => Hom /NF, NH) =

on Some relieve.

Clevin, F,H = D(Ox).

Hom D(Ox) (F,H) = H° (ourseless on pxt).

Clevin. 10 F & H CD(Dx)

Clevin. 10 F & H CD(Dx)

Pan: => (F PM)

P=X > pt

P=X > pt

P=X > pt

P=X > pt

Step 7. Functor $\Omega: D_{RS}(\mathcal{D}_X) \to D_{con}(X)$ is essentially surjective.

Let & be smerth, Le local system on x. then I a smooth RS Or-module . Ala Loc (El= L Proch (believe). Ear X= \$ good cubers
Entend Ear to cohevers analytic Ofan module Fan. Dcc-disc. D = D - 0 E smoot Par - modele en D4 is unidvoing operates Fond as Dar medice on on D with the same he and verticalled corporation.

Then on D' we have

isom those = to
t -paramet