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9. LECTURE 9. CONTINUE THE PROOF OF RH
CORRESPONDENCE

9.1. GAGA. Functor An.

Let X be a complex algebraic variety. We mostly as-
sume that X is smooth, though this is not important.

We have described a functor An : Coh(Ox) — Coh(O,,).
The properties of this functor are described by the follow-
ing theorem
Theorem 9.2. GAGA

(i) Functor An is exact and hence lifts to derived
cateqory.

(ii) Functor An compatible with functor w*

(ii1) For a morphism 7 : X — Y we have a canon-
tcal morphism of functors i : Anomw, — m o An, both
on categories Coh(X) and on its derived category.

(iv) If morphism w is projective, then this morphism
i 18 an isomorphism

(v) If X is a projective variety, then the functor An
s an equivalence of categories.
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In addition it is easy to see that the functor An maps
differential morphisms between coherent sheaves into dif-
ferential morphisms.

Using this fact it is easy to generalize GAGA to the
category of coherent D y-modules.

Indication of the proof of GAGA.

This finishes the proof of RH.

Some technical details I will give as problems.
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9.3. Theorems de Finitude. General method by Deligne.
History.

Theorem 9.4. Functor ) maps holonomic complexes
into constructible ones.

Proof We will use the following

Criterion of constructibility. Let H be a complex
of sheaves on X,,. It lies in D, (X) iff the following
condition holds

(Con) For any locally closed subvariety Z C X there
exists an open dense smooth subvariety U C Z such that
the restriction [j;(H) is locally constant in derived cate-
gory.
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Proof of the Theorem. Let F' be a holonomic
Dyx-complex, H = Q(X). Since on some non-empty open
subset U C X the complex F' is smooth we see that the
restriction of H to U is LS and hence constructible.

Let U be the maximal open subset U C X on which
H is constructible. We want to show that U = X.
Suppose not.

Let W be an irreducible component of X \ U. I want
to show that H is locally constant on some open dense
subset Wy € W. This, of course, will be a contradiction
with maximality of U.

Claim. [ can reduce to the following situation.

X=PxW, W=pxW
U and U §W are open in X.
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Assuming this consider the projection p : X — W.
This is a proper morphism, so p.(H) = p.(Q(F)) =
Q(p«(F)). since p.(F) is holonomic this complex is lo-
cally constant on some open subset Wy C W.

We can assume that it is locally constant everywhere.

Let Z = XJJ Then we have an exact triangle Fy; —
F—-F 7

Applying the functor p, we get that p.(Fy is con-
structible, and hence can assume locally constant.

However Z is a disjoint union of W and some other
subset Z'. Hence p.(Fyz) = Fyy @ R for some object R.

Thus we see that Fyy is a direct summand of a locally
constant object, and hence it is locally constant.
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9.5. Analytic corollary of RH. Functor Sol.
F -coherent Dy-complex. We define Sol(F') := Rhom(F, O,,).
Explicit description using resolutions.

Claim. Sol(F) = Q(ID(F))
Let x € X. Set Oy 4, and O, for be germs of analytic

and formal lower series at the point x.

Proposition 9.5.1. . let F' be an RS Dx -complex.
Then Hom(F, O, 4,) = Hom(F, Oy for)
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