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1. D-modules on affine spaces

Fix an algebraically closed field K of characteristic 0.

Definition 1.1.

Dn = K 〈x1, . . . , xn, ∂1, . . . , ∂n〉 / 〈[xi, xj] = 0, [∂i, ∂j] = 0, [∂i, xj] = δij〉 .

Date: May 17, 2019.
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Exercise 1.2. Dn is the subalgebra of EndKK [x1, . . . , xn] generated by derivations and
multiplication operators. By derivations we mean linear endomorphisms that satisfy
the Leibnitz rule: ∂(fg) = (∂f)g + f(∂g).
Definition 1.3. Let M be a finitely generated Dn-module. Then a solution of M is a
homomorphism from M to some Dn-module of functions (say, C∞ (Rn) or C−∞ (Rn)).
Example 1.4. To any linear system of PDEs {L1f = 0, . . . , Lkf = 0}, we associate
the Dn-module Dn/ 〈L1, . . . , Lk〉.
Exercise 1.5. The center is: Z (Dn) = K.
Notation 1.6. M is the category of left Dn-modules,Mr is that of right modules,Mf

— finitely generated left modules.
1.1. Dimension.

Lemma 1.7. For any M ∈M (Dn) either M = 0 or dimKM =∞.
Proof. 0 = tr [x1, ∂1] = tr 1 = dimKM . �

This motivates other ways of measuring the “size” of a module.
Definition 1.8. A filtered algebra is an algebra A equipped with an increasing sequence
of subspaces F iA, i ≥ 0, F iA ⊂ F i+1A, ⋃i F iA = A, such that 1 ∈ F 0A and F iA ·
F jA ⊂ F i+jA. A filtration is called good if F iA is f.g. over F 0A, and F i+1A =
F 1A · F iA for i� 0 (i large enough).
Example 1.9. A = K [y1, . . . , ym], F iA := {deg ≤ i}.

Example 1.10. Bernstein filtration: F iDn := span
{
xα∂β

∣∣∣ |α|+ |β| ≤ i
}

Definition 1.11. For a filtered algebra (F iA) the associated graded algebra is GrF A :=⊕
i (F iA/F i−1A), F−1A := 0.

Example 1.12. GrDn = K [x1, . . . , xn, y1, . . . , yn].
Let A be a good filtered algebra.

Definition 1.13. A filtered A-module M is a module equipped with an increasing
sequence of subspaces F iM , such that F iA ·F jM ⊂ F i+jM , ⋃i F iM = M . A filtration
is called good if F iM are finitely generated over F 0A, and F i+1M = F 1A · F iM for
i� 0.
Exercise 1.14. Any two good filtrations are comparable, i.e. F i−mM ⊂ ΦiM ⊂
F i+mM .
Proof. Suppose that ∀i : FN+iM = (F 1A)i FNM . Since FNM is finitely generated
over F 0A, and ⋃i ΦiM = M , one can assume that FNM ⊂ ΦN ′M . Then

FN+iM =
(
F 1A

)i
FNM ⊂

(
F 1A

)i
ΦN ′M ⊂ ΦN ′+i

M.

By the same argument, ΦN ′+iM ⊂ FN ′′+iM . Now FN+iM ⊂ ΦN ′+iM ⊂ FN ′′+iM for
all i ≥ 0. �

Remark 1.15. A filtered algebra is good iff it’s good as a module over itself.
We define GrF M for a filtered module in a similar way as for algebras. We will

sometimes write Ai for F iA and M i for F iM if the filtration is understood.
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Exercise 1.16. Assume that Ai is a good filtered algebra. Then F iM is good iff
GrF M is finitely generated over GrF A.

Proof. Suppose that M i := F iM is good, and M i+1 = A1M i starting from some N .
Take generators mi of MN over A0. Then they their symbols generate GrM over
GrA. Conversely, suppose that GrM is finitely generated over GrA by elements mi,
degmi = di. Then the filtras M i are obtained by iterated extensions from M j/M j−1,
which are finitely generated over A0, so M i are also finitely generated over A0. On the
other hand,

A1M i/M i '
(
A1/A0

) (
M i/M i−1

)
and if A is good then

M i+1/M i =
∑
j

(
Ai−j+1/Ai−j

) (
M j/M j−1

)
=

(
A1/A0

)∑
j

(
Ai−j/Ai−j−1

) (
M j/M j−1

)
=
(
A1/A0

) (
M i/M i−1

)
where j runs through the degrees of the generators of GrM over GrA and i is assumed
to be larger than the maximum of these degrees. �

Exercise 1.17. Fix a good filtered algebra. M admits a good filtration iff it’s finitely
generated.

Proof. Suppose first that M admits a good filtration. Then M i+1 = A1M i for i ≥ N
and MN is finitely generated over A0. Thus the generators of MNover A0 generate M .
Conversely, assume M is generated by a finite set xiki=1 and consider the filtration
M i := Aix1 + · · · + Aixk. Since Ai is finitely generated over A0, M i is also finitely
generated over A0, and M i+1 = A1M i as long as Ai+1 = A1Ai. Since any element
m ∈M is representable as ∑k

i=1 aixi, we have m ∈Mn, where n is big enough so that
ai ∈ An.Therefore M = ⋃

iM
i. �

Definition 1.18. For a filtered module F iM and a short exact sequence 0 → L →
M → N → 0, define induced filtrations on L and M by F iL := F iM ∩ L and F iN :=
F iM/F iL . A map f : A→ B of filtered modules is called strict if f (Ai) = f (A)∩Bi.

Exercise 1.19. Let L→M → N be an exact sequence of filtered modules and strict
maps between them. Then the corresponding sequence GrL → GrM → GrN is also
exact.

Exercise 1.20. For a good filtered module F iM and a short exact sequence 0→ L→
M → N → 0, the induced filtration on N is good, and if GrA is Noetherian then so is
the induced filtration on L.

Proof. Note that all maps in 0→ L→ M → N → 0 are strict. Thus GrN is a factor
of GrM , so it’s finitely generated over GrA; and GrL is a submodule of GrM , so if
GrA is Noetherian then GrL is finitely generated over it. �

Remark 1.21. The category of filtered modules is not Abelian — say, the shift map
doesn’t have a cokernel.

Theorem 1.22. Suppose that A is good and GrF A is Noetherian. Then so is A.
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Proof. Let M be a finitely generated A-module, and L ⊂ M . Pick a good filtration
F . Then GrF M is finitely generated, GrF A is Noetherian, hence GrF L is finitely
generated, so F iL is good, so L is finitely generated over A. �

Corollary 1.23. Dn is Noetherian. The universal enveloping algebra of any finite
dimensional Lie algebra is Noetherian.

Notation 1.24. (i) If f, g : N→ Z we say f ∼ g if f = g for i� 0.
(ii) ∆f (i) := f (i+ 1)− f (i).

Exercise 1.25. Let f : N → Z be an integer sequence. Show that the following are
equivalent:

(1) f is eventually polynomial of degree ≤ d.
(2) ∆f is eventually polynomial of degree ≤ d− 1.
(3) f(j) ∼ ∑d

i=0 ei
(
j
i

)
where ei ∈ Z.

Theorem 1.26 (Hilbert). Let R = ⊕
Ri be a graded finitely generated K [x1, . . . , xn]-

module. Then b (i) := dimKR
i is eventually polynomial of degree ≤ n, called the

functional dimension of R.

Proof. Define (R [1])i := Ri+1.

0→ kerxn → R
xn→ R [1]→ cokerxn → 0

This is a morphism of graded modules, so kerxn and cokerxn are graded modules.
Thus:

dimK (kerxn)i − dimKR
i + dimKR

i+1 − dimK (cokerxn)i = 0
On the other hand, xn acts by 0 on both ker and coker, so by induction on n we know
that ∆ dimKR

i is eventually polynomial, therefore so is dimKR
i. �

Corollary 1.27. Let F iM be a good filtered Dn-module. Then bM (i) := dimF iM is
eventually polynomial of degree ≤ 2n.

Proof. bM = bGrM , and note that GrDn ' K [x1, . . . , xn, y1, . . . , yn]. �

Remark 1.28. Now since for any two filtrations F i−kM ⊂ ΦiM ⊂ F i+kM , the degree
and leading coefficient are invariant (for a fixed filtration of the algebra).

Definition 1.29. The degree of bM (i) is called the dimension of M and denoted d(M),
and the leading coefficient of d(M)!bM (i) is called the (Bernstein) degree of M and
denoted e (M).

Theorem 1.30 (Bernstein inequality). Let M be a finitely generated Dn-module. If
M 6= 0 then n ≤ d (M) ≤ 2n.

Remark 1.31. Note that d (M) 6= 0 is equivalent to dimKM = ∞, so Bernstein’s
inequality can be viewed as a generalization of that.

1.2. Proof of Bernstein’s inequality. Define N0 := kerxn ⊂ M , N ` := ∂`nN
0.

They are viewed as Dn−1-modules.

Lemma 1.32. ∂`n : N0 ' N ` and N ` are linearly independent.
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Proof. Let m ∈ N0, m` := ∂`nm. Then since
[
xn, ∂

`
n

]
= −`∂`−1

n , we have

xnm` = −`m`−1

Thus xn “inverts” ∂n on N ` (like in reps of sl2). Thus ∂`n : N0 ' N `.
N ` are linearly independent because they are different eigenspaces of xn∂n. �

Corollary 1.33. If kerxn 6= 0 and Bernstein’s inequality holds for Dn−1 then d (M) ≥
n.

We use notation D`n := F `Dn.

Proof. Let m 6= 0, m ∈ kerxn. Then D2`
n m ⊃

⊕`
i=0 ∂

i
nD`n−1m = ⊕`

i=0D`n−1∂
i
nm. Thus

dimD2`
n m ≥ ` dimD`n−1m ≥ const ·`n . �

Corollary 1.34. If cokerxn 6= 0 and Bernstein’s inequality holds for Dn−1 then d (M) ≥
n.

Proof. By the previous corollary we can assume kerxn = 0. Now, cokerxn = M/xnM
is a Dn−1-module. Assume it’s finitely generated. Then dimF iM − dim xnF

i−1M ≥
cin−1. If it’s not finitely generated then take a finitely generated submodule. Thus
∆ dimF iM ≥ cin−1, so d (M) ≥ n. �

Exercise 1.35 (Amitsur-Kaplansky lemma). Let L be an uncountable algebraically
closed field. Let V be an L-vector space of countable dimension. Then any linear
operator on T : V → V has nonempty spectrum, i.e. T −λ Id is not invertible for some
λ ∈ L.

Proof. Assume by way of contradiction that the spectrum of T is empty. Let v ∈ V be
a non-zero vector. Then (T − λ)−1 v, λ ∈ L is an uncountable set. Thus it is linearly
dependant. Picking a dependence and bringing it to a common denominator we obtain
p(T )v = 0, for some polynomial p. On the other hand, p is a product of linear factors,
thus p(T ) is invertible and has no kernel. Contradiction. �

Proof of Bernstein inequality. Extend the field so that it becomes uncountable. By the
previous lemma, xn − λ is not invertible for some λ. Now apply the automorphism
xn 7→ xn− λ. Now the theorem follows by induction from the previous corollaries. �

2. Holonomic modules, and an application.

2.1. Another proof of Bernstein inequality.

Lemma 2.1. (Exc). The center of Dn is K.

Lemma 2.2. Let F iM be a good filtration on a Dn-module M . Then the action defines
an embedding of Din into Homk(F iM,F 2iM).

Proof. The map is defined by definition of filtration. Let us prove that it is an embed-
ding by induction on i. For i = 0 this is obvious. For a bigger i, let d 6= 0 lie in the
kernel. Since d is not scalar and thus not central, there exists l such that [d, xl] 6= 0
or [d, ∂l] 6= 0. Assume WLOG [d, x1] 6= 0. Then [d, x1] ∈ Di−1

n and by the induction
hypothesis [d, x1]v 6= 0 for some v ∈ F i−1M . However, [d, x1]v = dx1v − x1dv = 0,
since v, x1v ∈ F iM . We arrived at a contradiction and thus d = 0. �
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Joseph’s Proof of Bernstein inequality. Suppose by way of contradiction that d(M) ≤
n − 1. Then dimHomk(F iM,F 2iM) < cin−1(2i)n−1 = c′i2n−2. On the other hand
dimDin > c′′i2n. This contradicts the previous lemma. �

In the nest section we will state without proof a deep geometric theorem that implies
the Bernstein inequality.

Definition 2.3. A finitely generated Dn-module M is called holonomic if d(M) = n.

Exercise 2.4. If M is holonomic then it has length at most e(M).

Corollary 2.5. (Exc). Let M be a Dn-module, and let F iM be a (not necessary
good) filtration on M . Suppose that dimF iM ≤ e

(
i
n

)
for some e. Then M is finitely-

generated. Moreover, it is holonomic and of length at most e.

We are now ready to give the first application to the theory of distributions. Let P
be a polynomial in n real variables. Let λ ∈ Cwith Reλ > −1 and consider the locally
integrable function |P |λ.

Theorem 2.6. (Bernstein, Gelfand, Gelfand, Atiya, ...) Consider |P |λ as a family
of generalized functions. Then this family has meromorphic continuation to the entire
complex plane with poles in a finite number of arithmetic progressions.

This theorem follows from an algebraic statement saying that there exists a differen-
tial operator d with polynomial coefficients (that depend also on λ), and a polynomial
b in λ such that d|P |λ = b(λ)|P |λ−1. Let us formulate this algebraic statement more
precisely, over any field, and prove it.

Notation 2.7. Fix a polynomial P ∈ k[x1, . . . , xn]. Let K := k(λ) be the field of rational
functions. Consider the Dn(K)-module MP := M ′

p ⊗k[λ] K, where M ′
p := spanQP λ−l,

where Q ∈ k[x1, . . . , xn,λ] and l ∈ Z≥0, with the relations PP λ−l = P λ−l+1, and the
action of Dn[λ] given by

∂i(QP λ−l) = ∂i(Q)P λ−l +Q(λ− l)∂i(P )P λ−l−1.

Lemma 2.8. The module MP is finitely generated, and, moreover, holonomic.

Proof. Define a filtration on MP by
F iMP := QP λ−is.t. degQ ≤ (degP + 1)i.

It satisfies dimF iMP ≤ cin. It’s not clear whether this is a good filtration, but by the
Corollary above we still get that MP is finitely generated and holonomic. �

Corollary 2.9. There exist d ∈ k[x1, . . . , xn, ∂1, . . . , ∂n,λ] and b ∈ k[λ] s.t. dP λ =
bP λ−1.

Proof. Consider the increasing chain of submodules
Dn(K)P λ ⊂ Dn(K)P λ−1 ⊂ . . . .

This chain has to stabilize. Thus d̃P λ−k = P λ−k−1 for some d̃ ∈ Dn(K). Applying the
automorphism λ 7→ λ + k we get that d̂P λ = P λ−1 for some d̂ ∈ Dn(K). Now, we can
decompose d̂ = d

b
. �

Finally, let us show that holonomic modules are cyclic.
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Theorem 2.10. Let R be a simple Noetherian non-Artinian ring, and M a finitely
generated Artinian left R-module. Then M is cyclic.

Proof. By induction on length, we assume that M = R 〈u, v〉 with Rv simple. Since R
is not Artinian, and M is Artinian, there exists d such that du = 0. On the other hand,
since R is simple, R = RdR, so there is b such that dbv 6= 0. Now M = R 〈u+ bv〉.
d (u+ bv) = dbv ⊂ Rv, so since Rv is simple, 〈u+ bv〉 ⊃ Rv. Thus bv ∈ 〈u+ bv〉, so
u ∈ 〈u+ bv〉.?? Expand?? �

Corollary 2.11. Holonomic Dn-modules are cyclic.

3. Associated varieties and singular support

Let A be a finitely-generated commutative K-algebra without nilpotents.

Definition 3.1. Let M be an A-module. Denote by AnnM the annihilator ideal
AnnM := {a ∈ A |aM = 0} and define the support SuppM to be the zeros of AnnM
in the maximal spectrum SpecmA.

If M is finitely generated then SuppM is the support of the coherent sheaf on SpecA
that corresponds to M . This follows from Nakayama’s lemma. If A = K[x1, . . . , xn]
then SpecmA = An.

The algebra Dn is not commutative, and in order to associate a variety to a finitely-
generated Dn module we will use the associated graded algebra K[x1, . . . , xn, ξ1, . . . , ξn]

Definition 3.2. Two modules M,N over the same algebra are called Jordan-Holder
equivalent if there exist two increasing chains of the same finite length of submodules
0 = M0 ⊂M1 ⊂ · · · ⊂Mm = M and 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nm = N and a permutation
σ ∈ Symm s.t. Mi/Mi−1 ' Nσ(i)/Nσ(i)−1 for any i.

Lemma 3.3. Let F,Φ be two good filtrations on a Dn-module M . Then GrFM and
GrΦM are Jordan-Holder equivalent.

Proof. Case 1. F,Φ are neighbors, i.e. F iM ⊂ ΦiM ⊂ F i+1M ⊂ Φi+1M . In this case
we have a well-defined map φ : GrFM → GrΦM , and Kerφ ' CoKerφ. Thus GrFM
and GrΦM are Jordan-Holder equivalent.

In the general case, one can construct a sequence of neighboring filtrations F iM +
Φi+lM , which starts with F and ends with a shift of Φ. �

Lemma 3.4. Let 0 → L → M → N → 0 be a short exact sequence of A-modules.
Then SuppM = SuppN ∪ SuppL.

Proof. Clearly AnnM ⊂ AnnN ∩AnnL. Now, if a ∈ AnnN ∩AnnL then for any m ∈
M we have am ∈ L and thus a2m = 0. This shows that AnnN ∩AnnL ⊂ Rad AnnM .
So AnnM ⊂ AnnN ∩ AnnL ⊂ Rad AnnM and thus their zero sets coincide. �

Corollary 3.5. If two A-modules are Jordan-Holder equivalent then they have the same
support.

Definition 3.6. The associated variety AV (M) of a finitely-generated Dn-module M
is the support of GrFM for some good filtration F .

By definition, AV (M) is a closed subset of the affine space A2n. By Lemma 3.3
and Corollary 3.5 it does not depend on the choice of a good filtration.
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Lemma 3.7 (Bernstein). Let M be a Dn-module generated by a finite subset S ⊂ M .
Let I ⊆ Dn be the annihilator of S, and let J ⊆ A := K[x1, ..., xn, ξ1, ..., ξn] be the ideal
generated by the symbols of the elements of I. Then the associated variety AV (M) is
the zero set of J.
Proof. We first show that J vanishes on AV (M). Let S = {m1, . . . ,ms}. Define a
good filtration on M by Fi(M) = Bim1 + ...Bims, where Bi ⊂ Dn is the i−th Bernstein
filtration. If d ∈ I ∩ Bj satisfies dmj = 0 for any mi ∈ S, then for any c ∈ Bi we have

dcmj = [d, c]ml + cdml = [d, c]ml ∈ Fi+j−1M.

Thus, σ(d)m̃l = 0 where σ : Dn −→ A is the symbol map, and m̃l is the image of ml

in grFM . Since {m̃l}sl=1 generate GrF M , we get that σ(d) ⊂ Ann(GrF (M)). Thus
J ⊂ Ann(GrF (M)) and thus J vanishes on AV (M).

Let us now show by induction on s that Ann(GrF (M)) ⊂ Rad(J). It is enough to
show that for any homogeneous polynomial a ∈ Ann(GrF (M)), there exist a natural
number t and an operator d ∈ I such that σ(d) = at.

For s = 1 note that by definition of GrF M , there exist operators c, c′ ∈ Dn such
that c ∈ Bdeg(a), c

′ ∈ Bdeg(a)−1, σ(c) = a, and cm1 = c′m1. Then d := c − c′ ∈ I and
σ(d) = a.

For the induction step, we will repeatedly use the fact that for any submodule L ⊂M ,
we have AV (L) ⊂ AV (M). This is so since GrF ′ L ⊂ GrF (M), where F ′ is the induced
filtration on L. Note also that a vanishes on AV (M).

Let S1 := {m1, . . . ,ms−1}, let I1 ⊂ Dn denote its annihilator, and L1 denote the
submodule of M generated by S1. Since AV (L1) ⊂ AV (M), a vanishes on AV (L1)
and thus the induction hypothesis implies that there exist d1 ∈ I1 and a power t1 such
that σ(d1) = at1 . Let S2 := {d1ms} and L2 be the submodule of M generated by it.
Since AV (L2) ⊂ AV (M), a vanishes on AV (L2) and thus the base of the induction
implies that there exist d2 ∈ Dn and a power t2 such that d2d1ms = 0 and σ(d2) = at2 .
Now take d := d2d1 and t := t1 + t2. �

Now we would like to argue that the dimension of AV (M) equals d(M). This follows
from Hilbert’s definition of dimension.
Definition 3.8. LetX ⊂ An be an affine algebraic variety and let I ⊂ A := K[x1, . . . , xn]
be the ideal of functions vanishing on X. The standard filtration on A induces a good
filtration F i on A/I. By Theorem 1.26, the function f(i) := dimF i(A/I) is eventually
polynomial. Define dimX to be the degree of this polynomial.
Exercise 3.9. For any M ∈Mf (Dn), dimAV (M) = d(M).
3.1. Digression on several definitions of dimension of algebraic varieties. Let
us first define dimension by properties and then discuss several equivalent definitions.
Definition 3.10. A dimension is a correspondence of a non-negative integer to every
algebraic variety such that

(i) dim(An) = n
(ii) For a (locally closed) subvariety Y ⊂ X, dim(X) = max(dim Y, dim(X \ Y )).
(iii) For a finite epimorphism ϕ : X → Y, dimX = dim Y .

The uniqueness of dimension follows from the Noether normalization lemma.
Lemma 3.11. For any affine algebraic variety X, there exists a finite epimorphism
ϕ : X → An for some n.
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A finite morphism is a morphism ϕ : X → Y such that for any open affine U ⊂ Y ,
the preimage ϕ−1(U) is affine and the algebra O(ϕ−1(U)) of regular functions on it is
finitely-generated as a module over O(U). Finite morphisms are proper and have finite
fibers.

There are several constructions of the dimension function. One of them is the Krull
dimension: the maximal length of a strictly increasing chain of closed irreducible non-
empty subsets, minus one. Another is the Hilbert dimension: define the dimension of
a variety as the maximal among the dimension of open affine subvarieties, and for an
affine subvariety use Definition 3.8. Another way is to define the dimension of an affine
variety to be the transcendence degree of its field of rational functions (over K).

3.2. The geometric filtration. There is another very natural filtration on the algebra
Dn - filtration by the degree of the differential operator. In other words, deg xi =
0, deg ∂i = 1. This filtration is called the geometric filtration.

Note that the associated graded algebra by this filtration is again isomorphic to
K[x1, . . . , xn, ξ1, . . . , ξn], but with a different grading. Note also that this is a good al-
gebra filtration, and all the lemmas we proved about the arithmetic filtration hold for
the geometric filtration, with one exception: the geometric filtras are infinite dimen-
sional. Thus we cannot define a ”geometric dimension”, but we can define a ”geometric
associated variety”. It is called the singular support, or the characteristic variety.

Definition 3.12. Let M ∈ Mf (Dn) and let F be a filtration on M which is good
with respect to the geometric filtration on Dn. Define the singular support of M to be
SingSupp(M) := Supp(GrF M).

Proposition 3.13. d(M) = dim SingSupp(M).

We will now sketch an elementary proof, and give a deeper proof in the next section.

Sketch of proof. It is enough to prove the proposition for a cyclic module M = Dn/I.
Consider a sequence of filtrations F i

l on Dn given by degl(xi) = 1, degl(∂i) = l. Then
for any d ∈ I and for l big enough, the symbol of d with respect to Fl is the highest
homogeneous summand of the symbol of d with respect to the geometric filtration.
Thus it is enough to show that dim Supp GrFl

M = dim Supp GrFl+1 M for every l,
where F l

iM = F l
i (Dn)/(I ∩ F l

i (Dn). By Hilbert’s definition of dimension this amounts
to computing that the eventual-polynomial functions dimF l

iM and F l+1
i M have the

same degrees.
Warning: the filtrations Fl on Dn are not good by our definition. However, they are

still “almost” good, namely the Rees algebra ⊕i∈Z t
iF i
lDn is finitely generated. It is

possible to work with such filtrations in a similar way to good filtrations. �

3.3. Involutivity of the associated variety. The affine space A2n has a natural
symplectic form. On the tangent space at zero it is given by

ω(xi,xj) = ω(yi,yj) = 0, ω(xi,yj) = δij.

Extending this formula by Leibnitz rule we get the Poisson brackets on the whole alge-
bra k[x1, . . . , xn, y1, . . . , yn]. In fact, these Poisson brackets can be obtained from Dn:
for any two homogeneous polynomials a, b ∈ k[x1, . . . , xn, ξ1, . . . , ξn] choose differential
operators c, d ∈ Dn with symbols a, b. Then, a, b is the symbol of [a, b]. Another way
to obtain this form is to identify A2n with the cotangent bundle T ∗An.
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Definition 3.14. An algebraic subvariety X of A2n is called coisotropic or involutive
or integrable if the ideal of polynomials that vanish on X is stable under the Poisson
brackets.

Remark 3.15. This is equivalent to saying that the tangent space to X at every smooth
point includes its orthogonal complement inside the tangent space to A2n w.r. to the
symplectic form.

Theorem 3.16 (Gabber, Kashiwara-Kawai-Sato). For any M ∈Mf (Dn), both AV (M)
and SingSuppM are coisotropic.

Note that any coisotrpoic subvariety has dimension at least n, and thus this theorem
implies the Bernstein inequality.

The proof of this theorem is outside the scope of our course. It is not difficult in
fact to show that AnnGr(M) is closed under the Poisson brackets. The difficulty is
to show that so does its radical. We will not use the theorem and the corollary, this
was just to give a geometric intuition. This theorem has applications to the theory of
invariant distributions, in addition to the ones that Bernstein’s inequality does.

Since SingSuppM is (almost by definition) invariant under homotheties in ξ1, . . . , ξn,
Theorem 3.16 implies the following corollary.

Corollary 3.17. For any holonomic M ∈ Mf (Dn), SingSuppM is a finite union of
conormal bundles to closed subvarieties of A2n.

3.4. Irreducible non-holonomic Dn-modules. We will now show that there are
many irreducible non-holonomic Dn-modules.

Definition 3.18. We call a coisotropic homogeneous closed subvariety of A2n minimal
if it’s minimal among such.

Theorem 3.19. Let d ∈ Dn, such that σ (d) is irreducible, and Z (σ (d)) is coisotropic
and minimal. Then the left ideal Dnd is maximal, so that Dn/Dnd is irreducible of
dimension 2n− 1 over Dn.

Proof.
0→ Dnd→ Dn → Dn/Dnd→ 0

0→ GrDnd→ K [x1, . . . , x2n]→ Gr (Dn/Dnd)→ 0

Ann Gr (Dn/Dnd) ' K [x1, . . . , xn]σ (d)

Assume that Dnd ⊂ J for some J 6= Dn. Then

0→ J/Dnd→ Dn/Dnd→ Dn/J → 0

By the minimality of Z (σ(d)),

Z (σ(J)) = Z (σ(d))

Thus rad 〈σ (J)〉 = rad 〈σ (d)〉 = 〈σ (d)〉, hence J = 〈d〉. �

Theorem 3.20 (Bernstein-Luntz). The property {Z (f) is minimal} holds generically.
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4. Operations on D-modules

We will now define several operations on D-modules, and show that they preserve
holonomicity.

1. Fourier transform maps Schwartz functions into Schwartz measures and vice versa.
It also maps tempered generalized functions to tempered distributions. It also maps
product into convolution and x̂jf = (i/2π)∂j f̂ , ∂̂jf = 2πixj f̂ .

The corresponding operation on Dn-modules is just switching the actions of xj and
∂j. Let us give an application to PDE. Let d be a differential operator on Rn with
constant real coefficients, and h be a smooth function. We are looking for a solution
of the equation df = h. First of all, it is enough to find a solution for dξ = δ0 in
distributions, because then the convolution ξ ∗ h will solve the original equation. Now,
applying Fourier transform we get the equation pg = 1, where p is the polynomial
obtained from d by replacing all ∂j by 2πixj, and g is the unknown generalized function.
Then it is clear for us that g should be p−1. This is not well-defined a-priori, since
p might have zeros. However, (p2)λ, as we have shown, is defined as a meromorphic
distribution-valued function in λ. It might have a pole at λ = −1/2, but then we take
the principal part (the lowest non-zero coefficient in the Laurent expansion).

2. One can multiply a distribution by a smooth function. Formally, the result is
given by fξ(h) := ξ(fh). The corresponding operation onDn-modules is tensor product
over On := O(An) = k[x1, . . . , xn]. Note that a product of a smooth function and a
generalized function (= functional on smooth measures) is a generalized function, a
product of a function and a distribution is a distribution, and a product of a smooth
measure and a distribution is not defined. Similarly, a product of two left Dn-modules
is a left Dn-module, a product of a left Dn-module by a right Dn-module is a right Dn-
module, and a product of right Dn-modules is not defined. The Dn-module structure
of a product of two (left) Dn-modules is defined via Leibnitz rule: ∂i(m⊗ n) = ∂im⊗
n+m⊗∂in. One can always turn a left Dn-module to a right one using tensor product
with the (right) Dn-module of (algebraic) top differential forms.

3. For a polynomial map of affine spaces π : X → Y , we can pullback smooth
functions from Y to X. If the map is submersive then we can even pull generalized
functions. Let us define pullback of Dn-modules as well. Let M be an DY -module. As
an OX-module we define π0(M) := OX ⊗OY

M . The action of the vector fields TY is
defined using the natural morphism TX → OX ⊗OY

TY , which on every fiber is defined
using dπ. In coordinates:

ξ(f ⊗m) = ξ(f)⊗m+
∑
i

fξ(π∗(yi))⊗ ∂im.

By the well-known properties of pullback of OX-modules we get that (τπ)0 = π0τ 0,
and that pullback is strongly right-exact, i.e. right-exact and commutes with arbitrary
direct sums.

Exercise 4.1. Let A,B be rings. Let F : M(A) → M(B) be a strongly right-exact
functor. Then F (A) has a natural structure of a B −A-bimodule and F is isomorphic
to the functor M 7→ F (A)⊗AM.

Notation 4.2. DX→Y := π0(DY ).

Remark 4.3. The intuition here is that DX→Y is the (DX ,DY )-bimodule of OX-valued
differential operators on OY . For a general commutative algebra A and an A-module M
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an ≤ n-th degree differential operator on A with values in M is a K-linear operator D :
A → M , such that [a1, [a2, . . . , [an+1, D]]] = 0 for all a1, . . . , an+1 ∈ A. Apparently, in
nice casesDX→Y , defined this way, coincides as an (OX ,DY )-bimodule withOX⊗OY

DY .
From here it follows that for any DY -module M we have DX→Y ⊗DY

M ' OX ⊗OY

DY ⊗DY
M ' OX ⊗OY

M .

Lemma 4.4. For two morphisms ν : X → Y and µ : Y → Z we have (µν)0 = ν0 ◦ µ0.

Proof. It is enough to show that the natural map DX→Y ⊗DY
DY→Z → DX→Z is an

isomorphism. Since DX→Y ' OX ⊗OY
DY and DY→Z ' OY ⊗OZ

DZ , we have
DX→Y ⊗DY

DY→Z ' OX ⊗OY
DY ⊗DY

OY ⊗OZ
DZ ' OX ⊗OZ

DZ ' DX→Z
�

Theorem 4.5 (Bernstein). The pullback of a holonomic DY -module is a holonomic
DX-module.

We divide the proof into several lemmas.

Lemma 4.6. Any map π : X → Y , where Y ' An, can be decomposed into a standard
embedding, an isomorphism, and a standard projection.

Proof. Take the maps X → X × Y → X × Y → Y , x 7→ (x, 0), (x, y) 7→ (x, y + π (x)),
(x, y) 7→ y. �

Lemma 4.7. Let T , Y be affine spaces. The pullback under the standard projection
p : T × Y → Y of a holonomic module is holonomic.

Proof. In this case the pullback is the exterior product OT ⊗kM . It is easy to see that
exterior product of holonomic modules is holonomic. �

Lemma 4.8. The pullback under an isomorphism i : X → Y of a holonomic DY -
module is a holonomic DX-module.

Proof. In this case we can consider the pullback as the same space, just a different
action. If F iM is a good filtration for the original action and r := deg π, then ΦiM :=
F riM is a filtration for the new action, and it satisfies dimΦiM ≤ (crd)id. �

Lemma 4.9. The pullback under the standard embedding i : X → X × A1 of a holo-
nomic DX×A1-module is a holonomic DX-module.

This lemma is the difficult one. Indeed, in this case the pullback of a finitely-
generated module might be not finitely-generated. Indeed, forX = pt we get i0(DX)(A1) =
D1. To prove it, we will need another important lemma, that we in fact partially proved
in the first lecture.

Lemma 4.10 (Kashiwara). Let N be a DX×A1-module. Denote by t the coordinate of
A1. Assume that t acts locally nilpotently on N and let R := Kert, Ri := ∂itR. Then
N = ⊕

iRi and t∂t acts on Riby the scalar −(i+ 1).

Proof. 1. We note that (∂tt+ i) ∂it (ker t) = 0. Indeed, [t, ∂it] = −i∂i−1
t , so (∂tt+ i) ∂it =

∂i+1
t t.
2. t∂it (ker t) = −i∂i−1

t (ker t). Thus ∂it ker t ⊂ ker ti+1.
3. (∂tt+ i) ker ti+1 ⊂ ker ti. Indeed, for m ∈ ker ti+1, t (∂tt+ i)m = (i− 1)xm +

∂tt
2m = (∂tt+ i− 1)xm ⊂ ker ti−1 by induction.
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4. ∂it ker t are the different eigenspaces of ∂tt, so the sum is direct. Now we show
that

ker ti =
i−1⊕
j=0

∂jt ker t

Takem ∈ ker ti+1. Them (∂tt+ i)m ∈ ker ti, so by induction (∂tt+ i)m ∈⊕i−1
j=0 ∂

j
t ker t.

Again, by induction, xm ∈⊕i−1
j=0 ∂

j
t ker t, so ∂txm ∈

⊕i
j=1 ∂

j
t ker t. Thusm ∈⊕i

j=0 ∂
j
t ker t.
�

Proof of Lemma 4.9. Let N be a holonomicDX×A1-module. Denote by t the coordinate
of A1. Then M := i0(N) = N/tN . Denote by N0 the submodule consisting of elements
annihilated by powers of t. Then, by Kashiwara’s lemma, we have tN0 = N0. Thus
i0(N) = i0(N ′), where N ′ = N/N0. Now, N ′ is also holonomic and t has no kernel on
N ′. Choose a good filtration F iN ′ and define the corresponding good filtration F iM
by projection. Then dimF iM ≤ dimF iN ′−dim tF i−1N ′ = dimF iN ′−dimF i−1N ′ ≤
cidimX . �

Theorem 4.5 follows now from Lemmas 4.6,4.7,4.8, and 4.9.

Corollary 4.11. If M,N ∈ Hol (DX) then M ⊗OX
N ∈ Hol (DX).

Proof. M ⊗X N = ∆0 (M ⊗K N), ∆ : X → X ×X is the diagonal. �

4. For a polynomial map of affine spaces π : X → Y , we can pushforward smooth
compactly supported measures from Y to X, by integration by fibers. Note that we
indeed push measures and not functions. This hints that the pushforward π0 should
be defined for right DX-modules.

Definition 4.12. For M ∈Mr(DX) define π0(M) := M ⊗DX
DX→Y ∈Mr(DY ).

This operation also preserves holonomicity. This can again be shown by decomposing
the map into three parts. The difficult case now will be the standard projection.
However, we will prove this differently using a trick.

Exercise 4.13. Let M ∈ Mr(DV ) and let F(M) ∈ Ml(DV ∗) denote the module
obtained from M by swapping the actions of xi and ∂i. Let T : V → W be a linear
map, and let T ∗ : W ∗ → V ∗ denote the dual map. Then F(T0M) = (T ∗)0(F(M)).

Corollary 4.14. Pushforward of a holonomic module is holonomic.

Proof. For isomorphisms it is easy. The standard embeddings and projections are linear
maps, and thus for them it follows from Exercise 4.13 and Theorem 4.5. �

Exercise 4.15. For an isomorphism ν, ν0 = (ν−1)0.

Remark 4.16. One can also define different versions of pullback and pushforward, by
HomDX

(DX→Y ,M). These functors will be right adjoint to the functors we defined.

Similarly to Lemma 4.4, we have

Lemma 4.17. For two morphisms ν : X → Y and µ : Y → Z we have (νµ)0 = ν0 ◦µ0.

Let us now examine how does pushforward look like. For p : A1 → pt we have
p0(M) = M/M∂t. For i : pt ↪→ A1 we have i0(k) := ⊕

kδi, with δi∂t = δi+1and
δit = iδi−1.
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Example 4.18. p : A1 → {pt}. p0 (M) = M/M∂t. For i : {pt} → A1: i0 (M) :=⊕Kδ(i) is the D-module of distributions supported at {pt}. δ(i)∂t := ∂(i+1), δ(i)t :=
iδ(i−1).

Lemma 4.19. Let ξ ∈ S∗ (Rn) be a tempered distribution, p be a positive polynomial,
and p→∞ at ∞. Then λ 7→

〈
ξ, pλ

〉
converges for <λ < −r for some r.

Lemma 4.20. Let ξ be holonomic. Then there exist rational functions q1, . . . , q` ∈
C (λ), such that 〈

ξ, pλ
〉

=
∑
i

qi
〈
ξ, pλ−i

〉
Proof. Take the D-module M generated by the distribution pλ−kξ over the field C (λ).
It is holonomic. Thus its pushfoward to the point is holonomic. On the other hand, the
pushforward to the point is M/∂M (DX→pt = O (X)). Being holonomic over a point
means that it’s a finite-dimensional vector space over C (λ). Thus pλ−kξ are C (λ)-
linearly dependent modulo ∂M . The integral on ∂M vanishes, thus

´
ξpλ satisfies this

linear dependence. �

5. Homological properties

Let C be an abelian category.

Definition 5.1. We say that C has homological dimension ≤ d if for any M ∈ C and
any projective resolution Pd−1 → · · · → P0 → M → 0, the kernel ker (Pd−1 → Pd−2) is
projective.

Theorem 5.2. The following are equivalent for C:
(1) Any object has a projective resolution of length ≤ d.
(2) Extd+i vanishes for all i ≥ 1.
(3) The derived functor Ld+iF vanishes for any right exact functor F and all i ≥ 1..
(4) hd C ≤ d.

Definition 5.3. Let V be a vector space, and let a1, . . . , an : V → V be commut-
ing operators. The Koszul complex of C (V, a1, . . . , an) is the complex (numbered by
n, . . . , 0)

0→ ΛnKn ⊗ V → Λn−1Kn ⊗ V → · · · → Λ0Kn ⊗ V → 0
with differential ∑i

∂
∂ξi
⊗ ai, where ∂

∂ξi
is the interior product with the basis vector ξi.

Definition 5.4. A sequence (ai) is regular if ai has no kernel on V/ (a1V + · · ·+ ai−1V ),
for all i.

Theorem 5.5 (Proof-Exercise). If the sequence (ai) is regular then the Koszul complex
is acyclic outside 0, and H0 (C) ' V/ (a1V + · · ·+ anV ).

Let A := K [x1, . . . , xn].

Theorem 5.6 (Hilbert’s syzygy). The homological dimension of A = K [x1, . . . , xn] is
n.

Proof. The Koszul complex of x1, . . . , xn acting on A is a free resolution of the module
A/ (x1, . . . , xn)A. For an arbitrary module M let xi act on A⊗K M by

xi (a⊗m) := xia⊗m+ a⊗ xim.
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This defines an A-module structure on A⊗K M . This module is free (exercise). Thus
the complex

C (A, x1, . . . , xn)⊗K M

is a free resolution of M . �

Lemma 5.7 (Graded Nakayama’s lemma). Let M be a finitely generated graded A-
module with M = (x1, . . . , xn)M . Then M = 0.

Proof. Since M is f.g. and M = (x1, . . . , xn)M , the Nakayama’s lemma implies that
0 /∈ suppM . Since M is graded, suppM is conical and thus empty. �

Corollary 5.8. Any graded projective finitely generated module P over K [x1, . . . , xn]
is free.

Proof. Let m := (x1, . . . , xn). Choose homogeneous elements pi ∈ P such that their
projections to P/mP form a basis. By the graded Nakayama’s lemma, pi generate P .
Thus we have a s.e.s. of graded modules 0 → K → Am → P → 0. Here Am has
its grading shifted according to the degrees of pi. Since P is projective, this sequence
splits. So Am ' K ⊕ P . Thus K/mK = 0, so K = 0. �

Corollary 5.9. Any graded finitely generated A-module has a free graded resolution of
length ≤ n.

Definition 5.10. For a Noetherian ringR we denote byMf (R) the category of finitely-
generated left R-modules, and by hd(R) the homological dimension of this category.

Exercise 5.11 (*). hd(M(R)) = hd(R).

Exercise 5.12. Let R be a ring and M ∈Mf (R) with a good filtration. Then
(i) for some l there exists a good filtration on Rl and a strict epimorphism Rl �M .

(ii) If GrM is free then M is free.

From Corollary 5.9 we obtain

Corollary 5.13. hdDn ≤ 2n.

Proof. Let M ∈ Mf (Dn). Choose a good filtration on M . By Exercise 5.12(i) there
exists a free Dn-module F1 with good filtration and a strict epimorphism ϕ1 : F1 �
M . Let L1 be the kernel of ϕ1 with induced filtration and choose a free F2 again
using Exercise 5.12(i). Continuing in this way we obtain an exact sequence of finitely-
generated filtered modules with strict maps:

0→ L2n−1 → F2n−1 → · · · → F1 →M → 0,
with Fi free. By Exercise 1.19, the associated graded sequence

0→ GrL2n−1 → GrF2n−1 → · · · → GrM → 0
is also exact. By Hilbert’s syzygy theorem, GrL2n−1 is projective, and thus free. By
Exercise 5.12(ii), L2n−1 is free and the above sequence is a free resolution of M of
length 2n. �

Now we want to show that hdDn = n.

Corollary 5.14. Let R be a Noetherian ring with hdR < ∞, and M be a finitely
generated R-module. Then hdM ≤ d iff Exti (M,R) = 0∀i > d.
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Proof. LetM ∈Mf (R) with Exti (M,R) = 0∀i > d. We have to show that Exti (M, ·) =
0 ∀i > d. Take any finitely generated X, and consider 0→ L→ R` → X → 0. Thus:

Exti
(
M,R`

)
→ Exti (M,X)→ Exti+1 (M,L)→ Exti+1

(
M,R`

)
Thus for i > d we have Exti (M,X) ' Exti+1 (M,L). By induction on i descending
from hdM , Ext>d (M, ·) = 0. �

Let A := K [x1, . . . , xn], M be a f.g. A-module. Denote Ei (M) := Exti (M,A).

Theorem 5.15 (Serre ??). Let d := d (M). Then Ei (M) = 0,∀i < n− d.

Proof. Induction on n. Take B := K [x1, . . . , xn−1]. If M is finitely generated over B,
take

N := M [t] ' A⊗B M
Then Ei (N) ' Exti (M,B) [t]. Thus Ei (N) = 0 for i < n− 1− d, and En−1−d (N) is
free over K [t]. Now we have a s.e.s.

0→ N
t−xn→ N →M → 0

Thus
En−2−d (N)→ En−1−d (M) 0→ En−1−d (N) t−xn→ En−1−d (N)

The rightmost map has trivial kernel, so the arrow in the middle is 0. NowEn−2−d (N) =
0 implies En−1−d (M) = 0.

Now we treat the general case when M is not necessarily finitely generated over B. If
d (M) = n then there is nothing to prove, otherwise by Noether’s normalization lemma
there exists a linear coordinate change yi = Txi such that A/Rad(Ann(M)) is finite
over K[y1, . . . , yn−1]. Then M is finitely generated over K[y1, . . . , yn−1], and we reduce
to the previous case. �

Lemma 5.16. Assume that M is graded. Then
d (M) ≤ d (coker (xn|M)) + 1.

Proof.
M i xn→M i+1 → (coker (xn|M))i+1 → 0

Thus ∆dM (i) ≤ dcokerxn (i+ 1). �

Corollary 5.17. Assume that ker (xn �M) = 0. Then
d (M) ≤ d (coker (xn|M)) + 1.

Proof. 0 → M
xn→ M → cokerxn → 0. Introduce a filtration on M , pass to the

associated graded module.
0→ GrM → GrM → Gr coker xn → 0

Note that Gr cokerxn = coker (xn �GrM), and use the lemma on graded modules. �

Corollary 5.18. d (M) ≤ max (d (ker (xn|M)) , d (coker (xn|M)) + 1).

Proof. We can assume that d (ker (xn �M)) < d (M). Then d (⋃i ker (xin|M)) < d (M).
Indeed, ⋃i ker (xin �M) stabilizes at a finite union, and

ker
(
xin|M

)
/ ker

(
xi−1
n |M

)
' ker

(
xn|M/ ker(xi−1

n �M)
)
,
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whose d is < d (M). Thus d (M) = d (N), where

N := M/
⋃
i

kerxin

Now ker (xn � N) = 0, so we reduce to the previous corollary. �

Lemma 5.19. suppEi(M) ⊂ suppM

Proof. AnnM ⊂ AnnEiM . �

Theorem 5.20 (Ross ??). For any M ∈Mf (A), d (EiM) ≤ n− i.

Proof. We prove by induction on n. Consider first the case when M is finitely generated
over B = K [x1, . . . , xn−1]. N := M [t] ' A⊗BM , Ei (N) = Exti (M,B) [t] thus by the
induction hypothesis

d
(
Ei (N)

)
≤ n− 1− i+ 1 = n− i

Now,
0→ N

t−xn→ N →M → 0
Thus

· · · → Ei−1 (M) 0→ Ei−1 (N)→ Ei−1 (N)→ Ei (M)→ Ei (N)→ Ei (N)→ . . .

The map Ei−1 (M) → Ei−1 (N) is 0 because t − xn has zero kernel. For any v ∈
Ei−1 (M), (t− xn) v = 0, but t − xn has no kernel in Ei−1 (N) because Ei (N) =
Exti−1 (N,B) [t] and t− xn shifts the degree by 1.

Now introduce a filtration on Ei−1 (N) that is a grading in t. Then

0→ F j
(
Ei−1N

)
→ F j+1

(
Ei−1N

)
→ F j+1

(
EiM

)
→ 0

Thus d (EiM) = d (Ei−1N)− 1 ≤ n− (i− 1)− 1 = n− i.
The next case is that xn : M →M is injective. Then

0→M
xn→M → L→ 0

Thus
EiL→ EiM

xn→ EiM → Ei+1L

By the last corollary, d (EiM) ≤ max (d (EiL) , d (Ei+1L) + 1) ≤ n− i.
Finally, in the general case

0→ K →M → L→ 0

where xn is nilpotent on K and xn �L is bijective Thus

· · · → EiL→ EiM → EiK → . . .

Thus d (EiM) ≤ max (d (EiL) , d (EiK)) ≤ n− i by the previous cases. �

Corollary 5.21. Let M ∈Mf (Dn). Then
(1) Exti (M,Dn) = 0, ∀i < 2n− d (M)
(2) 2n− d

(
Exti (M,Dn)

)
≥ i
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Proof. As we proved before, M has a resolution of length 2n consisting of free finitely
generated filtered modules and strict maps:

0→ F2n → · · · → F0 → 0
Taking Hom into Dn we get

0→ F ∗0 → · · · → F ∗2n → 0
Passing to associated graded we have

0→ GrF ∗0 → · · · → GrF ∗2n → 0

The cohomologies of the latter sequence are isomorphic both to Exti(GrM,A) and to
Gr(Exti(M,Dn)). The statements now follow from Theorems 5.15 and 5.20. �

Corollary 5.22. hdMf (Dn) ≤ n. For any M ∈ Mf (Dn), Extn (M,Dn) is holo-
nomic. For a holonomic module Ext<n (M,Dn) = 0.

Proof. d (En+iM) ≤ n − i, so by Bernstein’s inequality, En+iM = 0 for i > 0. For
i = 0 we get d (EnM) ≤ n. For holonomic M we have n − i < 2n − d(M) and thus
Extn−i(M,Dn) = 0 for any i > 0. �

Definition 5.23. Define D : Hol` (Dn)→ Holr (Dn) by Extn (·,Dn).

Theorem 5.24. D is an equivalence of categories, and D ◦D ' id.

Proof. To prove that D ◦D ' id, take a free resolution of M :
0→ Fn → · · · → F0 → 0

and dualize it by Hom (·,Dn). Since M doesn’t have smaller Ext’s, this will be a free
resolution ofDM . Finally, D◦D ' id implies thatD is an equivalence of categories. �

Theorem 5.25. For any M ∈Mf (Dn) there is a canonical embedding
0→ D (Extn (M,Dn))→M

Moreover, its image is the maximal holonomic submodule of M .

Proof. H = Extn (M,Dn). Let 0 → Pn → · · · → P0 → 0 be a free resolution of M .
Dualize it:

0→ P ∗0 → · · · → P ∗n → 0
Now consider a free resolution of H:

0→ Qn → · · · → Q0 → 0
H is the last cohomology of P ∗, so it is a factor of P ∗n . Now step by step we lift this

to a map of complexes P ∗ → Q. Dualizing, we get maps Q∗ → P . By Corollary 5.22,
H is holonomic and thus Ext<n(H,Dn) vanish. Thus Q∗ is a resolution of DH. Thus
we get a map DH →M whose image is a holonomic submodule of M .

The map DH → M is injective because the right-exact functor Extn(·,Dn) maps it
to the identity map. Finally, for any holonomic submodule L ⊂ M we have an onto
map H � DL and thus an embedding L ⊂ DH. �

We remark that we did not have to use free resolutions in the proofs. Any projective
resolution would work, because projective modules are direct summands of free ones.
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Exercise 5.26. Let L := k[x, x−1], M := k[x] and C := L/M . Note that they are
all holonomic and consider the exact sequence 0 → M → L → C. Compute the dual
D-modules, and describe the dual exact sequence 0 → D(C) → D(L) → D(M) → 0
in terms of distributions.

Remark 5.27. Everywhere in this section we could have used the geometric filtration on
Dn instead of the Bernstein filtration. Together with Corollary 5.21 this gives another
proof that modules holonomic with respect to the Bernstein filtration are holonomic
with respect to the geometric filtration, and vice versa.

6. D-modules on smooth affine varieties

Let X := SpecA be an affine algebraic variety, and for x ∈ X let Kx := A/mx.
T ∗xX := mx/m

2
x. We start with several well-known definitions and theorems from

algebraic geometry.

Definition 6.1. Let DerO (X) denote the algebra of derivations of O(X), i.e. linear
endomorphisms of O (X) satisfying the Leibnitz rule. Elements of DerO (X) are called
(algebraic) vector fields on X.

Theorem 6.2. The following are equivalent:
(1) Kx has finite homological dimension as an A-module.
(2) Grmx A := ⊕ (mi

x/m
i+1
x ) is a polynomial algebra.

(3) dimT ∗xX = dimxX.
(4) Locally around x there is a quasi-coordinate system.

Definition 6.3. We say that X is smooth at x if these conditions hold.

Definition 6.4. A quasi-coordinate system of an affine variety U at x ∈ U is:
(1) A collection of functions x1, . . . , xn ∈ O (U);
(2) a collection of vector fields ∂1, . . . , ∂n ∈ DerO (U),

such that
(a) ∂ixj = δij;
(b) dxi span T ∗uU for all u ∈ U .

Theorem 6.5. The set of smooth points is open and dense.

Definition 6.6. D≤−1 (X) := 0,

D≤k (X) :=
{
d ∈ HomK (O (X) ,O (X))

∣∣∣ ∀f ∈ O (X) : [f, d] ∈ D≤k−1 (X)
}
.

Similarly, for O (X)-modules M,N define D≤k (M,N).

Example 6.7. D≤0 (X) = O (X), D≤1 (X) = O (X)⊕DerO (X).

The algebra of algebraic differential operators is defined by D(X) := ⋃
iDi(X). We

will show that if X is smooth then D (X) is Noetherian and generated by O (X) and
DerO (X).

Exercise 6.8 (*).
(1) If X = {∑i x

2
i = 0} then D (X) is Noetherian but not generated by D≤1 (X).

(2) If X = {∑i x
3
i = 0} then D (X) is not Noetherian.

From now on we assume that X is smooth.
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Theorem 6.9. Let M,N ∈ M(O(X)), let d ∈ D≤k (M,N) and f ∈ O (X). Then it
uniquely defines d′ ∈ D≤k (Mf , Nf ).

Proof. Define d (f−im) by induction on i and k:

d′
(
f−im

)
:= f−1d′

(
f−i+1m

)
− f−1 [d′, f ]

(
f−im

)
�

Corollary 6.10. If M is finitely generated then (D (M,N))f ' DOf
(Mf , Nf ).

Proof. To construct the map in the only nontrivial directionDOf
(Mf , Nf )→ (D (M,N))f ,

take the common denominator of the generators of M . �

Definition 6.11. Define the sheaf DX of differential operators on X by DX(Xf ) :=
D(Xf ).

By Corollary 6.10, DX is a quasi-coherent sheaf.

Remark 6.12. In general, a good calculus of fractions is guaranteed by the Ore con-
dition. For a ring A and a multiplicative set S, the Ore condition is that for any
a ∈ A, s ∈ S there are a′ ∈ A, s′ ∈ S, such that as′ = sa′ (i.e. s−1a = a′s′−1). For
S = {fn} , f ∈ OX , A = DX , it is satisfied.

Recall that τX denotes the tangent sheaf of X. Note that the existence of a quasi-
coordinate system implies that τX is coherent and locally free.

Theorem 6.13. Σ := GrD (X) ' O (T ∗X) := Sym τX (X) ' Sym
(
D≤1 (X) /O (X)

)
.

Proof. Define Σ` := Sym` τX (X). For d ∈ D≤` consider its symbol
(σd) (f1, . . . , f`) := [[d, f1] , . . . , f`] .

This is a O(X)-valued n-linear form on O(X), that is a derivation in each variable
fi. There is a canonical map from Sym` (τX (X)) to the space of such forms. Using
a quasi-coordinate system, one can show that this map is an isomorphism. Thus, we
view σd as an element of Sym` (τX (X)) .

Clearly, d 7→ σd is an embedding. To show that it is onto, just take the product of
vector fields to produce a given symbol. �

Remark 6.14. Incidentally, this also proves that vector fields generate DerO (X) locally,
i.e. as a sheaf. Since on affine varieties sheaf cohomology vanishes, this is also true
globally.

Corollary 6.15. D(X) is Noetherian and hd(D(X)) ≤ 2 dimX.

Exercise 6.16. The structure of a left D(X)-module on an O(X)-module M is the
same as the structure of a τX-module on M satisfying

(fξ)m = f(ξm) and ξ(fm)− f(ξm) = ξ(f)m.
The structure of a right D(X)-module on an O(X)-module M is the same as the

structure of a module over the opposite of the Lie algebra τX satisfying
(fξ)m = f(ξm) and ξ(fm)− f(ξm) = −ξ(f)m.

By module over the opposite Lie algebra we mean the identity ξ1(ξ2m) − ξ2(ξ1m) =
−[ξ1, ξ2]m.
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Exercise 6.17. The module of top differential forms Ωtop
X with the action ξα := −Lieξα

(Lie derivative) is a right D(X)-module. Moreover, M 7→ M ⊗OX
Ωtop
X defines an

equivalence of categories M(D(X)) 'Mr(D(X)).
The push and pull functors are defined for affine varieties in the same way as for

affine spaces. Namely, for π : X → Y and N ∈M(D(Y )) define
π0(N) := O(X)⊗O(Y ) N,

with the action of τ(X) given by the morphism τ(X)→ O(X)⊗O(Y ) τ(Y ).
As before, π0 is strongly right-exact and thus

π0(N) = DX→Y ⊗D(Y ) N , where DX→Y = π0(D(Y )) = O(X)⊗O(Y ) D(Y ).
For M ∈M(D(X)) we define

π0(M) := M ⊗D(X) DX→Y .

7. D-modules on general separated smooth varieties

Fact 7.1. For a variety TFAE:
(i) For any affine U, V the intersection U ∩ V is affine, and O (U) ⊗K O (V ) →
O (U ∩ V ) is onto.

(ii) There is an open affine covering (Ui), s.t. the previous property holds for each
Ui, Uj

(iii) ∆X ⊂ X ×X is closed.
Varieties that satisfy these properties are called separated.

Definition 7.2. Let X be a smooth separated variety. Define the quasi-coherent sheaf
of OX-algebras DX by the property DX(U) = D(U) for every open affine U ⊂ X.

A DX-module is a sheaf of modules over the sheaf of algebras DX that is quasi-
coherent as a sheaf of OX-modules. That is, it’s a quasi-coherent sheaf F , such that
F (U) have compatible structures of DX (U)-modules. We will denote the category of
DX-modules by M(DX) and the category of quasi-coherent sheaves by M(OX).

Serre’s theorem implies that for an affine X, M (DX) 'M (D (X)).
Definition 7.3. A morphism of algebraic varieties π : X → Y is called affine if π−1(U)
is affine for any open affine U ⊂ Y .
Example 7.4. Closed embeddings are affine. The embedding of an open affine subset
into a separated variety is also affine.
Definition 7.5. For an affine morphism π : X → Y , define the functors π0 and π0
gluing from affine pieces. In other words,

π0(G)(π−1(U)) := (π|π−1(U))0(G(U))
and

π0(F)(U) := (π|π−1(U))0(F(π−1(U))
for any open affine U ⊂ Y .
Example 7.6. Let i0 : Z → X be a closed embedding of a smooth subvariety. One
can choose local coordinates xi, such that Z is given by xm+1 = · · · = xn = 0,
D (X) ' O (X)⊗K K [∂1, . . . , ∂n] , and O (Z) ' O (X) /J , where J := 〈xm+1, . . . , xn〉 .
Then i0F = F/J .
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Exercise 7.7. Let V ⊂ X be an open affine subset and let i : V ↪→ X denote the
embedding. Then

(i) i0(F)(U) = F(V ∩ U) for any F ∈M(DV ) and any open U ⊂ X.
(ii) The functor i0 : M(DV ) → M(DX) is right-adjoint to the restriction functor

ResV :M(DX)→M(DV ).
(iii) The functors i0 and ResV are exact.

?? add on functoriality in general.

Fact 7.8. For a coherent sheaf TFAE:
(i) It is locally free

(ii) It is projective
(iii) The dimension of the fiber is locally constant.

For non-affine X, the categories of OX-modules and DX-modules do not have enough
projectives, but:

Fact 7.9. M (OX) and M (DX) have enough injectives.

Proof. Let us show this for DX-modules, since the proof for OX-modules is identical.
First we prove for affine X. For a projective right DX-module P the module

HomK (P,K) is an injective leftDX-module. For any projective P and P → HomK (M,K)→
0 we have embeddings

M ↪→ HomK (HomK (M,K) ,K) ↪→ HomK (P,K) .

For non-affine varieties, choose a finite open affine cover X = ⋃
j Uj, and consider

i0 : M
(
DUj

)
→ M (DX). The functor i0 is exact and maps injective sheaves to

injective ones. Since F �Uj
embeds into injective Qj, F embeds into ⊕j ij∗Qj. �

Definition 7.10. A DX-module is called coherent if it is locally finitely generated.

Recall that for an affine variety X, GrD(X) = O(T ∗X).

Definition 7.11. For F ∈Mcoh (DX) choose a good filtration on F , and define

Sing suppU F := supp GrF (U) ⊂ T ∗X, and Sing suppF :=
⋃
U

Sing suppU F .

By Lemma 3.3 and Corollary 3.5 this does not depend on the choice of a good filtration
on F .

Theorem 3.16 holds for singular support as well, though we won’t prove it.

Theorem 7.12 (Kashiwara-Kawai-Sato, Gabber). For any F ∈Mcoh (DX), Sing suppF
is a coisotropic subvariety of T ∗X.

This implies the Bernstein inequality, namely dim Sing suppF ≥ dimX if F 6= 0.
Another way of proving the Bernstein inequality is to reduce it to affine varieties, then
to affine spaces, then use Proposition 3.13 to reduce to the classical Bernstein inequality
for the arithmetic filtration (Theorem 1.30 above).

However, we are going to give a direct proof of the Bernstein inequality in the next
section.
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8. Kashiwara’s lemma and its corollaries

Let Z ⊂ X be a closed smooth subvariety and let i : Z ↪→ X denote the embedding.
Let Mr

Z (DX) denote the category of right DX-modules supported at Z. Our goal in
this section is to prove and use the following theorem.
Theorem 8.1 (Kashiwara). The functor i0 is an equivalence Mr (DZ) 'Mr

Z (DX).
For the proof we will need some constructions and lemmas.

Definition 8.2. Define i′ :Mr (DX)→Mr (DZ) by
i′ (F) := HomDX

(DZ→X ,F) .
For F ∈Mr (DX) define ΓZ (F) (U) := {ξ ∈ F (U) | supp ξ ⊂ Z}.
Exercise 8.3. (i) For affine X, i′ (M) ' AnnM I (Z).
(ii) i′i0H ' H for any H ∈M (DZ).

(iii) i0 is left adjoint to i′.
From the adjunction, we have a counit map i0i

′F → F .
Lemma 8.4. Let M ∈M (D1). Assume M = ⋃

i kerxi. Then M = ⊕
i ∂

i kerx.
Proof. 1. We note that (∂x+ i) ∂i (kerx) = 0. Indeed, [x, ∂i] = −i∂i−1, so (∂x+ i) ∂i =
∂i+1x.

2. x∂i (kerx) = −i∂i−1 (kerx). Thus ∂i kerx ⊂ kerxi+1.
3. (∂x+ i) ker xi+1 ⊂ kerxi. Indeed, for m ∈ kerxi+1, x (∂x+ i)m = (i− 1)xm +

∂x2m = (∂x+ i− 1)xm ⊂ kerxi−1 by induction.
4. ∂i kerx are the different eigenspaces of ∂x, so the sum is direct. Now we show

that
kerxi =

i−1⊕
j=0

∂j kerx

Takem ∈ kerxi+1. Them (∂x+ i)m ∈ kerxi, so by induction (∂x+ i)m ∈⊕i−1
j=0 ∂

j kerx.
Again, by induction, xm ∈⊕i−1

j=0 ∂
j kerx, so ∂xm ∈⊕i

j=1 ∂
j kerx. Thusm ∈⊕i

j=0 ∂
j kerx.
�

Example 8.5. Distributions on R supported at 0 are sums of derivatives of the δ-
function.
Lemma 8.6 (Standard in algebraic geometry). For any x ∈ Z, there is an open
neighborhood U ⊂ X and a quasi-coordinate system xi on U , such that Z ∩ U is given
by xm+1 = · · · = xn = 0, and the Jacobian det (∂xi) does not vanish.
Theorem 8.7. ϕ : i0i′F → ΓZ (F) is an isomorphism.
Proof. It’s enough to show this locally. Choose a quasi-coordinate system on X (or an
open subset of it), such that Z = {xm+1 = · · · = xn = 0}. We can assume n = m + 1
by induction (locally there is a flag of smooth subvarieties, constructed using xi). The
induction step will be for Z ⊂ Y ⊂ X:

(Z → Y )0 (Y → X)0 (Y → X)′ (Z → Y )′F ' (Z → Y )0 ΓY (Z → Y )′F '
' (Z → Y )0 (Z → Y )′ ΓYF ' ΓZΓYF ' ΓZF

The nontrivial equality here follows by noting that ΓY consists of sections supported
at Y , and (Z → Y )′ consists of the sections killed by I (Z).



24 DMITRY GOUREVITCH

Finally, define Z := {xn = 0}. Let M be a right D (X)-module, and N := ΓZ (M).
i′M = ker (xn �M)

and i0i
′M = ⊕

j i
′M ∂jxn

because DZ→X ' OZ ⊗OX
DX ' DX/xnDX ' DZ ⊗K K [∂xn ].

By Lemma 8.4, ⊕
j

ker (xn �N) ∂jxn
' N

�

Corollary 8.8 (Kashiwara). The functors i0 and i′ define an equivalence of categories
Mr (DZ) 'Mr

Z (DX) .

8.1. Corollaries.

Lemma 8.9 (Exercise). For H ∈Mcoh (DZ), i0H ∈Mcoh (DX) and
Sing supp (i0H) = {(x, ξ) ∈ T ∗X | (x, pxξ) ∈ Sing suppH} ,

where px : (TXx )∗ � (TZx )∗ is the dual map to the embedding TxZ ↪→ TxX.

Corollary 8.10 (Bernstein’s inequality). For any F ∈Mcoh (DX), dim Sing suppF ≥
dimX.

Proof. Let F ∈Mr
coh (DX). Suppose that dim Sing suppF < dimX. Let pX : T ∗X →

X be the canonical projection. Let Z := (pX (Sing suppF)) ( X. Then dimZ <
dimX. There is U ⊂ X, such that Z ′ := U ∩Z is nonsingular (and nonempty). F ′ :=
F �U . Then suppF ′ ⊂ Z ′. By Kashiwara’s lemma, F ′ ' i0i

′F ′, where i : Z ′ → U . By
induction hypothesis, dim Sing supp i′F ′ ≥ dimZ ′. Thus

dim Sing supp i0i′F ′ ≥ dim Sing supp i′F ′ + dimU − dimZ ′ ≥ dimX.

But dim Sing suppF ′ < dimX by assumption. This leads to a contradiction. �

Lemma 8.11. Let F ∈Mcoh (DX). TFAE:
(1) Sing suppF ⊂ X × {0} ⊂ T ∗X
(2) F ∈Mcoh (OX)
(3) F is locally free of finite rank over OX

Proof. 3 ⇒ 2 is obvious, 2 ⇒ 1 is obvious (just take the generators over OX and use
them to construct a good filtration).

1⇒ 2: Choose local coordinates in an open affine U ⊂ X. Let M = F (U). Choose
generators v1, . . . , vn of M over DU . Then we assume that Z (σ ann {vi}) = U × {0}
(where σ is the symbols, and Z is the variety of zeros). Then for any i, j there is `ij,
such that

∂
`ij

j vi ∈ D
<`ij

U {v1, . . . , vn}
Let S :=

{
∂`11 . . . ∂`mm vi

∣∣∣ `j < `ij
}

. Then this set generates F (U) over OU , so F is
coherent over OX .

2 ⇒ 3: We can assume that X is affine. Let ` := minx dimFx. Then there is
some U ⊂ X, such that dimFx = ` for all x ∈ U (we assume that X is connected
and irreducible). Suppose U 6= X, i.e. there is x ∈ X, such that dimFx > `. Then
there is a smooth affine curve ν : C → X passing through x (cf. curve selection
lemma), such that all the other points of this curve are in U . Take the DC-module
ν0F . It’s OC-coherent because it’s the pullback of O-modules, and this operation
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preserves coherence. On the other hand, OC is a Dedekind domain, so since M := ν0F
is not locally free, it must have torsion. The torsion part M tor is also a DC-module,
and it has finite support i : Z ⊂ C. Thus M tor = i0V for some DZ-module V . But i0V
is not finitely generated over OC unless V = 0. �

Definition 8.12. OX-coherent DX-modules are called smooth.
Corollary 8.13. Let F be a holonomic DX-module. Then there exists an open dense
U ⊂ X, such that F �U is smooth (possibly trivial).
Proof. Sing suppF is n-dimensional, so it consists of a part of the form U × {0} and
something else that projects to a lower-dimensional subvariety of X. �

Definition 8.14. For a closed subvariety X ⊂ An define the category of DX-modules
as the category of DAn-modules supported at X.
Theorem 8.15. This definition doesn’t depend on the embedding.
Proof. Let ν : X → An, µ : X → Am. Take the embedding ν × µ : X → An+m.
Then there is ρ : An → Am, such that µ = ρν. Thus we have a closed embedding
i := id×ρ : An → An+m. Then MX (DAn) i0'MX (DAn+m). �

Definition 8.16. Define D-modules on general varieties by gluing affine ones. Note
that for affine ones the notion is local.

For F ∈MX (DAn) define Sing suppX (F ) := pX (Sing suppF ), where pX : T ∗An �X→
T ∗X.

9. D-modules on the projective space

V
j
⊃ V ×

p→ P (V )
For an OP(V )-module F define

p∗F := OV × ⊗OP(V ) F , F̃ := j∗p
∗F .

There is an action of Gm on F̃ by dilation, so it defines a grading on the global sections
Γ
(
F̃
)
, and Γ (F) =

(
Γ
(
F̃
))0

.
Let F1 → F2 → F3 be an exact sequence of DP(V )-modules. Then p0F1 → p0F2 →

p0F3 is exact. While F̃1 → F̃2 → F̃3 may not be exact, the homology H is supported
at 0. Thus H ' i0L, where L is a vector space, and i : {0} ↪→ V .

Let E := ∑
xi∂i ∈ D (V ) be the Euler operator.

Exercise 9.1. On Γ (j0L), E has negative eigenvalues.

(Γ (j0L))0 = 0, thus (Γ (H))0 = 0, so(
Γ
(
F̃1
))0
→
(
Γ
(
F̃2
))0
→
(
Γ
(
F̃3
))0

is exact. On the other hand,
(
ΓF̃i

)0
' ΓFi. Thus:

Lemma 9.2. The functor of global sections
ΓP(V ) :M (DPn)→M (Γ(DPn))

is exact.
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Exercise 9.3. DPn ' D0
n/D0

nE, where D0
n is the zero-part of the grading on Dn given

by the commutator with the Euler vector field. In other words, deg xi = 1, deg ∂i = −1.

Exercise 9.4. For any graded K [x0, . . . , xn]-module we define a quasicoherent sheaf
on the projective space M ′ by M ′ (U) := (M (P−1 (U)))0, where P : An+1 \ {0} → Pn
is the canonical projection. Any quasicoherent sheaf on Pn is obtained this way. More
precisely,

Mqc (OPn) 'Mqc (OAn) /Mqc
{0} (OAn)

(quotient w.r.t. a Serre subcategory).

Hint. K [x0, . . . , xn] ' ⊕d≥0 Γ (Pn,OPn (d)), where OPn (d) is the sheaf on Pn obtained
by shifting by d the grading in the graded module K [x0, . . . , xn] (alternative descrip-
tion: OPn (−1) is the canonical line bundle, OPn (1) is its dual, and OPn (d1 + d2) '
OPn (d1)⊗OPn OPn (d2)).

Take a sheaf F , and the module MF := ⊕
d≥0 Γ (Pn,F (d)), where F (d) := F ⊗OPn

OPn (d). Now take the sheaf M ′
F corresponding to MF . We claim that M ′

F ' F . After
that we prove that the kernel of the functor M 7→ F consists of the sheaves supported
at 0. �

Lemma 9.5. ΓP(V ) :M (DPn)→M (ΓDPn) is faithful.

Proof. Since ΓP(V ) is exact, it is enough to show that Γ (F) 6= 0 for F 6= 0.
Let j be such that suppM j 6⊂ {0} and suppM ` ⊂ {0} ∀l with |`| < j. We want to

show that j = 0. Suppose first that j < 0 and let ξ ∈ M j, such that supp ξ 6⊂ {0}.
Then there is 0 ≤ i ≤ n, such that supp xiξ 6⊂ {0}. But xiξ ∈M j+1, so this contradicts
our assumption. Similarly, for j > 0, take ξ ∈ M j. jξ = Eξ = ∑

i xi∂iξ, so there is i,
such that supp ∂iξ 6⊂ {0}. But ∂iξ ∈M j−1, so again we get a contradiction. �

Lemma 9.6. Hom (DPn ,F) ' Γ (F).

Proof. The internal Hom is F , so the categorical Hom consists of its global sections. �

Corollary 9.7 (Bernstein-Beilinson, ??). DPn is a projective generator of M (DPn),
and thus Γ :M (DPn)→M (Γ(DPn)) is an equivalence.

Theorem 9.8 (Bernstein-Beilinson, ??). Γ(DPn) = DPn (Pn) ' D0
n+1/ED0

n+1, where
D0
n+1 is according to the grading deg xi = 1, deg ∂i = −1, and E is the Euler field.

For the proof we will need some lemmas.

Exercise 9.9. There is a natural map D0
n+1/ED0

n+1 → DPn (Pn).

Exercise 9.10. Gr
(
D0
n+1/ED0

n+1

)
' OT ∗Pn (T ∗Pn).

Lemma 9.11. For all smooth X, GrDX (X) ↪→ OT ∗X (T ∗X).

Proof. 0→ Di−1
X → DiX → Symi

OX
τX → 0, so 0→ ΓDi−1

X → ΓDiX → Γ Symi
OX

τX . On
the other hand, ⊕i Symi

OX
τX ' OT ∗X . �

Proof of the Theorem. ϕ : D0
n+1/ED0

n → DPn (Pn). It’s enough to show that Grϕ is an
isomorphism. Now, Gr(D0

n+1/ED0
n) ' OT ∗Pn (T ∗Pn), and Gr(DPn (Pn)) is embedded

into OT ∗Pn (T ∗Pn). This embedding is compatible with Gr(ϕ), and thus both the
ambedding and Gr(ϕ) are isomorphisms. �
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9.1. Twisted differential operators on the projective space. In Definition 6.6
we defined the algebra of differential operators on any module over the algebra of
polynomials on an affine variety. Later we showed that this definition commutes with
localization by polynomials. This gives the definition of the sheaf of algebras of dif-
ferential operators on a coherent sheaf over any algebraic variety X. The obtained
algebra is well-behaved only if the sheaf is locally free. If the sheaf is invertible (i.e. is
a line bundle), this sheaf of algebras is locally isomorphic to DPn .

Definition 9.12. A sheaf of twisted differential operators on a (smooth, separated)
algebraic variety X is a sheaf of OX-algebras that is locally isomorphic to DX (in short
a TDO on X).

Let us consider the case X = Pn. Any invertible sheaf on Pn is isomorphic to O(s)
for some s ∈ Z. One can define O(s) to correspond the construction in Exercise 9.4
to the graded module M = K[x0, . . . , xn] with grading shifted by d. Another way
to define an invertible sheaf F is describe the automorphism of O(Ui ∩ Uj) given by
the identifications F(Ui) ' OX(Ui) for some open affine cover {Ui} of X on which F
trivializes. For O(s) we can choose the standard cover Ui := {xi 6= 0} ∼= An of Pn, on
which the automorphisms are given by multiplication by (xi/xj)s.

Let us describe O(s) by coordinate changes. We have to compute what happens to
∂k when we twist it by (xi/xj)s.

(1) (xi/xj)−s · ∂k · (xi/xj)s = ∂k + s∂k(xi/xj) · (xi/xj)−1,

Since Dn is generated as a K[x1, . . . xn]-algebra by ξ1, . . . , ξn, this formula defines a
sheaf of twisted differential operators on Pn. In fact, we could put any scalar λ ∈ K
instead of s in (1) and obtain a TDO on Pn.

Exercise 9.13. Any TDO on Pn is given by the coordinate changes

ϕij(∂k) := ∂k + λ∂k(xi/xj) · (xi/xj)−1.

Exercise 9.14. Denote by DPn(s) the sheaf of differential operators on OPn(s). Then
the global sections functor Γ : M(DPn(s)) → M(Γ(DPn(s))) is exact for s > −n and
faithful for s ≥ 0.

Let us find a formula for obtaining TDOs from invertible sheaves on arbitrary
(smooth, separated) varieties. Recall that a 1-form on an affine variety X is an O(X)-
module morphism τX → O(X). A 1-form λ is called closed if its differential dλ vanishes.
The differential can be defined as the two-form given by

λ(ξ, η) := ξ(λ(η)− λ(ξ(η))− λ([ξ, η]), ∀ξ, η ∈ τX .

Exercise 9.15. Let X be affine. For a closed 1-form λ on X and η ∈ τX define
ϕλ(η) := η + λ(η) ∈ D(X). Then ϕλ extends (uniquely) to an automorphism of D(X)
as an O(X)-algebra. Moreover, all automorphism of D(X) as an O(X)-algebra are
obtained in this way.

For non-affine X, this exercise and the Chech cohomology yield that the TDOs on X
are described by H1(X,Ω1

cl), where Ω1
cl is the sheaf of closed 1-forms on X. The group

of invertible sheaves on X (a.k.a. the Picard group) is isomorphic to H1(X,O×X), where
O×X is the sheaf of invertible regular functions on X. The logarithmic derivative gives
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a morphism of sheaves of abelian groups O×X → Ω1
cl, which in turn gives a group ho-

momorphism H1(X,O×X)→ H1(X,Ω1
cl). This homomorphism describes the correspon-

dence between invertible sheaves and TDOs. For X = Pn we have H1(Pn,O×Pn) = Z
and H1(Pn,Ω1

cl) = K. Thus Exercise 9.15 generalizes (1).

10. The Bernstein-Kashiwara theorem on distributional solutions of
holonomic modules

Let X be a smooth algebraic variety defined over R, and let S∗X denote the DX-
module of tempered distributions on X. More precisely, for every open U ⊂ X we
take S∗X(U) := S∗(U(R)), the space of continuous functionals on the Fréchet space of
Schwartz functions on U(R). Let Mhol (DX) denote the category of holonomic DX-
modules. Our goal in this section is to prove and use the following theorem.

Theorem 10.1 (Bernstein-Kashiwara). Let F ∈Mhol (DX). Then
dim Hom (F ,S∗X) <∞.

Lemma 10.2 (Exercise). Let j : Z ⊂ X be a closed embedding of smooth affine
algebraic varieties defined over R. Then S∗ (Z) ' j′S∗ (X).

Corollary 10.3. It is enough to prove Theorem 10.1 for the case when X is an affine
space.

Proof. Let X = ⋃r
i=1 Ui be an open affine cover. Then

Hom (F ,S∗X) ↪→
∏
i

Hom (F (Ui) ,S∗ (Ui))

by restriction. Let τi : Ui → Ani be closed embeddings. Then S∗ (Ui) ' τ !
iS∗ (Ani).

Hence by the adjunction,
Hom (F (Ui) ,S∗ (Ui)) ' Hom (F (Ui) , τ ′iS∗ (Ani)) '

' Hom ((τi)0F (Ui) ,S∗ (Rni))
Recall that the pushforward preserves holonomicity. �

From now on let X = V := Rn and M be a holonomic Dn-module.

Definition 10.4. Let ω be the standard symplectic form on V ⊕ V ∗. Denote by
pV : V ⊕ V ∗ → V and pV ∗ : V ⊕ V ∗ → V ∗ the natural projections. Define an action of
the symplectic group Sp(V ⊕ V ∗, ω) on the algebra D(V ) by
(∂v)g := π(g)(∂v) := pV ∗(g(v, 0))+∂pV (g(v,0)), wg := π(g)w := pV ∗(g(0, w))+∂pV (g(0,w))

where v ∈ V, w ∈ V ∗, ∂v denotes the derivative in the direction of v, and elements
of V ∗ are viewed as linear polynomials and thus differential operators of order zero.
For a D(V )-module M and an element g ∈ Sp(V ⊕ V ∗), we will denote by M g the
D(V )-module obtained by twisting the action of D(V ) by π(g).

Since the above action of Sp(V ⊕V ∗) preserves the Bernstein filtration on D(V ), the
following lemma holds.

Lemma 10.5. For M ∈Mf (D(V )) and g ∈ Sp(V ⊕V ∗) we have AV(M g) = gAV(M).

Lemma 10.6. For any g ∈ Sp (V ⊕ V ∗), S (V )g ' S (V ), and thus S∗ (V )g ' S∗ (V ).

We will prove this lemma in §10.1.
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Lemma 10.7. Let C ⊂ V ⊕ V ∗ be a closed conic subvariety of dimension n. Then
there exists a Lagrangian subspace W ⊂ V ⊕ V ∗, such that the projection of C onto
(V ⊕ V ∗)/W is a finite map.

Proof. First we prove that there is a Lagrangian subspace L, such that L∩C = 0. For
that L denote the variety of Lagrangian subspaces and consider

Y := {(α, β) ∈ P (C)× L | α ⊂ β} ,

where P (C) is the space of lines inside C (i.e. the projectivization). We have maps
q : Y → P (C) and q′ : Y → L, and we need to show that q′ is not onto. For this it’s
enough to show that dim Y < dimL. Now we see that

dimL = 1
2n (n+ 1) , and dim Y = dim q(Y ) + dim q−1 (x) ,

where q−1 (x) is a generic fiber, so we calculate:

dim Y = 1
2n (n+ 1)− 1 < dimL.

Now we prove the following fact: over C, if W ⊂ U are vector spaces, and C ⊂ U is
a conic subvariety, such that C ∩W = 0, then the projection C → U/W is finite. By
induction on dimension we can reduce to the case dimW = 1 (if it’s true for dimW = l
then take iterated projections, first w.r.t. W , then w.r.t. a larger subspace).

Let p be a homogeneous polynomial vanishing on C but not on W . Then

p (x1, . . . , xn) =
N∑
i=1

pi (x1, . . . , xn−1)xin,

where xi are linear coordinates, s.t. W = {x1 = · · · = xn−1 = 0}. Thus xn �C satis-
fies a monic polynomial over O (U/W ). Indeed, the leading term pN is constant —
otherwise this leading term would vanish on W , so by homogeneity we would have
degx1,...,xn−1 pi > 0 for all i, so p would vanish on W . Now since on O (C) the element
xn satisfies a monic polynomial over O (U/W ), the ring extension O (U/W ) → O (C)
is integral, so the map C → U/W is finite.

Tanking U := V ⊕ V ∗ and W := L, such that the projection of C onto V ⊕ V ∗/W
is a finite map. �

Corollary 10.8. For any M ∈ Mhol(DV ) there exists g ∈ Sp(V ⊕ V ∗) such that M g

is smooth.

Proof. Since M is holonomic, we have dim AV(M) = n. Thus, by the lemma, there
exists a Lagrangian subspace W ⊂ V ⊕ V ∗, such that the projection of AV(M) onto
(V ⊕ V ∗)/W is a finite map. Since Sp(V ⊕ V ∗) acts transitively on the variety of
Lagrangian subspaces, there exists g ∈ Sp(V ⊕ V ∗) such that g−1(W ) = V ∗, and
thus gAV(M) is finite over V . By Lemma 10.5, AV(M g) = g(AV(M)). Thus M g is
finitely-generated over O(V ) and thus smooth. �

Lemma 10.9. Let M be a smooth D(Cn)-module of rank r. Embed the space An(Cn)
of analytic functions on Cn into D∗(Rn) using the Lebesgue measure. Then

Hom(M,D∗(Rn)) = Hom(M,An(Cn)) and dim Hom(M,D∗(Rn)) = rankM,

where rankM is the rank of M as a vector bundle.
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Proof. Let MAn := M ⊗O(Cn) An(Cn) and DAn(Cn) := Dn ⊗O(Cn) An(Cn) be the ana-
lytizations of M and Dn. Then

HomDn(M,D∗(Rn)) ∼= HomDAn(Cn)(MAn,D∗(Rn)).

Since MAn is also smooth, MAn
∼= An(Cn)r. Thus it is left to prove that

HomDAn(Cn)(An(Cn),D∗(Rn)) = HomDAn(Cn)(An(Cn), An(Cn))

and the latter space is one-dimensional. This follows from the fact that a distribution
with vanishing partial derivatives is a multiple of the Lebesgue measure. �

Corollary 10.10. If a distribution generates a smooth D-module then the distribution
is an analytic measure.

Proof of Theorem 10.1. By Corollary 10.3 we can assume that X = V = Rn. By
Corollary 10.8 there exists g ∈ Sp(V ⊕ V ∗) such that Fg is smooth. By Lemma 10.6
we have

Hom (M,S∗ (V )) ' Hom (M g, (S∗ (V ))g) ' Hom (M g,S∗ (V )) .

Finally, dim Hom (M g,S∗ (V )) <∞ by Lemma 10.9. �

Let an algebraic group G act algebraically on a smooth algebraic variety X, both
defined over R.

Corollary 10.11. If G has finitely many orbits on X then dim (S∗ (M))G <∞.

Proof. The Lie algebra g acts on X by vector fields ξα, α ∈ g. Define a DX-module
F on X by F (U) := DX (U) /DX (U) {ξα �U}. Then the solutions of this D-module
with values in S∗X are exactly the G-invariant distributions. Now modulo the previous
result, it remains to show that F is holonomic. By construction we have

Sing suppF ⊂ {(x, ϕ) ∈ T ∗M | ∀α ∈ g : 〈ϕ, ξα (x)〉 = 0} =
⋃
x

CNX
Gx

where CNX
Gx is the conormal bundle of the orbit Gx. Since there are finitely many

orbits, this is a finite union. All conormal bundles have dimension dimX, so the same
is true for their finite union. �

A bit more careful argument actually proves a bit stronger statement.

Theorem 10.12 (Aizenbud-Gourevitch-Minchenko). If G has finitely many orbits on
X and E is an algebraic G-equivariant bundle on X then for any n ∈ N there is Cn ∈ N,
such that for any n-dimensional g-module τ ,

dim Homg (τ,S∗ (X, E)) ≤ Cn.

Exercise 10.13. Let R act on RP 1 by shifts. Compute the dimension of (S∗ (RP 1))R.

This exercise does not use the technique of this section, but rather demonstrates the
nature of the question considered in the last theorem.



THE ALGEBRAIC THEORY OF D-MODULES 31

10.1. Proof of Lemma 10.6. This section requires some knowledge of representation
theory.

Definition 10.14. Let V := Rn and let ω be the standard symplectic form on Wn :=
V ⊕ V ∗. The Heisenberg group Hn is the algebraic group with underlying algebraic
variety Wn × R with the group law given by

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + 1/2ω(w1, w2)).
Define a unitary character χ of R by χ(z) := exp(2πiz).

Definition 10.15. The oscillator representation of Hn is given on the space L2(V ) by
(2) (σ(x, ϕ, z)f)(y) := χ(ϕ(y) + z))f(x+ y).

Note that the center of Hn is 0× R, and it acts on σ by the character χ, which can
be trivially extended to a character of V ∗ × R.

It is easy to see that σ is the unitary induction of (the extension of) the character χ
from V ∗ × R to Hn = (V ⊕ V ∗)× R.

Lemma 10.16. The space of smooth vectors in σ is S(V ), and the Lie algebra of Hn

acts on it by
(3) σ(v)f := ∂vf, σ(ϕ)f := ϕf, σ(z)f := 2πizf.

Proof. Formula (3) is obtained from (2) by derivation. Now, it is known that the space
of smooth vectors in a unitary induction consists of the smooth L2 functions whose
derivatives also lie in L2. �

Theorem 10.17 (Stone-von-Neumann). The oscillator representation σ is the only
irreducible unitary representation of Hn with central character χ.

Idea of the proof. Let me ignore all the analytic difficulties. Consider the normal com-
mutative subgroup A := V ×R. Conjugation in Hn defines an action of V on the dual
group of A. This action has only two orbits. The closed orbit is the singalton {1} and
the open orbit O is the complement to the closed one. The restriction σ|A decomposes
to a direct integral of characters in O, each “with multiplicity one”. The restriction
of any non-zero subrepresentation ρ ⊂ σ to A will also include χ, and thus the whole
orbit O of χ. Thus ρ = σ and σ is irreducible.

Now let τ be any irreducible unitary representation of Hn with central character χ.
Then the restriction of τ to A will again include all the characters in O with multiplicity
one. Thus τ is the induction of an irreducible representation of the stabilizer of χ in
Hn. However, this stabilizer is A and thus τ ' σ. �

Note that the symplectic group Sp(V ⊕V ∗) acts on Hn by automorphisms, preserving
the center. Thus the theorem implies the following corollary.

Corollary 10.18. For every g ∈ Sp(V ⊕ V ∗) there exists a (unique up to a scalar
multiple) linear automorphism T of S(V ) such that for any h ∈ Hn we have σ(hg) =
Tσ(h)T−1.

Since the Lie algebra of Hn generates Dn, this corollary implies Lemma 10.6.

Remark 10.19. The uniqueness part of Corollary 10.18 follows from Schur’s lemmas.
Corollary 10.18 defines a projective representation of Sp(V ⊕ V ∗) on S(V ), i.e. a
map τ : Sp(V ⊕ V ∗) → GL(S(V )) such that τ(gh) = λg,hτ(g)τ(h). It is not possible
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to coordinate the scalars in order to obtain an honest representation of Sp(V ⊕ V ∗),
but it is possible to obtain a representation of a double cover S̃p(V ⊕ V ∗), called the
metaplectic group. This was shown by A. Weil.

11. Derived categories

Let A be an abelian category, and C(A) the category of complexes over A.

Definition 11.1. Let ϕ : C → D be a morphism in C(A). We say that ϕ is homotopic
to zero if there exists a collection of maps λk : Ck+1 → Dk such that

ϕk = λk ◦ dCk + dDk−1 ◦ λk−1.

We say that two morphisms of complexes are homotopic if the difference is homotopic
to zero. Define the homotopy category of A (denoted K(A)) to have complexes as
objects and morphisms given by

HomK(A)(C,D) := homotopy equivalence classes in HomC(A)(C,D).
We say that two complexes are homotopy equivalent if they are isomorphic in K(A).

Exercise 11.2. (i) The class of morphisms homotopic to zero is closed under both
left and right compositions with arbitrary morphisms.

(ii) Homotopic morhisms induce the same morhisms on cohomologies.

The category K(A) is additive but not abelian.

Definition 11.3. A morphism ϕ : C → D in C(A) (or in K(A)) is called a quasi-
isomorphism if the cohomologies Hk(ϕ) are isomorphisms for any k.

The derived category will be defined as the localization of K(A) by quasiisomor-
phisms. The idea is that this category includes slightly more information the the
cohomologies of the complexes. We will also define derived functors between derived
categories, and they will carry more information than the usual derived functors. In
particular, we will be able to compose them, and in this way derive the composition of
a left exact functor and a right exact functor.

In order to show that the derived categories are well defined we will show that the
quasiisomorphisms satisfy the Ore condition. For this we will need the cone construc-
tion.

Definition 11.4. For (C, d) ∈ C(A) define (Cone(C), Cone(d)) ∈ C(A) by
Cone(C)i := Ci ⊕ Ci+1, Cone(d)(a, b) := (da+ b,−db).

Notation 11.5. For (C, d) ∈ C(A) and k ∈ Z, denote by C[k] the complex given by

C[k]i = C[k + i], d[k]i = (−1)kdk+i.

Lemma 11.6. Exercise
(1) Cone(C) is homotopy equivalent to zero.
(2) ϕ : C → D is homotopic to zero if and only if it can be extended to a morphism

ϕ′ : Cone(C)→ D.

Lemma 11.7. Any morphism of complexes is homotopy equivalent both to an epimor-
phism and to a monomorphism.
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Proof. Since cones are homotopy equivalent to zero, any ϕ : C → D is homotopy
equivalent to the monomorphism ϕ′ : C → Cone(C)⊕D given by ϕ′k(a) := (a, 0, ϕk(a))
and to the epimorphism ϕ′′ : C ⊕ Cone(D)[1?? or − 1] → D given by ϕ′′k(a, b, c) :=
ϕk(a) + c. �

Let us give some geometric intuition on cones. For every topological space X one
can define a contractible space that includes it by Cone(X) := X × [0, 1]/(X × {1}).
Moreover, for any continuous map ν : X → Y we can define Cone(ν) to be the quotient
of (X × ([0, 1])∐Y ) by the equivalence relation (x, 0) ∼ ν(x). Then Cone(ν) includes
Y and the quotient is the suspension S(X) = X × [0, 1]/(X ×{0} ∪X ×{1}). By this
analogy we will now define the cone of a morphism.
Definition 11.8. Let ϕ : C → D be a morphism in C(A). Define Cone(ϕ) ∈ C(A) by

Cone(ϕ) := (Cone(C)⊕D)/∆C,
where (∆C)i = {(c, 0, ϕ(c)) | c ∈ Ci}. In other words:

Cone(ϕ)i := Di ⊕ Ci+1 with differential given by d(a, b) = (da+ ϕ(b),−db).
Lemma 11.9 (Exercise). (1) The following short sequence of complexes is exact

0→ D → Cone(ϕ)→ C[1]→ 0.
Moreover, the connecting morphism in the corresponding long exact sequence of
cohomologies is Hi+1(ϕ).

(2) Cone(D → Cone(ϕ)) is homotopy equivalent to C[1].
(3) Cone(Cone(ϕ)→ C[1]) is homotopy equivalent to D[1].

The triple C,D,Cone(ϕ) is called an exact triangle.
The Lemma 11.9 shows that the exact triangles are symmetric (up t shifts), unlike

short exact sequences.
Corollary 11.10. ϕ is a quasi-isomorphism if and only if Cone(ϕ) is an acyclic com-
plex.
Proposition 11.11. The system of quasi-isomorphisms in K(A) satisfies the Ore con-
ditions. In other words for any quasi-isomorphism µ : C → D and any morphism
q : E → D there exists a quasi-isomorphism ν : L → E and a morphism p : L → C
with µ ◦ p = q ◦ ν.
Proof. By Lemma 11.7 we can assume that µ⊕ q : C⊕E → D is an epimorphism. Let
L := Ker(µ⊕ q), and let ν : L→ E and p : L→ C be the projections. From the short
exact sequence 0→ L→ C ⊕ E → D → 0 we obtain the long exact sequence

· · · → Hi−1(D)→ Hi(L)→ Hi(C)⊕ Hi(E)→ Hi(D)→ Hi+1(L)→ . . .

Since µ is a quasiisomorphism, Hi(C) is mapped isomorphically to Hi(D), which implies
that the morphism Hi(L) → Hi(E) is onto. Since Hi−1(C) is mapped isomorphically
to Hi−1(D) we obtaine that the map Hi−1(D)→ Hi(L) is zero and thus the morphism
Hi(L)→ Hi(E) is an isomorphism. Thus ν is a quasiisomorphism. �

Definition 11.12. Let C,D ∈ K(A). A (C,D)-triple is a triple (E, ν, ϕ), where
ν : E → C is a quasiisomorphism and ϕ : E → D is a morphism.

We say that two (C,D)-triples (E, ν, ϕ) and (E ′, ν ′, ϕ′) are linked if there exists an
(E,E ′)-triple (L, α, β) such that both α and β are quasiisomorphisms and

ν ◦ α = ν ′ ◦ β, ϕ ◦ α = β ◦ ϕ′.
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For L ∈ K(A), a join of a (C,D)-triple (E, ν, ϕ) and a (D,L)-triple (M,µ, ψ) is
defined to be the (C,L)-triple (N, ν ◦ α, ψ ◦ β), where (N,α, β) is an (E,M)-triple
satisfying ϕ ◦ α = µ ◦ β. Note that the triple (N,α, β) satisfying the condition always
exists by Proposition 11.11.

Lemma 11.13. The link relation is an equivalence relation, and the equivalence class
of the join of two equivalence classes of triples is well-defined, i.e. does not depend on
the representatives and on the choice of the triple (N,α, β).

This lemma follows from Proposition 11.11. We leave the deduction as a long exer-
cise.

Definition 11.14. The derived category D(A) is defined by Ob(D(A)) = Ob(K(A))
and for C,D ∈ Ob(D(A)),

HomD(A)(C,D) = {equivalence classes of (C,D)− triples}.

Lemma 11.15. The derived category D(A) is additive.

Proof. Let C,D ∈ Ob(D(A)), and let η = (E, ν, ϕ) and ζ = (L, µ, ψ) be (C,D)-
triples. Proposition 11.11 implies that there exists an (E,L)-triple (M,α, β) such that
both α and β are quasiisomorphisms and ν ◦ α = µ ◦ β. Then η is equivalent to
(M, ν ◦α, ϕ ◦α) and ζ to (M,µ ◦ β, ψ ◦ β). We define their sum to be (the equivalence
class of) (M, ν ◦ α, ϕ ◦ α + ψ ◦ β). �

Note that the derived category is not abelian. Rather, it is a triangulated category.
Note that we have well-defined cohomology functors H i : D(A)→ A.

Definition 11.16. The truncation functors are defined as
τ≤n (X) :=

(
· · · → Xn−1 → ker

(
Xn → Xn+1

)
→ 0→ . . .

)
τ≥n (X) :=

(
· · · → 0→ coker

(
Xn−1 → Xn

)
→ Xn+1 → . . .

)
Then we have natural transformations τ≤n (X)→ X, X → τ≥n (X), which are isomor-
phisms if Hk(X) = 0 for any k > n (resp. k < n).

τ≥n (resp. τ≤n) is a (co)reflection onto the subcategories of complexes bounded
from above (below). For any X the morphisms τ≤nX → X → τ≥n+1X form an exact
triangle.

Definition 11.17. For a subset S ⊂ Z define DS(A) to be the subcategory of D(A)
consisting of objects C with Hk(C) = 0 for k /∈ S. Define Db(A) := ⋃

finiteS D
S(A).

Remark 11.18. Db(A) is equivalent to the category of bounded complexes, with link
relation through bounded complexes. We will not have time to prove that.

Lemma 11.19. A ∼= D{0}(A)

Proof. The functors are given by A 7→ (· · · → 0 → A → 0 → . . . ) and C 7→ H0(C).
One composition is the identity. To see that the other composition is isomorphic to
identity consider the isomorphisms C → τ≥0C and H0(C)→ τ≥0C. �

We will say that an object is glued from two others if together they form an exact
triangle. We will say that it is glued from some set S of objects if it is glued from two
others, each of which is glued from some proper subset of S.
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Exercise 11.20. Let a ≤ b ∈ Z and let I := Z ∩ [a, b]. Then any DI(A) is glued from
D{a}(A), D{a+1}(A), . . . D{b}(A).

Definition 11.21. A bicomplex in A is a collection of objects Bij ∈ A parameterized
by Z2 and two collections of morphisms dij1 : Bij → Bi+1,j and dij2 : Bij → Bi,j+1 such
that d2

1 = 0, d2
2 = 0, and d1d2 + d2d1 = 0.

For a bicomplex B = (Bij, d
ij
1 , d

ij
2 ) define its total complex (Tot(B), d) by

(Tot(B))k :=
⊕
i+j≥k

Bij, d = d1 + d2.

Note that we can obtain a bicomplex from a complex of complexes by changing the
sign of differentials in every odd column.

Lemma 11.22 (Grothendieck). Let (B, d1, d2) be a bicomplex, and assume that d1 is
acyclic, and on any diagonal i + j = k, Bij = 0, i � 0. Then its total complex TotB
is acyclic.

Proof. Let c ∈ Tot(B)k with dc = 0. Let N be s.t. Bi,k−i = 0 for all i > N .
We want to show that c = dx for some x ∈ Tot(B)k−1. We do this by induction on

l s.t. ci,k−i = 0 for all i < N + 1 − l. As a base we take l = 0. Then c = 0. For the
induction step, assume ci,k−i = 0 for all i < N + 1 − l, and let α := cN+1−l,k−N−1+l.
Then d1α = 0, thus α = d1β for some β ∈ BN+1−l,k−N+l. Then c ∼ c′ := c − dβ, and
c′N+1−l,k−N−1+l = 0. Thus c′ = dx′ by the induction hypothesis. Now, c = d(β+x′). �

Corollary 11.23. If ν : B → B′ is an isomorphism of bicomplexes that satisfy the
support condition as above. Suppose ν is a d1-quasi-isomorphism. Then Tot ν is a
quasi-isomorphism.

Corollary 11.24. If B is acyclic except at row 0 and satisfies the support condition as
above then TotB is quasi-isomorphic to the cohomology complex H0,•(B) (?? check).

Proof. Let B•j denote the j-th column of B. Consider the exact triangle of complexes:
τ<0B•j → B•j → τ≥0B•j.

The first one is acyclic, and thus B•j → τ≥0B•j is a quasi-isomorphism. We get a d1-
quasi-isomorphism of bicomplexes B → τ i≥0B. By the previous corollary this implies
a quasi-isomorphism Tot(B)→ Tot(τ i≥0B).

In the same way, the exact triangle
τ<1(τ≥0B•j)→ τ≥0B•j → τ≥1B•j.

gives a quasi-isomorphism τ i<1(τ i≥0B) → τ i≥0B, and by taking total complexes, a
quasi-isomorphism H0,•(B) → Tot(τ i≥0B). Together, we get isomorphisms in the
derived category between Tot(B), Tot(τ i≥0B) and H0,•(B). �

Now we would like to define derived functors. Suppose that A has enough injective
objects.

Lemma 11.25. Any C ∈ C≥0(A) has an injective resolution, i.e. is quasi-isomorphic
to a complex consisting of injective objects.

Proof. First of all, let us show that C can be embedded into an injective complex.
Embed C0 into an injective I0, and C1 into (an injective) I1. Then the composed map
C0 → I1 can be lifted (by the injectivity of I1) to d0 : I0 → I1. Then we embed C2 into
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(an injective) I2, and lift the map C1/d
C
0 (C0) → I2 to a map d′2 : I1/d0(I0) → I2. We

continue building I by induction.
Now we embed C into an injective complex I0, then I0/C into I1 and so on. In

this way we construct a bicomplex 0 → I0 → I1 → . . . . By Corollary 11.24 the total
complex will be quasi-isomorphic to C. �

Lemma 11.26 (Exercise). Let I, J be bounded on the left complexes consisting of
injective objects, and let ϕ : I → J be a quasi-isomorphism. Then ϕ is an isomorphism
in the homotopic category.

Let F : A → B be a left-exact functor.

Definition 11.27. For any C ∈ D(A) choose an injective resolution I and define
DF (C) := F (I). This defines a functor DF : D(A)→ D(B).

We say that an object X ∈ A is F -acyclic if DF (X) ∈ D{0}B.

Proposition 11.28 (Exercise). Let C be a bounded on the left complex consisting of
F -acyclic objects. Then DF (C) ∼= F (C).
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