
THE ALGEBRAIC THEORY OF D-MODULES

1. D-modules on affine spaces

1.1. Philosophy and motivation.

A system of linear equations is the set of vectors of coefficients. Some systems are
equivalent, e.g. {

x + y = 0

x + 2y + z = 0
≈

{
x + y = 0

y + z = 0

Systems are equivalent ⇐⇒ their coefficient vectors span the same linear subspaces.
Thus:

system of linear equations ←→ vector space with a fixed basis

equivalence class of systems of linear equations ←→ vector space.

In modern linear algebra we just study vector spaces.

Solution of the system of linear equations = functional on the quotient by the vector
space.

We will study systems of polynomial partial differential equations up to equivalence.

Consider first one variable x.
Polynomial differential equation = differential operator d ∈ D1 = C〈x, ∂〉,
where ∂ = d

dx
.

D1 is not commutative: [x, ∂] = −1 by Leibnitz rule: x∂f − ∂(xf) = −f .

Systems are equivalent if their equations generate the same left ideal. Thus
{Systems of polynomial ODEs}/ ∼ cyclic modules over D1: (equations = relations).

Solutions of a system Ξ = morphisms of D1-modules Ξ→ C∞(R).
Instead C∞ we can consider C−∞(R) - generalized functions.

We will study finitely generated Dn-modules.

We will deduce properties:
Dn-modules −→ PDEs −→ algebraic properties of solutions −→ analytic properties of
solutions.
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Example: functional equation implies analytic continuation. E.g. Γ(λ + 1) = λΓ(λ)
allows to define Γ(λ) := λ−1Γ(λ + 1), extending the area of definition of Γ. By induc-
tion, it gives meromorphic continuation to all of C.

The function |x|λ is a smooth function of x for all complex λ with Re λ > −1.
It satisfies:

∂(|x|λ) = λ|x|λ−1

This enables to define |x|λ−1 as |x|λ−1 := ∂(|x|λ)/λ for Re(λ− 1) > −2 unless λ = 0.
We can continue this analytic continuation to the left, defining a meromorphic family
of generalized functions.

In several variables: the same story, but the example becomes more complicated.
We want to have meromorphic continuation of |P (x1, . . . , xn)|λ for any polynomial P
that grows to infinity in all directions.

This was an important open problem that initiated the theory of Dn-modules.

1.2. Definitions. Fix an algebraically closed field K of characteristic 0.

Definition 1.1.

Dn := K 〈x1, . . . , xn, ∂1, . . . , ∂n〉 / 〈[xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δij〉 .

Exercise 1.2. Dn is the subalgebra of EndK K [x1, . . . , xn] generated by derivations and
multiplication operators. By derivations we mean linear endomorphisms that satisfy
the Leibnitz rule:

∂(fg) = (∂f)g + f(∂g).

Exercise 1.3. Any d ∈ Dn can be written as

d =
∑

cα,βxα∂β,

where α, β are multiindices, and cα,β ∈ K. For example,

x1∂1∂2x1 = x1∂1x1∂2 = x2
1∂1∂2 − x1[x1, ∂1]∂2 = x2

1∂1∂2 + x1∂2

Definition 1.4. Let K = C and let M be a finitely generated Dn-module.
Then a solution of M is a homomorphism from M to some Dn-module of functions
(say, C∞ (Rn) or C−∞ (Rn)).

Example 1.5. To any linear system of polynomial PDEs {L1f = 0, . . . , Lkf = 0}, we
associate the Dn-module Dn/ 〈L1, . . . , Lk〉.

Exercise 1.6. The center is: Z (Dn) = K.

Notation 1.7. M is the category of left Dn-modules, Mr is that of right modules,
Mf — finitely generated left modules.
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1.3. Dimension.

Lemma 1.8. For any M ∈M (Dn) either M = 0 or dimK M =∞.

Proof. If dim M <∞ then 0 = tr [∂1, x1] = tr 1 = dimK M . �

This motivates other ways of measuring the “size” of a module.

Definition 1.9. A filtered algebra is an algebra A equipped with an increasing sequence
of subspaces F iA, i ≥ 0, F iA ⊂ F i+1A,

⋃
i F

iA = A,
such that 1 ∈ F 0A and F iA ∙ F jA ⊂ F i+jA.

A filtration is called good if F iA is f.g. over F 0A, and F i+1A = F 1A ∙F iA for i� 0
(i large enough).

Example 1.10. A = K [y1, . . . , ym], F iA := {deg ≤ i}.

Example 1.11. Bernstein filtration: F iDn := span
{
xα∂β

∣
∣ |α|+ |β| ≤ i

}

Definition 1.12. For a filtered algebra (F iA) the associated graded algebra is

GrF A :=
⊕

i

(
F iA/F i−1A

)
. F−1A := 0.

Example 1.13. GrDn = K [x1, . . . , xn, y1, . . . , yn].

Let A be a good filtered algebra.

Definition 1.14. A filtered A-module M is a module equipped with an increasing
sequence of subspaces F iM , such that

F iA ∙ F jM ⊂ F i+jM,
⋃

i

F iM = M.

A filtration is called good if:
F iM are finitely generated over F 0A, and F i+1M = F 1A ∙ F iM for i� 0.

Exercise 1.15. Any two good filtrations are comparable, i.e. there exists m s.t.

F i−mM ⊂ ΦiM ⊂ F i+mM ∀i

Proof. Suppose that ∀i : FN+iM = (F 1A)
i
FNM .

Since FNM is finitely generated over F 0A, and
⋃

i Φ
iM = M , one can assume that

FNM ⊂ ΦN ′
M . Then

FN+iM =
(
F 1A

)i
F NM ⊂

(
F 1A

)i
ΦN ′

M ⊂ ΦN ′+i

M.

By the same argument, ΦN ′+iM ⊂ FN ′′+iM . Now

FN+iM ⊂ ΦN ′+iM ⊂ FN ′′+iM

for all i ≥ 0. �

Remark 1.16. A filtered algebra is good ⇔ it is good as a module over itself.
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We define GrF M for a filtered module in a similar way as for algebras.
We will sometimes write Ai for F iA and M i for F iM if the filtration is understood.

Exercise 1.17. Assume that Ai is a good filtered algebra. Then

F iM is good⇔ GrF M is finitely generated over GrF A.

Proof. Suppose that M i := F iM is good, and M i+1 = A1M i starting from some N .
Take generators mi of MN over A0. Then they their symbols generate Gr M over
Gr A. Conversely, suppose that Gr M is finitely generated over Gr A by elements mi,
deg mi = di. Then the filtras M i are obtained by iterated extensions from M j/M j−1,
which are finitely generated over A0, so M i are also finitely generated over A0. On the
other hand,

A1M i/M i '
(
A1/A0

) (
M i/M i−1

)

and if A is good then

M i+1/M i =
∑

j

(
Ai−j+1/Ai−j

) (
M j/M j−1

)
=

(
A1/A0

)∑

j

(
Ai−j/Ai−j−1

) (
M j/M j−1

)
=
(
A1/A0

) (
M i/M i−1

)

where j runs through the degrees of the generators of Gr M over Gr A and i is assumed
to be larger than the maximum of these degrees. �

Exercise 1.18. A module M over a good filtered algebra A admits a good filtration
if and only if M is finitely generated.

Proof. Suppose first that M admits a good filtration. Then M i+1 = A1M i for i ≥ N
and MN is finitely generated over A0. Thus the generators of MNover A0 generate M .

Conversely, assume M is generated by a finite set xi
k
i=1 and consider the filtration

M i := Aix1 + ∙ ∙ ∙ + Aixk. Since Ai is finitely generated over A0, M i is also finitely
generated over A0, and M i+1 = A1M i as long as Ai+1 = A1Ai.

Since any element m ∈ M is representable as
∑k

i=1 aixi, we have m ∈ Mn, where n
is big enough so that ai ∈ An. Therefore M =

⋃
i M

i. �

Definition 1.19. For a filtered module F iM and a short exact sequence

0→ L→M → N → 0,

define induced filtrations on L and M by

F iL := F iM ∩ L and F iN := F iM/F iL.

A map f : M → R of filtered modules is called strict if f (M i) = f (M) ∩ Ri.

Exercise 1.20. Let L→M → N be an exact sequence of filtered modules and strict
maps between them. Then the corresponding sequence Gr L → Gr M → Gr N is also
exact.
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Exercise 1.21. For a good filtered module F iM and a short exact sequence

0→ L→M → N → 0,

the induced filtration on N is good, and if Gr A is Noetherian then so is the induced
filtration on L.

Proof. Note that all maps in 0 → L→ M → N → 0 are strict. Thus Gr N is a factor
of Gr M , so it’s finitely generated over Gr A; and Gr L is a submodule of Gr M , so if
Gr A is Noetherian then Gr L is finitely generated over it. �

Remark 1.22. The category of filtered modules is not Abelian — say, the shift map
doesn’t have a cokernel.

Theorem 1.23. Suppose that A is a good filtered algebra and GrF A is Noetherian.
Then A is also Noetherian.

Proof. Let M be a finitely generated A-module, and L ⊂ M . Pick a good filtration
F . Then GrF M is finitely generated, GrF A is Noetherian, hence GrF L is finitely
generated, so F iL is good, so L is finitely generated over A. �

Corollary 1.24. Dn is Noetherian.
The universal enveloping algebra of any finite dimensional Lie algebra is Noetherian.

Notation 1.25.

(i) If f, g : N→ Z we say f ∼ g if f = g for i� 0.
(ii) Δf (i) := f (i + 1)− f (i).

Exercise 1.26. Let f : N → Z be an integer sequence. Show that the following are
equivalent:

(1) f is eventually polynomial of degree ≤ d.
(2) Δf is eventually polynomial of degree ≤ d− 1.

(3) f(j) ∼
∑d

i=0 ei

(
j
i

)
where ei ∈ Z.

Theorem 1.27 (Hilbert). Let R =
⊕

Ri be a graded finitely generated K [x1, . . . , xn]-
module. Then b (i) := dimK Ri is eventually polynomial of degree d ≤ n− 1.

The number d + 1 is called the functional dimension of R.

Proof. Define (R [1])i := Ri+1.

0→ ker xn → R
xn→ R [1]→ coker xn → 0

This is a morphism of graded modules, so ker xn and coker xn are graded modules.
Thus:

dimK (ker xn)i − dimK Ri + dimK Ri+1 − dimK (coker xn)i = 0

On the other hand, xn acts by 0 on both ker and coker, so by induction on n we know
that Δ dimK Ri is eventually polynomial, therefore so is dimK Ri. �

Corollary 1.28. Let F iM be a good filtered Dn-module.
Then bM (i) := dim F iM is eventually polynomial of degree ≤ 2n.

Proof. bM = bGr M , and note that GrDn ' K [x1, . . . , xn, y1, . . . , yn]. �
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Remark 1.29. Now since for any two filtrations F i−kM ⊂ ΦiM ⊂ F i+kM , the degree
and leading coefficient are invariant (for a fixed filtration of the algebra).

Definition 1.30. The degree of bM (i) is called the dimension of M and denoted d(M),
and the leading coefficient of d(M)!bM (i) is called the (Bernstein) degree of M and
denoted e (M).

2. Bernstein inequality

Theorem 2.1 (Bernstein inequality). Let M be a finitely generated Dn-module. If
M 6= 0 then

n ≤ d (M) ≤ 2n.

Remark 2.2. Note that d (M) 6= 0 is equivalent to dimK M = ∞, so Bernstein’s in-
equality can be viewed as a generalization of that.

Example 2.3.

(i) d(Dn) = 2n.
(ii) d(Pn) = n, where Pn is the module of polynomials.
(iii) Let δ denote the Dirac’s δ-function at zero, and Δ denote the Dn-module gener-

ated by it.
In other words, Δ = Dn/〈x1, . . . , xn〉. Then d(Δ) = n.

2.1. Proof of Bernstein’s inequality.
Let M ∈Mf (Dn) and define

N0 := ker(xn|M) ⊂M, N ` := ∂`
nN0.

They are viewed as Dn−1-modules.

Lemma 2.4. ∂`
n : N0 ' N ` and N ` are linearly independent.

Proof. Let m ∈ N0, m` := ∂`
nm. Then since

[
xn, ∂`

n

]
= −`∂`−1

n , we have

xnm` = −`m`−1

Thus xn “inverts” ∂n on N ` up to a scalar. Thus ∂`
n : N0 ' N `.

N ` are linearly independent because they are different eigenspaces of xn∂n. �

Corollary 2.5. If ker xn|M 6= 0 and Bernstein’s inequality holds for Dn−1 then

d (M) ≥ n.

We use notation D`
n := F `Dn.

Proof. Let m 6= 0, m ∈ ker(xn|M ). Then

D2`
n m ⊃

⊕̀

i=0

∂i
nD

`
n−1m =

⊕̀

i=0

D`
n−1∂

i
nm.

Thus

dimD2`
n m ≥ ` dimD`

n−1m ≥ const ∙`n.

�
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Corollary 2.6. If coker xn 6= 0 and Bernstein’s inequality holds for Dn−1 then

d (M) ≥ n.

Proof. By the previous corollary we can assume ker xn = 0. Now,

coker xn = M/xnM

is a Dn−1-module. Assume it’s finitely generated. Then

dim F iM − dim xnF i−1M ≥ cin−1.

If it’s not finitely generated then take a finitely generated submodule. Thus

Δ dim F iM ≥ cin−1,

so d (M) ≥ n. �

Exercise 2.7 (Amitsur-Kaplansky lemma). Let L be an uncountable algebraically
closed field. Let V be an L-vector space of countable dimension.

Then any linear operator on T : V → V has nonempty spectrum,
i.e. T − λ Id is not invertible for some λ ∈ L.

Proof. Assume by way of contradiction that the spectrum of T is empty.
Let v ∈ V be a non-zero vector. Then

{(T − λ)−1 v, λ ∈ L}

is an uncountable set. Thus it is linearly dependent. Picking a dependence and bringing
it to a common denominator we obtain p(T )v = 0, for some polynomial p.

On the other hand, p is a product of linear factors, thus p(T ) is invertible and has
no kernel. Contradiction. �

Proof of Bernstein inequality. Extend the field so that it becomes uncountable.
By the previous lemma, xn − λ is not invertible for some λ. Apply the automorphism
xn 7→ xn− λ. Now the theorem follows by induction from the previous corollaries. �

2.2. Joseph’s proof of Bernstein inequality.
Idea: Dn has no two-sided ideals, thus its modules have no annihilators.
Thus, for any module M , Dn embeds into EndK(M). Since

dimDi
n ∼ (i)2n and dimK End(F iM) = dim(F i(M))2 ∼ i2d(M),

we obtain that d(M) ≥ n.

Lemma 2.8. (Exc). The center of Dn is K.

Lemma 2.9. Let F iM be a good filtration on a Dn-module M . Then the action defines
an embedding

Di
n ↪→ Homk(F

iM,F 2iM).

Proof. The map is defined by definition of filtration. Let us prove that it is an embed-
ding by induction on i. For i = 0 this is obvious. For a bigger i, let d 6= 0 lie in the
kernel. Since d is not scalar and thus not central, there exists l such that

[d, xl] 6= 0 or [d, ∂l] 6= 0.
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Assume WLOG [d, x1] 6= 0. Then [d, x1] ∈ Di−1
n and by the induction hypothesis

[d, x1]v 6= 0 for some v ∈ F i−1M . However,

[d, x1]v = dx1v − x1dv = 0, since v, x1v ∈ F iM.

We arrived at a contradiction and thus d = 0. �

Joseph’s Proof of Bernstein inequality.
Suppose by way of contradiction that d(M) ≤ n− 1. Then

dim Homk(F
iM,F 2iM) < cin−1(2i)n−1 = c′i2n−2.

On the other hand dimDi
n > c′′i2n. This contradicts the previous lemma. �

This idea also allows to prove a similar theorem for Gelfand-Kirillov dimension of
modules over algebraic Lie algebras.

Later we will state without proof a deep geometric theorem that implies the Bernstein
inequality.

3. Holonomic modules, and an application.

In the next section we will state without proof a deep geometric theorem that implies
the Bernstein inequality.

Definition 3.1. A finitely generated Dn-module M is called holonomic if d(M) = n.

Exercise 3.2. If M is holonomic then it has length at most e(M).

Corollary 3.3. (Exc). Let M be a Dn-module, and let F iM be a (not necessary
good) filtration on M . Suppose that dim F iM ≤ e

(
i
n

)
for some e. Then M is finitely-

generated. Moreover, it is holonomic and of length at most e.

We are now ready to give the first application to the theory of distributions. Let P
be a polynomial in n real variables. Let λ ∈ C with Reλ > −1 and consider the locally
integrable function |P |λ.

Theorem 3.4. (Bernstein, Gelfand, Gelfand, Atiya, ...) Consider |P |λ as a family
of generalized functions. Then this family has meromorphic continuation to the entire
complex plane with poles in a finite number of arithmetic progressions.

This theorem follows from an algebraic statement saying that there exists a differen-
tial operator d with polynomial coefficients (that depend also on λ), and a polynomial
b in λ such that d|P |λ = b(λ)|P |λ−1. Let us formulate this algebraic statement more
precisely, over any field, and prove it.

Notation 3.5. Fix a polynomial P ∈ k[x1, . . . , xn]. Let K := k(λ) be the field of rational
functions. Consider the Dn(K)-module

MP := M ′
p ⊗k[λ] K, where M ′

p := span{QP λ−l},

where Q ∈ k[x1, . . . , xn,λ] and l ∈ Z≥0, with the relations PP λ−l = P λ−l+1, and the
action of Dn[λ] given by

∂i(QP λ−l) = ∂i(Q)P λ−l + Q(λ− l)∂i(P )P λ−l−1.

Lemma 3.6. The module MP is finitely generated, and, moreover, holonomic.
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Proof. Define a filtration on MP by

F iMP := {QP λ−i s.t. deg Q ≤ (deg P + 1)i}.

It satisfies dim F iMP ≤ cin. It’s not clear whether this is a good filtration, but by the
Corollary above we still get that MP is finitely generated and holonomic. �

Corollary 3.7. There exist d ∈ k[x1, . . . , xn, ∂1, . . . , ∂n,λ] and b ∈ k[λ] s.t.

dP λ = bP λ−1.

Proof. Consider the increasing chain of submodules

Dn(K)P λ ⊂ Dn(K)P λ−1 ⊂ . . . .

This chain has to stabilize. Thus d̃P λ−k = P λ−k−1 for some d̃ ∈ Dn(K). Applying the

automorphism λ 7→ λ + k we get that d̂P λ = P λ−1 for some d̂ ∈ Dn(K). Now, we can

decompose d̂ = d
b
. �

Finally, let us show that holonomic modules are cyclic.

Theorem 3.8. Let R be a simple Noetherian non-Artinian ring, and M a finitely
generated Artinian left R-module. Then M is cyclic.

Proof. By induction on length, we assume that M = R 〈u, v〉 with Rv simple. Since
R is not Artinian, and M is Artinian, there exists d such that du = 0. On the other
hand, since R is simple, R = RdR, so there is b such that dbv 6= 0.

Let us show that M = R 〈u + bv〉. Indeed, d (u + bv) = dbv ∈ Rv, so since Rv is
simple, R 〈u + bv〉 ⊃ Rv. Thus v, bv ∈ 〈u + bv〉, and thus also u ∈ 〈u + bv〉. Since
M = R 〈u, v〉 ,M = R 〈u + bv〉. �

Corollary 3.9. Holonomic Dn-modules are cyclic.

4. Associated varieties and singular support

Let A be a finitely-generated commutative K-algebra without nilpotents.

Definition 4.1. Let M be an A-module. Denote by Ann M the annihilator ideal
AnnM := {a ∈ A |aM = 0} and define the support SuppM to be the zeros of AnnM
in the maximal spectrum Specm A.

If M is finitely generated then SuppM is the support of the coherent sheaf on
Specm A that corresponds to M . This follows from Nakayama’s lemma. If A =
K[x1, . . . , xn] then Specm A = An.

The algebra Dn is not commutative, and in order to associate a variety to a finitely-
generated Dn module we will use the associated graded algebra K[x1, . . . , xn, ξ1, . . . , ξn]

Definition 4.2. Two modules M,N over the same algebra are called Jordan-Holder
equivalent if there exist two increasing chains of the same finite length of submodules
0 = M0 ⊂M1 ⊂ ∙ ∙ ∙ ⊂ Mm = M and 0 = N0 ⊂ N1 ⊂ ∙ ∙ ∙ ⊂ Nm = N and a permutation
σ ∈ Symm s.t. Mi/Mi−1 ' Nσ(i)/Nσ(i)−1 for any i.

Lemma 4.3. Let F, Φ be two good filtrations on a Dn-module M . Then GrF M and
GrΦM are Jordan-Holder equivalent.
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Proof. Case 1. F, Φ are neighbors, i.e. F iM ⊂ ΦiM ⊂ F i+1M ⊂ Φi+1M . In this case
we have a well-defined map φ : GrF M → GrΦM , and Kerφ ' CoKerφ. Thus GrF M
and GrΦM are Jordan-Holder equivalent.

In the general case, one can construct a sequence of neighboring filtrations F iM +
Φi+lM , which starts with F and ends with a shift of Φ. �

Lemma 4.4. Let 0 → L → M → N → 0 be a short exact sequence of A-modules.
Then SuppM = SuppN ∪ SuppL.

Proof. Clearly Ann M ⊂ Ann N ∩ Ann L. Now, if a ∈ Ann N ∩ Ann L then for any
m ∈M we have am ∈ L and thus a2m = 0. This shows that

Ann N ∩ Ann L ⊂ Rad Ann M.

So Ann M ⊂ Ann N ∩ Ann L ⊂ Rad Ann M and thus their zero sets coincide. �

Corollary 4.5. If two A-modules are Jordan-Holder equivalent then they have the same
support.

Definition 4.6. The associated variety AV (M) of a finitely-generated Dn-module M
is the support of GrF M for some good filtration F .

By definition, AV (M) is a closed subset of the affine space A2n. By Lemma 4.3 and
Corollary 4.5 it does not depend on the choice of a good filtration.

Lemma 4.7 (Bernstein). Let M be a Dn-module generated by a finite subset S ⊂ M .
Let I ⊆ Dn be the annihilator of S, and let J ⊆ A := K[x1, ..., xn, ξ1, ..., ξn] be the ideal
generated by the symbols of the elements of I. Then the associated variety AV (M) is
the zero set of J.

Proof. We first show that J vanishes on AV (M). Let S = {m1, . . . ,ms}. Define a
good filtration on M by Fi(M) = Bim1 + ...Bims, where Bi ⊂ Dn is the i−th Bernstein
filtration. If d ∈ I ∩ Bj satisfies dmj = 0 for any mi ∈ S, then for any c ∈ Bi we have

dcmj = [d, c]ml + cdml = [d, c]ml ∈ Fi+j−1M.

Thus, σ(d)m̃l = 0 where σ : Dn −→ A is the symbol map, and m̃l is the image of ml

in grF M . Since {m̃l}sl=1 generate GrF M , we get that σ(d) ⊂ Ann(GrF (M)). Thus
J ⊂ Ann(GrF (M)) and thus J vanishes on AV (M).

Let us now show by induction on s that Ann(GrF (M)) ⊂ Rad(J). It is enough to
show that for any homogeneous polynomial a ∈ Ann(GrF (M)), there exist a natural
number t and an operator d ∈ I such that σ(d) = at.

For s = 1 note that by definition of GrF M , there exist operators c, c′ ∈ Dn such
that c ∈ Bdeg(a), c

′ ∈ Bdeg(a)−1, σ(c) = a, and cm1 = c′m1. Then d := c − c′ ∈ I and
σ(d) = a.

For the induction step, we will repeatedly use the fact that for any submodule L ⊂M ,
we have AV (L) ⊂ AV (M). This is so since GrF ′ L ⊂ GrF (M), where F ′ is the induced
filtration on L. Note also that a vanishes on AV (M).

Let S1 := {m1, . . . ,ms−1}, let I1 ⊂ Dn denote its annihilator, and L1 denote the
submodule of M generated by S1. Since AV (L1) ⊂ AV (M), a vanishes on AV (L1)
and thus the induction hypothesis implies that there exist d1 ∈ I1 and a power t1 such
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that σ(d1) = at1 . Let S2 := {d1ms} and L2 be the submodule of M generated by it.
Since AV (L2) ⊂ AV (M), a vanishes on AV (L2) and thus the base of the induction
implies that there exist d2 ∈ Dn and a power t2 such that d2d1ms = 0 and σ(d2) = at2 .
Now take d := d2d1 and t := t1 + t2. �

Now we would like to argue that the dimension of AV (M) equals d(M). This follows
from Hilbert’s definition of dimension.

Definition 4.8. Let X ⊂ An be an affine algebraic variety and let I ⊂ A := K[x1, . . . , xn]
be the ideal of functions vanishing on X. The standard filtration on A induces a good
filtration F i on A/I . By Theorem 1.27, the function f(i) := dim F i(A/I) is eventually
polynomial. Define dim X to be the degree of this polynomial.

Exercise 4.9. For any M ∈Mf (Dn), dim AV (M) = d(M).

4.1. Digression on several definitions of dimension of algebraic varieties. Let
us first define dimension by properties and then discuss several equivalent definitions.

Definition 4.10. A dimension is a correspondence of a non-negative integer to every
algebraic variety such that

(i) dim(An) = n
(ii) For a (locally closed) subvariety Y ⊂ X, dim(X) = max(dim Y, dim(X \ Y )).
(iii) For a finite epimorphism ϕ : X → Y, dim X = dim Y .

The uniqueness of dimension follows from the Noether normalization lemma.

Lemma 4.11. For any affine algebraic variety X, there exists a finite epimorphism
ϕ : X → An for some n.

A finite morphism is a morphism ϕ : X → Y such that for any open affine U ⊂ Y ,
the preimage ϕ−1(U) is affine and the algebra O(ϕ−1(U)) of regular functions on it is
finitely-generated as a module over O(U). Finite morphisms are proper and have finite
fibers.

There are several constructions of the dimension function. One of them is the Krull
dimension: the maximal length of a strictly increasing chain of closed irreducible non-
empty subsets, minus one. Another is the Hilbert dimension: define the dimension of
a variety as the maximal among the dimension of open affine subvarieties, and for an
affine subvariety use Definition 4.8. Another way is to define the dimension of an affine
variety to be the transcendence degree of its field of rational functions (over K).

4.2. The geometric filtration. There is another very natural filtration on the algebra
Dn - filtration by the degree of the differential operator. In other words, deg xi =
0, deg ∂i = 1. This filtration is called the geometric filtration.

Note that the associated graded algebra by this filtration is again isomorphic to
K[x1, . . . , xn, ξ1, . . . , ξn], but with a different grading. Note also that this is a good al-
gebra filtration, and all the lemmas we proved about the arithmetic filtration hold for
the geometric filtration, with one exception: the geometric filtras are infinite dimen-
sional. Thus we cannot define a ”geometric dimension”, but we can define a ”geometric
associated variety”. It is called the singular support, or the characteristic variety.
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Definition 4.12. Let M ∈Mf (Dn) and let F be a filtration on M which is good with
respect to the geometric filtration on Dn. Define the singular support of M to be

SingSupp(M) := Supp(GrF M).

Proposition 4.13. d(M) = dim SingSupp(M).

We will now sketch an elementary proof, and give a deeper proof in the next section.

Sketch of proof. It is enough to prove the proposition for a cyclic module M = Dn/I .
Consider a sequence of filtrations F i

l on Dn given by degl(xi) = 1, degl(∂i) = l. Then
for any d ∈ I and for l big enough, the symbol of d with respect to Fl is the highest
homogeneous summand of the symbol of d with respect to the geometric filtration.
Thus it is enough to show that dim Supp GrFl

M = dim Supp GrFl+1
M for every l,

where F l
i M = F l

i (Dn)/(I ∩F l
i (Dn)). By Hilbert’s definition of dimension this amounts

to computing that the eventual-polynomial functions dim F l
i M and F l+1

i M have the
same degrees.

Warning: the filtrations Fl on Dn are not good by our definition. However, they are
still “almost” good, namely the Rees algebra

⊕
i∈Z tiF i

lDn is finitely generated. It is
possible to work with such filtrations in a similar way to good filtrations. �

4.3. Involutivity of the associated variety. The affine space A2n has a natural
symplectic form. On the tangent space at zero it is given by

ω(xi, xj) = ω(yi, yj) = 0, ω(xi,yj) = δij .

Extending this formula by Leibnitz rule we get the Poisson brackets on the whole alge-
bra k[x1, . . . , xn, y1, . . . , yn]. In fact, these Poisson brackets can be obtained from Dn:
for any two homogeneous polynomials a, b ∈ k[x1, . . . , xn, ξ1, . . . , ξn] choose differential
operators c, d ∈ Dn with symbols a, b. Then, {a, b} is the symbol of [a, b]. Another way
to obtain this form is to identify A2n with the cotangent bundle T ∗An.

Definition 4.14. An algebraic subvariety X of A2n is called coisotropic or involutive
or integrable if the ideal of polynomials that vanish on X is stable under the Poisson
brackets.

Remark 4.15. This is equivalent to saying that the tangent space to X at every smooth
point includes its orthogonal complement inside the tangent space to A2n w.r. to the
symplectic form.

Theorem 4.16 (Gabber, Kashiwara-Kawai-Sato).
For any M ∈Mf (Dn), both AV (M) and SingSuppM are coisotropic.

Note that any coisotrpoic subvariety has dimension at least n, and thus this theorem
implies the Bernstein inequality.

The proof of this theorem is outside the scope of our course. It is not difficult in
fact to show that AnnGr(M) is closed under the Poisson brackets. The difficulty is to
show that so does its radical. This theorem has applications to the theory of invariant
distributions, in addition to the ones that Bernstein’s inequality does.

Since SingSuppM is (almost by definition) invariant under homotheties in ξ1, . . . , ξn,
Theorem 4.16 implies the following corollary.
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Corollary 4.17. For any holonomic M ∈ Mf (Dn), SingSuppM is a finite union of
conormal bundles to closed subvarieties of A2n.

We will not use the theorem and the corollary, this was just to give a geometric
intuition.

4.4. Irreducible non-holonomic Dn-modules. We will now show that there are
many irreducible non-holonomic Dn-modules.

Definition 4.18. We call a coisotropic homogeneous closed subvariety of A2n minimal
if it’s minimal among such.

Theorem 4.19. Let d ∈ Dn, such that σ (d) is irreducible, and Z (σ (d)) is coisotropic
and minimal. Then the left ideal Dnd is maximal, so that Dn/Dnd is irreducible of
dimension 2n− 1 over Dn.

Proof.
0→ Dnd→ Dn → Dn/Dnd→ 0

0→ GrDnd→ K [x1, . . . , x2n]→ Gr (Dn/Dnd)→ 0

Ann Gr (Dn/Dnd) ' K [x1, . . . , xn] σ (d)

Assume that Dnd ⊂ J for some J 6= Dn. Then

0→ J/Dnd→ Dn/Dnd→ Dn/J → 0

By the minimality of Z (σ(d)),

Z (σ(J)) = Z (σ(d))

Thus rad 〈σ (J)〉 = rad 〈σ (d)〉 = 〈σ (d)〉, hence J = 〈d〉. �

Theorem 4.20 (Bernstein-Luntz). The property {Z (f) is minimal} holds generically.

5. Operations on D-modules

We will now define several operations on D-modules, and show that they preserve
holonomicity.

1. Fourier transform maps Schwartz functions into Schwartz measures and vice versa.
It also maps tempered generalized functions to tempered distributions. It also maps
product into convolution and

x̂jf = (i/2π)∂j f̂ , ∂̂jf = 2πixj f̂ .

The corresponding operation on Dn-modules is just switching the actions of xj and
∂j .

Let us give an application to PDE. Let d be a differential operator on Rn with con-
stant real coefficients, and h be a smooth function. We are looking for a solution of the
equation df = h. First of all, it is enough to find a solution for dξ = δ0 in distributions,
because then the convolution ξ ∗ h will solve the original equation. Now, applying
Fourier transform we get the equation pg = 1, where p is the polynomial obtained from
d by replacing all ∂j by 2πixj , and g is the unknown generalized function. Then it is
clear for us that g should be p−1. This is not well-defined a-priori, since p might have
zeros. However, (p2)λ, as we have shown, is defined as a meromorphic distribution-
valued function in λ. It might have a pole at λ = −1/2, but then we take the principal
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part (the lowest non-zero coefficient in the Laurent expansion).

2. One can multiply a distribution by a smooth function. Formally, the result is
given by fξ(h) := ξ(fh). The corresponding operation on Dn-modules is tensor product
over On := O(An) = k[x1, . . . , xn]. Note that a product of a smooth function and a
generalized function (= functional on smooth measures) is a generalized function, a
product of a function and a distribution is a distribution, and a product of a smooth
measure and a distribution is not defined.

Similarly, a product of two left Dn-modules is a left Dn-module, a product of a
left Dn-module by a right Dn-module is a right Dn-module, and a product of right Dn-
modules is not defined. The Dn-module structure of a product of two (left) Dn-modules
is defined via Leibnitz rule:

∂i(m⊗ n) = ∂im⊗ n + m⊗ ∂in.

One can always turn a left Dn-module to a right one using tensor product with the
(right) Dn-module of (algebraic) top differential forms.

3. For a polynomial map of affine spaces π : X → Y , we can pullback smooth
functions from Y to X. If the map is submersive then we can even pullback generalized
functions. Let us define pullback of Dn-modules as well. Let M be an DY -module. As
an OX-module we define π0(M) := OX ⊗OY

M . The action of the vector fields TY is
defined using the natural morphism TX → OX ⊗OY

TY , which on every fiber is defined
using dπ. In coordinates:

ξ(f ⊗m) = ξ(f)⊗m +
∑

i

fξ(π∗(yi))⊗ ∂im.

By the well-known properties of pullback of OX-modules we get that (τπ)0 = π0τ 0,
and that pullback is strongly right-exact, i.e. right-exact and commutes with arbitrary
direct sums.

Exercise 5.1. Let A,B be rings. Let F : M(A) → M(B) be a strongly right-exact
functor. Then F (A) has a natural structure of a B −A-bimodule and F is isomorphic
to the functor M 7→ F (A)⊗A M.

Notation 5.2. DX→Y := π0(DY ).

Remark 5.3. The intuition here is that DX→Y is the (DX ,DY )-bimodule of OX-valued
differential operators on OY . For a general commutative algebra A and an A-module M
an ≤ n-th degree differential operator on A with values in M is a K-linear operator D :
A → M , such that [a1, [a2, . . . , [an+1, D]]] = 0 for all a1, . . . , an+1 ∈ A. Apparently, in
nice cases DX→Y , defined this way, coincides as an (OX ,DY )-bimodule with OX⊗OY

DY .
From here it follows that for any DY -module M we have DX→Y ⊗DY

M ' OX ⊗OY

DY ⊗DY
M ' OX ⊗OY

M .

Lemma 5.4. For two morphisms ν : X → Y and μ : Y → Z we have (μν)0 = ν0 ◦ μ0.

Proof. It is enough to show that the natural map DX→Y ⊗DY
DY →Z → DX→Z is an

isomorphism. Since DX→Y ' OX ⊗OY
DY and DY →Z ' OY ⊗OZ

DZ , we have

DX→Y ⊗DY
DY →Z ' OX ⊗OY

DY ⊗DY
OY ⊗OZ

DZ ' OX ⊗OZ
DZ ' DX→Z
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�

Theorem 5.5 (Bernstein). The pullback of a holonomic DY -module is a holonomic
DX-module.

We divide the proof into several lemmas.

Lemma 5.6. Any map π : X → Y , where Y ' An, can be decomposed into a standard
embedding, an isomorphism, and a standard projection.

Proof. Take the maps X → X × Y → X × Y → Y , x 7→ (x, 0), (x, y) 7→ (x, y + π (x)),
(x, y) 7→ y. �

Lemma 5.7. Let T , Y be affine spaces. The pullback under the standard projection
p : T × Y → Y of a holonomic module is holonomic.

Proof. In this case the pullback is the exterior product OT ⊗k M . It is easy to see that
exterior product of holonomic modules is holonomic. �

Lemma 5.8. The pullback under an isomorphism i : X → Y of a holonomic DY -
module is a holonomic DX-module.

Proof. In this case we can consider the pullback as the same space, just a different
action. If F iM is a good filtration for the original action and r := deg π, then ΦiM :=
F riM is a filtration for the new action, and it satisfies dimΦiM ≤ (crd)id. �

Lemma 5.9. The pullback under the standard embedding i : X → X × A1 of a holo-
nomic DX×A1-module is a holonomic DX-module.

This lemma is the difficult one. Indeed, in this case the pullback of a finitely-
generated module might be not finitely-generated.
For example, for X = pt we get i0(DX×A1) = D1.

To prove the lemma, we will need another important lemma, that we in fact partially
proved in the first lecture.

Lemma 5.10 (Kashiwara). Let N be a DX×A1-module. Denote by t the coordinate of
A1. Assume that t acts locally nilpotently on N and let R := Ker t, Ri := ∂i

tR. Then
N =

⊕
i Ri and t∂t acts on Ri by the scalar −(i + 1).

Proof. 1. We note that (∂tt + i) ∂i
t (ker t) = 0.

Indeed, [t, ∂i
t ] = −i∂i−1

t , so (∂tt + i) ∂i
t = ∂i+1

t t.

2. t∂i
t (ker t) = −i∂i−1

t (ker t). Thus ∂i
t ker t ⊂ ker ti+1.

3. (∂tt + i) ker ti+1 ⊂ ker ti. Indeed, for m ∈ ker ti+1,

t (∂tt + i) m = (i− 1) tm + ∂tt
2m = (∂tt + i− 1) tm ⊂ ker ti−1

by induction.

4. ∂i
t ker t are the different eigenspaces of ∂tt, so their sum is direct:

⊕
i ∂

i
t ker t.
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Now we show that

ker ti =
i−1⊕

j=0

∂j
t ker t

Take m ∈ ker ti+1. Then (∂tt + i) m ∈ ker ti, so by induction

(∂tt + i) m ∈
i−1⊕

j=0

∂j
t ker t.

Again, by induction,

tm ∈
i−1⊕

j=0

∂j
t ker t,

so ∂ttm ∈
⊕i

j=1 ∂j
t ker t. Thus m ∈

⊕i
j=0 ∂j

t ker t. �

Proof of Lemma 5.9. Let N be a holonomic DX×A1-module. Denote by t the coordinate
of A1. Then

M := i0(N) = N/tN.

Denote by N0 the submodule consisting of elements annihilated by powers of t. Then,
by Kashiwara’s lemma, we have tN0 = N0. Thus i0(N) = i0(N ′), where N ′ = N/N0.
Now, N ′ is also holonomic and t has no kernel on N ′. Choose a good filtration F iN ′

and define the corresponding good filtration F iM by projection. Then

dim F iM ≤ dim F iN ′ − dim tF i−1N ′ = dim F iN ′ − dim F i−1N ′ ≤ cidim X .

�

Theorem 5.5 follows now from Lemmas 5.6,5.7,5.8, and 5.9.

Corollary 5.11. If M,N ∈ Hol (DX) then M ⊗OX
N ∈ Hol (DX).

Proof. M ⊗X N = Δ0 (M ⊗K N), Δ : X → X ×X is the diagonal. �

4. For a polynomial map of affine spaces π : X → Y , we can pushforward smooth
compactly supported measures from Y to X, by integration by fibers. Note that we
indeed push measures and not functions. This hints that the pushforward π0 should
be defined for right DX-modules.

Definition 5.12. For M ∈Mr(DX) define π0(M) := M ⊗DX
DX→Y ∈Mr(DY ).

This operation also preserves holonomicity. This can again be shown by decomposing
the map into three parts. The difficult case now will be the standard projection.
However, we will prove this differently using a trick.

Exercise 5.13. Let M ∈ Mr(DV ) and let F(M) ∈ Ml(DV ∗) denote the module
obtained from M by swapping the actions of xi and ∂i. Let T : V → W be a linear
map, and let T ∗ : W ∗ → V ∗ denote the dual map. Then F(T0M) = (T ∗)0(F(M)).

Corollary 5.14. Pushforward of a holonomic module is holonomic.

Proof. For isomorphisms it is easy. The standard embeddings and projections are linear
maps, and thus for them it follows from Exercise 5.13 and Theorem 5.5. �
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Exercise 5.15. For an isomorphism ν, ν0 = (ν−1)0.

Remark 5.16. One can also define different versions of pullback and pushforward, by
HomDX

(DX→Y ,M). These functors will be right adjoint to the functors we defined.

Similarly to Lemma 5.4, we have

Lemma 5.17. For two morphisms ν : X → Y and μ : Y → Z we have (νμ)0 = ν0 ◦μ0.

Let us now examine how does pushforward look like. For p : A1 → pt we have
p0(M) = M/M∂t. For i : pt ↪→ A1 we have i0(k) :=

⊕
kδi, with δi∂t = δi+1and

δit = iδi−1.

Example 5.18. p : A1 → {pt}. p0 (M) = M/M∂t.
For i : {pt} → A1: i0 (M) :=

⊕
Kδ(i) is the D-module of distributions supported at

{pt}. δ(i)∂t := ∂(i+1), δ(i)t := iδ(i−1).

Lemma 5.19. Let ξ ∈ S∗ (Rn) be a tempered distribution, p be a positive polynomial,
and p→∞ at ∞. Then λ 7→

〈
ξ, pλ

〉
converges for <λ < −r for some r.

Lemma 5.20. Let ξ be holonomic. Then there exist rational functions q1, . . . , q` ∈
C (λ), such that

〈
ξ, pλ

〉
=
∑

i

qi

〈
ξ, pλ−i

〉

Proof. Take the D-module M generated by the distribution pλ−kξ over the field C (λ).
It is holonomic. Thus its pushfoward to the point is holonomic. On the other hand, the
pushforward to the point is M/∂M (DX→pt = O (X)). Being holonomic over a point
means that it’s a finite-dimensional vector space over C (λ). Thus pλ−kξ are C (λ)-
linearly dependent modulo ∂M . The integral on ∂M vanishes, thus

´
ξpλ satisfies this

linear dependence. �

6. Homological properties

Let C be an abelian category.

Definition 6.1. We say that C has homological dimension ≤ d if for any M ∈ C and
any projective resolution

Pd−1 → ∙ ∙ ∙ → P0 →M → 0,

the kernel ker (Pd−1 → Pd−2) is projective.

Theorem 6.2. The following are equivalent for C:
(1) Any object has a projective resolution of length ≤ d.
(2) Extd+i vanishes for all i ≥ 1.
(3) The derived functor Ld+iF vanishes for any right exact functor F and all i ≥ 1..
(4) hd C ≤ d.

Definition 6.3. Let V be a vector space, and let a1, . . . , an : V → V be commut-
ing operators. The Koszul complex of C (V, a1, . . . , an) is the complex (numbered by
n, . . . , 0)

0→ ΛnKn ⊗ V → Λn−1Kn ⊗ V → ∙ ∙ ∙ → Λ0Kn ⊗ V → 0

with differential
∑

i
∂

∂ξi
⊗ ai, where ∂

∂ξi
is the interior product with the basis vector ξi.
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Definition 6.4. A sequence (ai) is regular if ai has no kernel on V/ (a1V + ∙ ∙ ∙ + ai−1V ),
for all i.

Theorem 6.5 (Proof-Exercise). If the sequence (ai) is regular then the Koszul complex
is acyclic outside 0, and

H0 (C) ' V/ (a1V + ∙ ∙ ∙ + anV ) .

Let A := K [x1, . . . , xn].

Theorem 6.6 (Hilbert’s syzygy). The homological dimension of A = K [x1, . . . , xn] is
n.

Proof. The Koszul complex of x1, . . . , xn acting on A is a free resolution of the module
A/ (x1, . . . , xn) A. For an arbitrary module M let xi act on A⊗K M by

xi (a⊗m) := xia⊗m + a⊗ xim.

This defines an A-module structure on A⊗K M . This module is free (exercise). Thus
the complex

C (A, x1, . . . , xn)⊗K M

is a free resolution of M . �

Lemma 6.7 (Graded Nakayama’s lemma). Let M be a finitely generated graded A-
module with M = (x1, . . . , xn) M . Then M = 0.

Proof. Since M is f.g. and M = (x1, . . . , xn) M , the Nakayama’s lemma implies that
0 /∈ supp M . Since M is graded, supp M is conical and thus empty. �

Corollary 6.8. Any graded projective finitely generated module P over K [x1, . . . , xn]
is free.

Proof. Let m := (x1, . . . , xn). Choose homogeneous elements pi ∈ P such that their
projections to P/mP form a basis. By the graded Nakayama’s lemma, pi generate P .
Thus we have a s.e.s. of graded modules 0 → K → Am → P → 0. Here Am has
its grading shifted according to the degrees of pi. Since P is projective, this sequence
splits. So Am ' K ⊕ P . Thus K/mK = 0, so K = 0. �

Corollary 6.9. Any graded finitely generated A-module has a free graded resolution of
length ≤ n.

Definition 6.10. For a Noetherian ring R we denote byMf (R) the category of finitely-
generated left R-modules, and by hd(R) the homological dimension of this category.

Exercise 6.11 (*). hd(M(R)) = hd(R).

Exercise 6.12. Let R be a ring and M ∈Mf (R) with a good filtration. Then

(i) for some l there exists a good filtration on Rl and a strict epimorphism Rl �M .
(ii) If Gr M is free then M is free.

From Corollary 6.9 we obtain

Corollary 6.13. hdDn ≤ 2n.
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Proof. Let M ∈ Mf (Dn). Choose a good filtration on M . By Exercise 6.12(i) there
exists a free Dn-module F1 with good filtration and a strict epimorphism ϕ1 : F1 �
M . Let L1 be the kernel of ϕ1 with induced filtration and choose a free F2 again
using Exercise 6.12(i). Continuing in this way we obtain an exact sequence of finitely-
generated filtered modules with strict maps:

0→ L2n−1 → F2n−1 → ∙ ∙ ∙ → F1 →M → 0,

with Fi free. By Exercise 1.20, the associated graded sequence

0→ Gr L2n−1 → Gr F2n−1 → ∙ ∙ ∙ → Gr M → 0

is also exact. By Hilbert’s syzygy theorem, Gr L2n−1 is projective, and thus free. By
Exercise 6.12(ii), L2n−1 is free and the above sequence is a free resolution of M of
length 2n. �

Now we want to show that hdDn = n.

Corollary 6.14. Let R be a Noetherian ring with hd R < ∞, and M be a finitely
generated R-module. Then hd M ≤ d iff Exti (M,R) = 0 ∀i > d.

Proof. Let M ∈Mf (R) with Exti (M,R) = 0 ∀i > d.
We have to show that Exti (M, ∙) = 0 ∀i > d.
Take any finitely generated X, and consider 0 → L→ R` → X → 0. Thus:

Exti
(
M,R`

)
→ Exti (M,X)→ Exti+1 (M,L)→ Exti+1

(
M,R`

)

Thus for i > d we have Exti (M,X) ' Exti+1 (M,L).
By induction on i descending from hd M , Ext>d (M, ∙) = 0. �

Let A := K [x1, . . . , xn], M be a f.g. A-module. Denote Ei (M) := Exti (M,A).

Theorem 6.15 (Serre ??). Let d := d (M). Then Ei (M) = 0, ∀i < n− d.

Proof. Induction on n. Take B := K [x1, . . . , xn−1]. If M is finitely generated over B,
take

N := M [t] ' A⊗B M

Then Ei (N) ' Exti (M,B) [t]. Thus Ei (N) = 0 for i < n− 1− d, and En−1−d (N) is
free over K [t]. Now we have a s.e.s.

0→ N
t−xn→ N →M → 0

Thus

En−2−d (N)→ En−1−d (M)
0
→ En−1−d (N)

t−xn→ En−1−d (N)

The rightmost map has trivial kernel, so the arrow in the middle is 0. Now En−2−d (N) =
0 implies En−1−d (M) = 0.

Now we treat the general case when M is not necessarily finitely generated over B. If
d (M) = n then there is nothing to prove, otherwise by Noether’s normalization lemma
there exists a linear coordinate change yi = Txi such that A/ Rad(Ann(M)) is finite
over K[y1, . . . , yn−1]. Then M is finitely generated over K[y1, . . . , yn−1], and we reduce
to the previous case. �
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Lemma 6.16. Assume that M is graded. Then

d (M) ≤ d (coker (xn|M)) + 1.

Proof.
M i xn→M i+1 → (coker (xn|M))i+1 → 0

Thus ΔdM (i) ≤ dcoker xn (i + 1). �

Corollary 6.17. Assume that ker (xn �M ) = 0. Then

d (M) ≤ d (coker (xn|M)) + 1.

Proof. 0 → M
xn→ M → coker xn → 0. Introduce a filtration on M , pass to the

associated graded module.

0→ Gr M → Gr M → Gr coker xn → 0

Note that Gr coker xn = coker (xn �Gr M ), and use the lemma on graded modules. �

Corollary 6.18. d (M) ≤ max (d (ker (xn|M)) , d (coker (xn|M )) + 1).

Proof. We can assume that d (ker (xn �M)) < d (M). Then d (
⋃

i ker (xi
n|M )) < d (M).

Indeed,
⋃

i ker (xi
n �M ) stabilizes at a finite union, and

ker
(
xi

n|M
)
/ ker

(
xi−1

n |M
)
' ker

(
xn|M/ ker(xi−1

n �M)

)
,

whose d is < d (M). Thus d (M) = d (N), where

N := M/
⋃

i

ker xi
n

Now ker (xn � N) = 0, so we reduce to the previous corollary. �

Lemma 6.19. supp Ei(M) ⊂ supp M

Proof. Ann M ⊂ Ann EiM . �

Theorem 6.20 (Ross ??). For any M ∈Mf (A), d (EiM) ≤ n− i.

Proof. We prove by induction on n. Consider first the case when M is finitely generated
over B = K [x1, . . . , xn−1]. N := M [t] ' A⊗B M , Ei (N) = Exti (M,B) [t] thus by the
induction hypothesis

d
(
Ei (N)

)
≤ n− 1− i + 1 = n− i

Now,

0→ N
t−xn→ N →M → 0

Thus

∙ ∙ ∙ → Ei−1 (M)
0
→ Ei−1 (N)→ Ei−1 (N)→ Ei (M)→ Ei (N)→ Ei (N)→ . . .

The map Ei−1 (M)→ Ei−1 (N) is 0 because t− xn has zero kernel.
For any v ∈ Ei−1 (M), (t− xn) v = 0, but t− xn has no kernel in Ei−1 (N) because

Ei (N) = Exti−1 (N,B) [t] and t− xn shifts the degree by 1.
Now introduce a filtration on Ei−1 (N) that is a grading in t. Then

0→ F j
(
Ei−1N

)
→ F j+1

(
Ei−1N

)
→ F j+1

(
EiM

)
→ 0
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Thus d (EiM) = d (Ei−1N)− 1 ≤ n− (i− 1)− 1 = n− i.
The next case is that xn : M →M is injective. Then

0→M
xn→M → L→ 0

Thus
EiL→ EiM

xn→ EiM → Ei+1L

By the last corollary, d (EiM) ≤ max (d (EiL) , d (Ei+1L) + 1) ≤ n− i.
Finally, in the general case

0→ K →M → L→ 0

where xn is nilpotent on K and xn �L is bijective Thus

∙ ∙ ∙ → EiL→ EiM → EiK → . . .

Thus d (EiM) ≤ max (d (EiL) , d (EiK)) ≤ n− i by the previous cases. �

Corollary 6.21. Let M ∈Mf (Dn). Then

(1) Exti (M,Dn) = 0, ∀i < 2n− d (M)
(2) 2n− d

(
Exti (M,Dn)

)
≥ i

Proof. As we proved before, M has a resolution of length 2n consisting of free finitely
generated filtered modules and strict maps:

0→ F2n → ∙ ∙ ∙ → F0 → 0

Taking Hom into Dn we get

0→ F ∗
0 → ∙ ∙ ∙ → F ∗

2n → 0

Passing to associated graded we have

0→ Gr F ∗
0 → ∙ ∙ ∙ → Gr F ∗

2n → 0

The cohomologies of the latter sequence are isomorphic both to Ext i(Gr M,A) and to
Gr(Exti(M,Dn)). The statements now follow from Theorems 6.15 and 6.20. �

Corollary 6.22.

(i) hdMf (Dn) ≤ n.
(ii) For any M ∈Mf (Dn), Extn (M,Dn) is holonomic.
(iii) For a holonomic module Ext<n (M,Dn) = 0.

Proof. d (En+iM) ≤ n − i, so by Bernstein’s inequality, En+iM = 0 for i > 0. For
i = 0 we get d (EnM) ≤ n. For holonomic M we have n − i < 2n − d(M) and thus
Extn−i(M,Dn) = 0 for any i > 0. �

Definition 6.23. Define D : Hol` (Dn)→ Holr (Dn) by Extn (∙,Dn).

Theorem 6.24. D is an equivalence of categories, and D ◦D ' id.

Proof. To prove that D ◦D ' id, take a free resolution of M :

0→ Fn → ∙ ∙ ∙ → F0 → 0

and dualize it by Hom (∙,Dn). Since M doesn’t have smaller Ext’s, this will be a free
resolution of DM . Since DM does not have smaller Ext’s either, the ”double dual” of
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the resolution of M will be a resolution of D(D(M)). Since any free Dn-module F is
canonically isomorphic to Hom(Hom(F,Dn),Dn), we get that D(D(M)) ∼= M .

Finally, D ◦D ' id implies that D is an equivalence of categories. �

Note that we have only used that Exti(M,Dn) = 0 for any i < n. Thus, the same
proof shows the following corollary.

Corollary 6.25. M is holonomic if and only if Exti(M,Dn) = 0 for any i < n.

Remark 6.26. Everywhere in this section we could have used the geometric filtration on
Dn instead of the Bernstein filtration. This gives another proof that modules holonomic
with respect to the Bernstein filtration are holonomic with respect to the geometric
filtration, and vice versa.

Theorem 6.27. For any M ∈Mf (Dn) there is a canonical embedding

0→ D (Extn (M,Dn))→M

Moreover, its image is the maximal holonomic submodule of M .

Proof. H = Extn (M,Dn). Let 0 → Pn → ∙ ∙ ∙ → P0 → 0 be a free resolution of M .
Dualize it:

0→ P ∗
0 → ∙ ∙ ∙ → P ∗

n → 0

Now consider a free resolution of H:

0→ Qn → ∙ ∙ ∙ → Q0 → 0

H is the last cohomology of P ∗, so it is a factor of P ∗
n . Now step by step we lift this

to a map of complexes P ∗ → Q. Dualizing, we get maps Q∗ → P . By Corollary 6.22,
H is holonomic and thus Ext<n(H,Dn) vanish. Thus Q∗ is a resolution of DH. Thus
we get a map DH →M whose image is a holonomic submodule of M .

The map DH → M is injective because the right-exact functor Extn(∙,Dn) maps it
to the identity map. Finally, for any holonomic submodule L ⊂ M we have an onto
map H � DL and thus an embedding L ⊂ DH. �

We remark that we did not have to use free resolutions in the proofs. Any projective
resolution would work, because projective modules are direct summands of free ones.

Exercise 6.28. Let L := k[x, x−1], M := k[x] and C := L/M . Note that they are all
holonomic and consider the exact sequence 0 →M → L→ C → 0.

Compute the dual D-modules, and describe the dual exact sequence

0→ D(C)→ D(L)→ D(M)→ 0

in terms of distributions.

7. D-modules on smooth affine varieties

First of all, let us give a coordinate-free definition of the algebra of differential
operators D(V ) for any vector space V . This is the K-algebra with 1 generated over K
by linear functionals on V and by symbols {∂v |v ∈ V }, with the commutation relations
[∂v, ξ] = ξ(v).

Let us now define the notion of smoothness for affine algebraic varieties.
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Let X := Spec A be an affine algebraic variety, and for x ∈ X let Kx := A/mx.
T ∗

xX := mx/m
2
x. We start with several well-known definitions and theorems from

algebraic geometry. Denote by O the sheaf of regular functions on X. In particular,
O(X) = A.

Theorem 7.1. The following are equivalent:

(1) Kx has finite homological dimension as an A-module.
(2) Grmx A :=

⊕
(mi

x/m
i+1
x ) is a polynomial algebra.

(3) dim T ∗
xX = dimx X.

(4) Locally around x there is a quasi-coordinate system.

Definition 7.2. We say that X is smooth at x if these conditions hold.

Definition 7.3. A quasi-coordinate system of an affine variety U at x ∈ U is:

(1) A collection of functions x1, . . . , xn ∈ O (U);
(2) a collection of vector fields ∂1, . . . , ∂n ∈ DerO (U),

such that

(a) ∂ixj = δij ;
(b) dxi span T ∗

uU for all u ∈ U .

Theorem 7.4. The set of smooth points is open and dense.

Definition 7.5. Let τX := DerO (X) denote the Lie algebra of derivations of O(X),
i.e. linear endomorphisms of O (X) satisfying the Leibnitz rule: ∂(fg) = ∂(f)g+f∂(g).
Elements of DerO (X) are called (algebraic) vector fields on X.

Definition 7.6. D≤−1 (X) := 0,

D≤k (X) :=
{
d ∈ HomK (O (X) ,O (X))

∣
∣ ∀f ∈ O (X) : [f, d] ∈ D≤k−1 (X)

}
.

Similarly, for O (X)-modules M,N define D≤k (M,N).

Example 7.7. D≤0 (X) = O (X), D≤1 (X) = O (X)⊕ DerO (X).

The algebra of algebraic differential operators is defined by D(X) :=
⋃

iD
i(X). We

will show that if X is smooth then D (X) is Noetherian and generated by O (X) and
DerO (X).

Exercise 7.8 (*).

(1) If X = {
∑

i x
2
i = 0} then D (X) is Noetherian but not generated by D≤1 (X).

(2) If X = {
∑

i x
3
i = 0} then D (X) is not Noetherian.

From now on we assume that X is smooth.

Theorem 7.9. Let M,N ∈ M(O(X)), let d ∈ D≤k (M,N) and f ∈ O (X). Then it
uniquely defines d′ ∈ D≤k (Mf , Nf ).

Proof. Define d (f−im) by induction on i and k:

d′
(
f−im

)
:= f−1d′

(
f−i+1m

)
− f−1 [d′, f ]

(
f−im

)

�

Corollary 7.10. If M is finitely generated then (D (M,N))f ' DOf
(Mf , Nf ).
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Proof. To construct the map in the only nontrivial direction DOf
(Mf , Nf )→ (D (M,N))f ,

take the common denominator of the generators of M . �

Definition 7.11. Define the sheaf DX of differential operators on X by

DX(Xf ) := D(Xf ).

By Corollary 7.10, DX is a quasi-coherent sheaf.

Remark 7.12. In general, a good calculus of fractions is guaranteed by the Ore con-
dition. For a ring A and a multiplicative set S, the Ore condition is that for any
a ∈ A, s ∈ S there are a′ ∈ A, s′ ∈ S, such that as′ = sa′ (i.e. s−1a = a′s′−1). For
S = {fn} , f ∈ OX , A = DX , it is satisfied.

Recall that τX denotes the tangent sheaf of X. Note that the existence of a quasi-
coordinate system implies that τX is coherent and locally free. Let Sym τX (X) denote
the symmetric algebra

⊕
i Symi(τX), where Symi(τX) denotes the module of symmetric

tensors in τX ⊗O(X) τX ∙ ∙ ∙ ⊗O(X) τX . Let T ∗X := Spec Sym τX (X). It is called the
cotangent bundle of X.

Theorem 7.13. Σ := GrD (X) ' O (T ∗X) := Sym τX (X).

Proof. Define Σ` := Sym` τX (X). For d ∈ D≤` consider its symbol

(σd) (f1, . . . , f`) := [[d, f1] , . . . , f`] .

This is a O(X)-valued n-linear form on O(X), that is a derivation in each variable
fi. There is a canonical map from Sym` (τX (X)) to the space of such forms. Using
a quasi-coordinate system, one can show that this map is an isomorphism. Thus, we
view σd as an element of Sym` (τX (X)) .

Clearly, d 7→ σd is an embedding. To show that it is onto, just take the product of
vector fields to produce a given symbol. �

Corollary 7.14. D(X) is Noetherian and hd(D(X)) ≤ 2 dim X.

Exercise 7.15. The structure of a left D(X)-module on an O(X)-module M is the
same as the structure of a τX-module on M satisfying

(fξ)m = f(ξm) and ξ(fm)− f(ξm) = ξ(f)m.

The structure of a right D(X)-module on an O(X)-module M is the same as the
structure of a module over the opposite of the Lie algebra τX satisfying

(fξ)m = f(ξm) and ξ(fm)− f(ξm) = −ξ(f)m.

By module over the opposite Lie algebra we mean the identity

ξ1(ξ2m)− ξ2(ξ1m) = −[ξ1, ξ2]m.

Exercise 7.16. The module of top differential forms Ωtop
X with the action ξα := −Lieξα

(Lie derivative) is a right D(X)-module. Moreover, M 7→ M ⊗OX
Ωtop

X defines an
equivalence of categories M(D(X)) 'Mr(D(X)).
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The push and pull functors are defined for affine varieties in the same way as for
affine spaces. Namely, for π : X → Y and N ∈M(D(Y )) define

π0(N) := O(X)⊗O(Y ) N,

with the action of τ(X) given by the morphism τ(X)→ O(X)⊗O(Y ) τ(Y ).
As before, π0 is strongly right-exact and thus

π0(N) = DX→Y ⊗D(Y ) N , where DX→Y = π0(D(Y )) = O(X)⊗O(Y ) D(Y ).

For M ∈M(D(X)) we define

π0(M) := M ⊗D(X) DX→Y .

8. D-modules on general separated smooth varieties

Fact 8.1. For a variety TFAE:

(i) For any open affine U, V the intersection U ∩V is affine, and O (U)⊗KO (V )→
O (U ∩ V ) is onto.

(ii) There is an open affine covering (Ui), s.t. the previous property holds for each
Ui, Uj

(iii) ΔX ⊂ X ×X is closed.

Varieties that satisfy these properties are called separated.

Definition 8.2. Let X be a smooth separated variety. Define the quasi-coherent sheaf
of OX-algebras DX by the property DX(U) = D(U) for every open affine U ⊂ X.

A DX-module is a sheaf of modules over the sheaf of algebras DX that is quasi-
coherent as a sheaf of OX-modules. That is, it’s a quasi-coherent sheaf F , such that
F (U) have compatible structures of DX (U)-modules. We will denote the category of
DX-modules by M(DX) and the category of quasi-coherent sheaves by M(OX).

Serre’s theorem implies that for an affine X,M (DX) 'M (D (X)).

Definition 8.3. A morphism of algebraic varieties π : X → Y is called affine if π−1(U)
is affine for any open affine U ⊂ Y .

Example 8.4. Closed embeddings are affine. The embedding of an open affine subset
into a separated variety is also affine.

Definition 8.5. For an affine morphism π : X → Y , define the functors π0 and π0

gluing from affine pieces. In other words,

π0(G)(π−1(U)) := (π|π−1(U))
0(G(U))

and
π0(F)(U) := (π|π−1(U))0(F(π−1(U))

for any open affine U ⊂ Y .

Example 8.6. Let i0 : Z → X be a closed embedding of a smooth subvariety. One
can choose local coordinates xi, such that Z is given by xm+1 = ∙ ∙ ∙ = xn = 0,

D (X) ' O (X)⊗K K [∂1, . . . , ∂n] , and O (Z) ' O (X) /J , where J := 〈xm+1, . . . , xn〉 .

Then i0F = F/J .



26 THE ALGEBRAIC THEORY OF D-MODULES

Exercise 8.7. Let V ⊂ X be an open affine subset and let i : V ↪→ X denote the
embedding. Then

(i) i0(F)(U) = F(V ∩ U) for any F ∈M(DV ) and any open U ⊂ X.
(ii) The functor i0 : M(DV ) → M(DX) is right-adjoint to the restriction functor

ResV :M(DX)→M(DV ).
(iii) The functors i0 and ResV are exact.

?? add on functoriality in general.

Fact 8.8. For a coherent sheaf TFAE:

(i) It is locally free
(ii) It is locally projective
(iii) The dimension of the fiber is locally constant.

For affine X, locally projectives are projectives. For non-affine X the categories of
OX-modules and DX-modules do not have enough projectives, but:

Fact 8.9. M (OX) and M (DX) have enough injectives.

Proof. Let us show this for DX-modules, since the proof for OX-modules is identical.
First we prove for affine X. For a projective right DX-module P the module

HomK (P,K) is an injective left DX-module. For any projective P and an epimor-
phism P → HomK (M,K)→ 0 we have embeddings

M ↪→ HomK (HomK (M,K) ,K) ↪→ HomK (P,K) .

For non-affine varieties, choose a finite open affine cover X =
⋃

j Uj , and consider

i0 : M
(
DUj

)
→ M (DX). The functor i0 is exact and maps injective sheaves to

injective ones. Since F �Uj
embeds into injective Qj , F embeds into

⊕
j ij∗Qj . �

Definition 8.10. A DX-module is called coherent if it is locally finitely generated.

Recall that for an affine variety X, GrD(X) = O(T ∗X).

Definition 8.11. For F ∈Mcoh (DX) choose a good filtration on F , and define

Sing suppU F := supp GrF (U) ⊂ T ∗X, and Sing suppF :=
⋃

U

Sing suppU F .

By Lemma 4.3 and Corollary 4.5 this does not depend on the choice of a good filtration
on F .

Theorem 4.16 holds for singular support as well, though we won’t prove it.

Theorem 8.12 (Kashiwara-Kawai-Sato, Gabber). For any F ∈Mcoh (DX), Sing suppF
is a coisotropic subvariety of T ∗X.

This implies the Bernstein inequality, namely dim Sing supp F ≥ dim X if F 6= 0.
Another way of proving the Bernstein inequality is to reduce it to affine varieties, then
to affine spaces, then use Proposition 4.13 to reduce to the classical Bernstein inequality
for the arithmetic filtration (Theorem 2.1 above).

However, we are going to give a direct proof of the Bernstein inequality in the next
section.
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9. Kashiwara’s lemma and its corollaries

Let Z ⊂ X be a closed smooth subvariety and let i : Z ↪→ X denote the embedding.
Let Mr

Z (DX) denote the category of right DX-modules supported at Z. Our goal in
this section is to prove and use the following theorem.

Theorem 9.1 (Kashiwara). The functor i0 is an equivalence Mr (DZ) 'Mr
Z (DX).

For the proof we will need some constructions and lemmas.

Definition 9.2. Define i′ :Mr (DX)→Mr (DZ) by

i′ (F) := HomDX
(DZ→X ,F) .

For F ∈Mr (DX) define ΓZ (F) (U) := {ξ ∈ F (U) | supp ξ ⊂ Z}.

Exercise 9.3. (i) For affine X, i′ (M) ' AnnM I (Z).
(ii) i′i0H ' H for any H ∈M (DZ).
(iii) i0 is left adjoint to i′.

From the adjunction, we have a counit map i0i
′F → F .

Recall the following lemma

Lemma 9.4. Let M ∈M (D1). Assume M =
⋃

i ker xi. Then M =
⊕

i ∂
i ker x.

Example 9.5. Distributions on R supported at 0 are sums of derivatives of the δ-
function.

Lemma 9.6 (Standard in algebraic geometry). For any x ∈ Z, there is an open
neighborhood U ⊂ X and a quasi-coordinate system xi on U , such that Z ∩ U is given
by xm+1 = ∙ ∙ ∙ = xn = 0, and the Jacobian det (∂xi) does not vanish.

Theorem 9.7. ϕ : i0i
′F → ΓZ (F) is an isomorphism.

Proof. It’s enough to show this locally. Choose a quasi-coordinate system on X (or an
open subset of it), such that Z = {xm+1 = ∙ ∙ ∙ = xn = 0}. We can assume n = m + 1
by induction (locally there is a flag of smooth subvarieties, constructed using xi). The
induction step will be for Z ⊂ Y ⊂ X:

(Y → X)0 (Z → Y )0 (Z → Y )′ (Y → X)′F ' (Y → X)0 ΓZ (Y → X)′F '

' (Y → X)0 (Y → X)′ ΓZF ' ΓY ΓZF ' ΓZF
The nontrivial isomorphism here follows by noting that ΓY consists of sections sup-
ported at Y , and (Z → Y )′ consists of the sections killed by I (Z).

Finally, define Z := {xn = 0}. Let M be a right D (X)-module, and N := ΓZ (M).

i′M = ker (xn �M )

and i0i
′M =

⊕
j i′M ∂j

xn
because DZ→X ' OZ ⊗OX

DX ' DX/xnDX ' DZ ⊗K K [∂xn ].
By Lemma 9.4, ⊕

j

ker (xn �N ) ∂j
xn
' N

�

Corollary 9.8 (Kashiwara). The functors i0 and i′ define an equivalence of categories

Mr (DZ) 'Mr
Z (DX) .
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9.1. Corollaries.

Lemma 9.9 (Exercise). For H ∈Mcoh (DZ), i0H ∈Mcoh (DX) and

Sing supp (i0H) = {(x, ξ) ∈ T ∗X | (x, pxξ) ∈ Sing suppH} ,

where px : (TX
x )∗ � (TZ

x )∗ is the dual map to the embedding TxZ ↪→ TxX.

Corollary 9.10 (Bernstein’s inequality). For any F ∈Mcoh (DX),

dim Sing suppF ≥ dim X.

Proof. Let F ∈Mr
coh (DX). Suppose that dim Sing suppF < dim X.

Let pX : T ∗X → X be the canonical projection. Let Z := (pX (Sing suppF)) ( X.
Then dim Z < dim X. There is open dense U ⊂ X, such that Z ′ := U∩Z is nonsingular
(and nonempty). F ′ := F �U . Then suppF ′ ⊂ Z ′. By Kashiwara’s lemma, F ′ ' i0i

′F ′,
where i : Z ′ → U . By induction hypothesis, dim Sing supp i′F ′ ≥ dim Z ′. Thus

dim Sing supp i0i
′F ′ ≥ dim Sing supp i′F ′ + dim U − dim Z ′ ≥ dim X.

But dim Sing suppF ′ < dim X by assumption. This leads to a contradiction. �

Lemma 9.11. Let F ∈Mcoh (DX). TFAE:

(1) Sing suppF ⊂ X × {0} ⊂ T ∗X
(2) F ∈Mcoh (OX)
(3) F is locally free of finite rank over OX

Proof. 3 ⇒ 2 is obvious, 2 ⇒ 1 is obvious (just take the generators over OX and use
them to construct a good filtration).

1⇒ 2: Choose local coordinates in an open affine U ⊂ X. Let M = F (U). Choose
generators v1, . . . , vn of M over DU . Then we assume that Z (σ ann {vi}) = U × {0}
(where σ is the symbols, and Z is the variety of zeros). Then for any i, j there is `ij ,
such that

∂
`ij

j vi ∈ D
<`ij

U {v1, . . . , vn}

Let S :=
{
∂`1

1 . . . ∂`m
m vi

∣
∣ `j < `ij

}
. Then this set generates F (U) over OU , so F is

coherent over OX .
2 ⇒ 3: We can assume that X is affine. Let ` := minx dimFx. Then there is some

open U ⊂ X, such that dimFx = ` for all x ∈ U (we assume that X is connected
and irreducible). Suppose by way of contradiction that there exists x ∈ X, such that
dim Fx > `. Then there is a smooth affine curve ν : C → X passing through x (cf.
curve selection lemma), such that all the other points of this curve are in U . Take the
DC-module ν0F . It’s OC-coherent because it’s the pullback of O-modules, and this
operation preserves coherence. On the other hand, OC is a Dedekind domain, so since
M := ν0F is not locally free, it must have torsion. The torsion part M tor is also a
DC-module, and it has finite support i : Z ⊂ C. Thus M tor = i0V for some DZ-module
V . But i0V is not finitely generated over OC unless V = 0. �

Definition 9.12. OX-coherent DX-modules are called smooth.

Corollary 9.13. Let F be a holonomic DX-module. Then there exists an open dense
U ⊂ X, such that F �U is smooth (possibly trivial).
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Proof. Sing suppF is n-dimensional, so it consists of a part of the form U × {0} and
something else that projects to a lower-dimensional subvariety of X. �

Definition 9.14. For a closed subvariety X ⊂ An define the category of DX-modules
as the category of DAn-modules supported at X.

Theorem 9.15. This definition doesn’t depend on the embedding.

Proof. Let ν : X → An, μ : X → Am. Take the embedding ν × μ : X → An+m.
Then there is ρ : An → Am, such that μ = ρν. Thus we have a closed embedding

i := id×ρ : An → An+m. Then MX (DAn)
i0
'MX (DAn+m). �

Definition 9.16. Define D-modules on general varieties by gluing affine ones. Note
that for affine ones the notion is local.

For F ∈MX (DAn) define

Sing suppX (F ) := pX (Sing supp F ) ,

where pX : T ∗An �X→ T ∗X.

10. D-modules on the projective space

V
j
⊃ V × p

→ P (V )

For an OP(V )-module F define

p∗F := OV × ⊗OP(V )
F , F̃ := j∗p

∗F .

There is an action of Gm on F̃ by dilation, so it defines a grading on the global sections

Γ
(
F̃
)
, and Γ (F) =

(
Γ
(
F̃
))0

.

Let F1 → F2 → F3 be an exact sequence of DP(V )-modules. Then the sequence

p0F1 → p0F2 → p0F3

is exact. While F̃1 → F̃2 → F̃3 may not be exact, the homology H is supported at 0.
Thus H ' i0L, where L is a vector space, and i : {0} ↪→ V .

Let E :=
∑

xi∂i ∈ D (V ) be the Euler operator.

Exercise 10.1. On Γ (j0L), E has negative eigenvalues only.

(Γ (j0L))0 = 0, thus (Γ (H))0 = 0, so
(
Γ
(
F̃1

))0

→
(
Γ
(
F̃2

))0

→
(
Γ
(
F̃3

))0

is exact. On the other hand,
(
ΓF̃i

)0

' ΓFi. Thus:

Lemma 10.2. The functor of global sections

ΓP(V ) :M (DPn)→M (Γ(DPn))

is exact.
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Exercise 10.3. DPn ' D0
n/D0

nE, where D0
n is the zero-part of the grading on Dn given

by the commutator with the Euler vector field. In other words, deg xi = 1, deg ∂i = −1.

Exercise 10.4. For any graded K [x0, . . . , xn]-module we define a quasicoherent sheaf

on the projective space M ′ by M ′ (U) := (M (P−1 (U)))
0
, where P : An+1 \ {0} → Pn

is the canonical projection. Any quasicoherent sheaf on Pn is obtained this way. More
precisely,

Mqc (OPn) 'Mqc (OAn) /Mqc
{0} (OAn)

(quotient w.r.t. a Serre subcategory).

Hint. K [x0, . . . , xn] '
⊕

d≥0 Γ (Pn,OPn (d)), where OPn (d) is the sheaf on Pn obtained
by shifting by d the grading in the graded module K [x0, . . . , xn] (alternative descrip-
tion: OPn (−1) is the canonical line bundle, OPn (1) is its dual, and OPn (d1 + d2) '
OPn (d1)⊗OPn OPn (d2)).

Take a sheaf F , and the module MF :=
⊕

d≥0 Γ (Pn,F (d)), where F (d) := F ⊗OPn

OPn (d). Now take the sheaf M ′
F corresponding to MF . We claim that M ′

F ' F . After
that we prove that the kernel of the functor M 7→ F consists of the sheaves supported
at 0. �

Lemma 10.5. ΓP(V ) :M (DPn)→M (ΓDPn) is faithful.

Proof. Since ΓP(V ) is exact, it is enough to show that Γ (F) 6= 0 for F 6= 0.
Let j be such that supp M j 6⊂ {0} and supp M ` ⊂ {0} ∀l with |`| < j. We want to

show that j = 0. Suppose first that j < 0 and let ξ ∈ M j , such that supp ξ 6⊂ {0}.
Then there is 0 ≤ i ≤ n, such that supp xiξ 6⊂ {0}. But xiξ ∈M j+1, so this contradicts
our assumption. Similarly, for j > 0, take ξ ∈ M j . jξ = Eξ =

∑
i xi∂iξ, so there is i,

such that supp ∂iξ 6⊂ {0}. But ∂iξ ∈M j−1, so again we get a contradiction. �

Lemma 10.6. Hom (DPn ,F) ' Γ (F).

Proof. The internal Hom is F , so the categorical Hom consists of its global sections. �

Corollary 10.7 (Bernstein-Beilinson, ??). DPn is a projective generator of M (DPn),
and thus Γ :M (DPn)→M (Γ(DPn)) is an equivalence of categories.

Theorem 10.8 (Bernstein-Beilinson, ??). Γ(DPn) = DPn (Pn) ' D0
n+1/ED

0
n+1, where

D0
n+1 is according to the grading deg xi = 1, deg ∂i = −1, and E is the Euler field.

For the proof we will need some lemmas.

Exercise 10.9. There is a natural map D0
n+1/ED

0
n+1 → DPn (Pn).

Exercise 10.10. Gr
(
D0

n+1/ED
0
n+1

)
' OT ∗Pn (T ∗Pn).

Lemma 10.11. For all smooth X, GrDX (X) ↪→ OT ∗X (T ∗X).

Proof. 0→ Di−1
X → Di

X → Symi
OX

τX → 0,

so 0→ ΓDi−1
X → ΓDi

X → Γ Symi
OX

τX .

On the other hand,
⊕

i Symi
OX

τX ' OT ∗X . �

Proof of the Theorem. ϕ : D0
n+1/ED

0
n → DPn (Pn). It’s enough to show that Gr ϕ is an

isomorphism. Now, Gr(D0
n+1/ED

0
n) ' OT ∗Pn (T ∗Pn), and Gr(DPn (Pn)) is embedded

into OT ∗Pn (T ∗Pn). This embedding is compatible with Gr(ϕ), and thus both the
embedding and Gr(ϕ) are isomorphisms. �
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10.1. Twisted differential operators on the projective space. In Definition 7.6
we defined the algebra of differential operators on any module over the algebra of
polynomials on an affine variety. Later we showed that this definition commutes with
localization by polynomials. This gives the definition of the sheaf of algebras of dif-
ferential operators on a coherent sheaf over any algebraic variety X. The obtained
algebra is well-behaved only if the sheaf is locally free. If the sheaf is invertible (i.e. is
a line bundle), this sheaf of algebras is locally isomorphic to DPn .

Definition 10.12. A sheaf of twisted differential operators on a (smooth, separated)
algebraic variety X is a sheaf of OX-algebras that is locally isomorphic to DX (in short
a TDO on X).

Let us consider the case X = Pn. Any invertible sheaf on Pn is isomorphic to O(s)
for some s ∈ Z. One can define O(s) to correspond the construction in Exercise 10.4
to the graded module M = K[x0, . . . , xn] with grading shifted by d. Another way
to define an invertible sheaf F is describe the automorphism of O(Ui ∩ Uj) given by
the identifications F(Ui) ' OX(Ui) for some open affine cover {Ui} of X on which F
trivializes. For O(s) we can choose the standard cover Ui := {xi 6= 0} ∼= An of Pn, on
which the automorphisms are given by multiplication by (xi/xj)

s.
Let us describe O(s) by coordinate changes. We have to compute what happens to

∂k when we twist it by (xi/xj)
s.

(1) (xi/xj)
−s ∙ ∂k ∙ (xi/xj)

s = ∂k + s∂k(xi/xj) ∙ (xi/xj)
−1,

Since Dn is generated as a K[x1, . . . xn]-algebra by ξ1, . . . , ξn, this formula defines a
sheaf of twisted differential operators on Pn. In fact, we could put any scalar λ ∈ K
instead of s in (1) and obtain a TDO on Pn.

Exercise 10.13. Any TDO on Pn is given by the coordinate changes

ϕij(∂k) := ∂k + λ∂k(xi/xj) ∙ (xi/xj)
−1.

Exercise 10.14. Denote by DPn(s) the sheaf of differential operators on OPn(s). Then
the global sections functor Γ : M(DPn(s)) → M(Γ(DPn(s))) is exact for s > −n and
faithful for s ≥ 0.

Let us find a formula for obtaining TDOs from invertible sheaves on arbitrary
(smooth, separated) varieties. Recall that a 1-form on an affine variety X is an O(X)-
module morphism τX → O(X). A 1-form λ is called closed if its differential dλ vanishes.
The differential can be defined as the two-form given by

λ(ξ, η) := ξ(λ(η)− λ(ξ(η))− λ([ξ, η]), ∀ξ, η ∈ τX .

Exercise 10.15. Let X be affine. For a closed 1-form λ on X and η ∈ τX define
ϕλ(η) := η + λ(η) ∈ D(X). Then ϕλ extends (uniquely) to an automorphism of D(X)
as an O(X)-algebra. Moreover, all automorphisms of D(X) as an O(X)-algebra are
obtained in this way.

For non-affine X, this exercise and the Chech cohomology yield that the TDOs on X
are described by H1(X, Ω1

cl), where Ω1
cl is the sheaf of closed 1-forms on X. The group

of invertible sheaves on X (a.k.a. the Picard group) is isomorphic to H1(X,O×
X), where
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O×
X is the sheaf of invertible regular functions on X. The logarithmic derivative gives

a morphism of sheaves of abelian groups O×
X → Ω1

cl, which in turn gives a group ho-
momorphism H1(X,O×

X)→ H1(X, Ω1
cl). This homomorphism describes the correspon-

dence between invertible sheaves and TDOs. For X = Pn we have H1(Pn,O×
Pn) = Z

and H1(Pn, Ω1
cl) = K. Thus Exercise 10.15 generalizes (1).

11. The Bernstein-Kashiwara theorem on distributional solutions of
holonomic modules

Let X be a smooth algebraic variety defined over R, and let S∗
X denote the DX-

module of tempered distributions on X. More precisely, for every open U ⊂ X we
take S∗

X(U) := S∗(U(R)), the space of continuous functionals on the Fréchet space of
Schwartz functions on U(R). Let Mhol (DX) denote the category of holonomic DX-
modules. Our goal in this section is to prove and use the following theorem.

Theorem 11.1 (Bernstein-Kashiwara). Let F ∈Mhol (DX). Then

dim Hom (F ,S∗
X) <∞.

Lemma 11.2 (Exercise). Let j : Z ⊂ X be a closed embedding of smooth affine
algebraic varieties defined over R. Then S∗ (Z) ' j′S∗ (X).

Corollary 11.3. It is enough to prove Theorem 11.1 for the case when X is an affine
space.

Proof. Let X =
⋃r

i=1 Ui be an open affine cover. Then

Hom (F ,S∗
X) ↪→

∏

i

Hom (F (Ui) ,S∗ (Ui))

by restriction. Let τi : Ui → Ani be closed embeddings. Then S∗ (Ui) ' τ !
iS

∗ (Ani).
Hence by the adjunction,

Hom (F (Ui) ,S∗ (Ui)) ' Hom (F (Ui) , τ ′
iS

∗ (Ani)) '

' Hom ((τi)0F (Ui) ,S∗ (Rni))

Recall that the pushforward preserves holonomicity. �

From now on let X = V := Rn and M be a holonomic Dn-module.

Definition 11.4. Let ω be the standard symplectic form on V ⊕ V ∗. Denote by
pV : V ⊕ V ∗ → V and pV ∗ : V ⊕ V ∗ → V ∗ the natural projections. Define an action of
the symplectic group Sp(V ⊕ V ∗, ω) on the algebra D(V ) by

(∂v)
g := π(g)(∂v) := pV ∗(g(v, 0))+∂pV (g(v,0)), wg := π(g)w := pV ∗(g(0, w))+∂pV (g(0,w))

where v ∈ V, w ∈ V ∗, ∂v denotes the derivative in the direction of v, and elements
of V ∗ are viewed as linear polynomials and thus differential operators of order zero.
For a D(V )-module M and an element g ∈ Sp(V ⊕ V ∗), we will denote by M g the
D(V )-module obtained by twisting the action of D(V ) by π(g).

Since the above action of Sp(V ⊕V ∗) preserves the Bernstein filtration on D(V ), the
following lemma holds.

Lemma 11.5. For M ∈Mf (D(V )) and g ∈ Sp(V ⊕V ∗) we have AV(M g) = gAV(M).
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Lemma 11.6. For any g ∈ Sp (V ⊕ V ∗), S (V )g ' S (V ), and thus S∗ (V )g ' S∗ (V ).

We will prove this lemma in §11.1.

Lemma 11.7. Let C ⊂ V ⊕ V ∗ be a closed conic subvariety of dimension n. Then
there exists a Lagrangian subspace W ⊂ V ⊕ V ∗, such that the projection of C onto
(V ⊕ V ∗)/W is a finite map.

Proof. First we prove that there is a Lagrangian subspace L, such that L ∩ C = {0}.
For that L denote the variety of Lagrangian subspaces and consider

Y := {(α, β) ∈ P (C)× L | α ⊂ β} ,

where P (C) is the space of lines inside C (i.e. the projectivization). We have maps
q : Y → P (C) and q′ : Y → L, and we need to show that q′ is not onto. For this it’s
enough to show that dim Y < dimL. Now we see that

dimL =
1

2
n (n + 1) , and dim Y = dim q(Y ) + dim q−1 (x) ,

where q−1 (x) is a generic fiber. Now, for every line ` ⊂ L we have L ⊂ `⊥ =:the
orthogonal complement to ` w.r. to the symplectic form. Thus L/` is a Lagrangian
subspace of `⊥/`, and thus the dimension of q−1(x) is at most (n − 1)n/2 = n(n +
1)/2− n. Thus

dim Y ≤
1

2
(n− 1)n + dim P (C) =

1

2
n(n + 1)− 1 < dimL.

Now we prove the following fact: over C, if W ⊂ U are vector spaces, and C ⊂ U is
a conic subvariety, such that C ∩W = {0}, then the projection C → U/W is finite. By
induction on dimension we can reduce to the case dim W = 1 (if it’s true for dim W = l
then take iterated projections, first w.r.t. W , then w.r.t. a larger subspace).

Let p be a homogeneous polynomial vanishing on C but not on W . Then

p (x1, . . . , xn) =
N∑

i=1

pi (x1, . . . , xn−1) xi
n,

where xi are linear coordinates, s.t. W = {x1 = ∙ ∙ ∙ = xn−1 = 0}. Thus xn �C satis-
fies a monic polynomial over O (U/W ). Indeed, the leading term pN is constant —
otherwise this leading term would vanish on W , so by homogeneity we would have
degx1,...,xn−1

pi > 0 for all i, so p would vanish on W . Now since on O (C) the element
xn satisfies a monic polynomial over O (U/W ), the ring extension O (U/W ) → O (C)
is integral, so the map C → U/W is finite.

Tanking U := V ⊕ V ∗ and W := L, such that the projection of C onto (V ⊕ V ∗)/W
is a finite map. �

Corollary 11.8. For any M ∈ Mhol(DV ) there exists g ∈ Sp(V ⊕ V ∗) such that M g

is smooth.

Proof. Since M is holonomic, we have dim AV(M) = n. Thus, by the lemma, there
exists a Lagrangian subspace W ⊂ V ⊕ V ∗, such that the projection of AV(M) onto
(V ⊕ V ∗)/W is a finite map. Since Sp(V ⊕ V ∗) acts transitively on the variety of
Lagrangian subspaces, there exists g ∈ Sp(V ⊕ V ∗) such that g−1(W ) = V ∗, and
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thus gAV(M) is finite over V . By Lemma 11.5, AV(M g) = g(AV(M)). Thus M g is
finitely-generated over O(V ) and thus smooth. �

Lemma 11.9. Let M be a smooth D(Cn)-module of rank r. Embed the space An(Cn)
of analytic functions on Cn into D∗(Rn) using the Lebesgue measure. Then

Hom(M,D∗(Rn)) = Hom(M,An(Cn)) and dim Hom(M,D∗(Rn)) = rank M,

where rank M is the rank of M as a vector bundle.

Proof. Let MAn := M ⊗O(Cn) An(Cn) and DAn(Cn) := Dn ⊗O(Cn) An(Cn) be the ana-
lytizations of M and Dn. Then

HomDn(M,D∗(Rn)) ∼= HomDAn(Cn)(MAn,D∗(Rn)).

Since MAn is also smooth, MAn
∼= An(Cn)r. Thus it is left to prove that

HomDAn(Cn)(An(Cn),D∗(Rn)) = HomDAn(Cn)(An(Cn), An(Cn))

and the latter space is one-dimensional. This follows from the fact that a distribution
with vanishing partial derivatives is a multiple of the Lebesgue measure. �

Corollary 11.10. If a distribution generates a smooth D-module then the distribution
is an analytic measure.

Proof of Theorem 11.1. By Corollary 11.3 we can assume that X = V = Rn. By
Corollary 11.8 there exists g ∈ Sp(V ⊕ V ∗) such that Fg is smooth. By Lemma 11.6
we have

Hom (M,S∗ (V )) ' Hom (M g, (S∗ (V ))g) ' Hom (M g,S∗ (V )) .

Finally, dim Hom (M g,S∗ (V )) <∞ by Lemma 11.9. �

Let an algebraic group G act algebraically on a smooth algebraic variety X, both
defined over R.

Corollary 11.11. If G has finitely many orbits on X then dim (S∗ (M))G <∞.

Proof. The Lie algebra g acts on X by vector fields ξα, α ∈ g. Define a DX-module
F on X by F (U) := DX (U) /DX (U) {ξα �U}. Then the solutions of this D-module
with values in S∗

X are exactly the G-invariant distributions. Now modulo the previous
result, it remains to show that F is holonomic. By construction we have

Sing supp F ⊂ {(x, ϕ) ∈ T ∗M | ∀α ∈ g : 〈ϕ, ξα (x)〉 = 0} =
⋃

x

CNX
Gx

where CNX
Gx is the conormal bundle of the orbit Gx. Since there are finitely many

orbits, this is a finite union. All conormal bundles have dimension dim X, so the same
is true for their finite union. �

A bit more careful argument actually proves a bit stronger statement.

Theorem 11.12 (Aizenbud-Gourevitch-Minchenko). If G has finitely many orbits on
X and E is an algebraic G-equivariant bundle on X then for any n ∈ N there is Cn ∈ N,
such that for any n-dimensional g-module τ ,

dim Homg (τ,S
∗ (X, E)) ≤ Cn.
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Exercise 11.13. Let R act on RP 1 by shifts. Compute the dimension of (S∗ (RP 1))
R
.

This exercise does not use the technique of this section, but rather demonstrates the
nature of the question considered in the last theorem.

Solution. We have an open invariant subset R ⊂ RP 1, and the restriction of any
invariant distribution to this open subset is a scalar multiple of the Lebesgue measure
dx on R. Let us now analyze another open set - the complement to {0}. Let us bring
infinity to the point 0 by the coordinate change x 7→ t = 1/x. Then ∂x = −t2∂t. Thus,
on this open set we have a 2-dimensional space of invariant distributions, spanned by
δ0, and δ′0. We also see that the restriction of dx to the intersection of the two open
sets is not invariant, and thus dx does not extend to an invariant distribution on RP 1.

On the other hand, δ0 and δ′0 do extend by zero to all of RP 1, and thus the space in
question is 2-dimensional. �

Remark 11.14. We used that the algebraic group G has finitely many orbits on the al-
gebraic variety X. This is equivalent to G(C) having finitely many orbits on X(C), but
not equivalent to G(R) having finitely many orbits on X(R). Taito Tauchi ([Tau18])
constructed an example in which G(R) has finitely many orbits on X(R), but G has
infinitely many orbits on X and the space S∗(X(R))G(R) is infinite-dimensional. Thus,
the theory of D-modules, or at least some algebraic geometry, is required to prove
Theorem 11.12.

11.1. Proof of Lemma 11.6. This section requires some knowledge of representation
theory.

Definition 11.15. Let V := Rn and let ω be the standard symplectic form on Wn :=
V ⊕ V ∗. The Heisenberg group Hn is the algebraic group with underlying algebraic
variety Wn × R with the group law given by

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + 1/2ω(w1, w2)).

Define a unitary character χ of R by χ(z) := exp(2πiz).

Definition 11.16. The oscillator representation of Hn is given on the space L2(V ) by

(2) (σ(x, ϕ, z)f)(y) := χ(ϕ(y) + z))f(x + y).

Note that the center of Hn is 0× R, and it acts on σ by the character χ, which can
be trivially extended to a character of V ∗ × R.

It is easy to see that σ is the unitary induction of (the extension of) the character χ
from V ∗ × R to Hn = (V ⊕ V ∗)× R.

Lemma 11.17. The space of smooth vectors in σ is S(V ), and the Lie algebra of Hn

acts on it by

(3) σ(v)f := ∂vf, σ(ϕ)f := ϕf, σ(z)f := 2πizf.

Proof. Formula (3) is obtained from (2) by derivation. Now, it is known that the space
of smooth vectors in a unitary induction consists of the smooth L2 functions whose
derivatives also lie in L2. �
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Theorem 11.18 (Stone-von-Neumann). The oscillator representation σ is the only
irreducible unitary representation of Hn with central character χ.

Idea of the proof. Let me ignore all the analytic difficulties. Consider the normal com-
mutative subgroup A := V ×R. Conjugation in Hn defines an action of V on the dual
group of A. This action has only two orbits. The closed orbit is the singalton {1} and
the open orbit O is the complement to the closed one. The restriction σ|A decomposes
to a direct integral of characters in O, each “with multiplicity one”. The restriction
of any non-zero subrepresentation ρ ⊂ σ to A will also include χ, and thus the whole
orbit O of χ. Thus ρ = σ and σ is irreducible.

Now let τ be any irreducible unitary representation of Hn with central character χ.
Then the restriction of τ to A will again include all the characters in O with multiplicity
one. Thus τ is the induction of an irreducible representation of the stabilizer of χ in
Hn. However, this stabilizer is A and thus τ ' σ. �

Note that the symplectic group Sp(V ⊕V ∗) acts on Hn by automorphisms, preserving
the center. Thus the theorem implies the following corollary.

Corollary 11.19. For every g ∈ Sp(V ⊕ V ∗) there exists a (unique up to a scalar
multiple) linear automorphism T of S(V ) such that for any h ∈ Hn we have σ(hg) =
Tσ(h)T−1.

Since the Lie algebra of Hn generates Dn, this corollary implies Lemma 11.6.

Remark 11.20. The uniqueness part of Corollary 11.19 follows from Schur’s lemmas.
Corollary 11.19 defines a projective representation of Sp(V ⊕ V ∗) on S(V ), i.e. a
map τ : Sp(V ⊕ V ∗) → GL(S(V )) such that τ(gh) = λg,hτ(g)τ(h). It is not possible
to coordinate the scalars in order to obtain an honest representation of Sp(V ⊕ V ∗),

but it is possible to obtain a representation of a double cover S̃p(V ⊕ V ∗), called the
metaplectic group. This was shown by A. Weil.

12. Derived categories

Let A be an abelian category, and C(A) the category of complexes over A. In our
convention, differentials of complexes raise the indices, i.e. di : C i → C i+1.

Definition 12.1. Let ϕ : C → D be a morphism in C(A). We say that ϕ is homotopic
to zero if there exists a collection of maps λk : Ck+1 → Dk such that

ϕk = λk ◦ dk
C + dk−1

D ◦ λk−1.

We say that two morphisms of complexes are homotopic if the difference is homotopic
to zero. Define the homotopy category of A (denoted K(A)) to have complexes as
objects and morphisms given by

HomK(A)(C,D) := homotopy equivalence classes in HomC(A)(C,D).

We say that two complexes are homotopy equivalent if they are isomorphic in K(A).

Exercise 12.2. (i) The class of morphisms homotopic to zero is closed under both
left and right compositions with arbitrary morphisms.

(ii) Homotopic morphisms induce the same morphisms on cohomologies.
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The category K(A) is additive but not abelian.

Definition 12.3. A morphism ϕ : C → D in C(A) (or in K(A)) is called a quasi-
isomorphism if the cohomologies Hk(ϕ) are isomorphisms for any k.

The derived category will be defined as the localization of K(A) by quasi-isomorphisms.
The idea is that this category includes slightly more information the the cohomologies
of the complexes. We will also define derived functors between derived categories, and
they will carry more information than the usual derived functors. In particular, we
will be able to compose them, and in this way derive the composition of a left exact
functor and a right exact functor.

In order to show that the derived categories are well defined we will show that
the quasi-isomorphisms satisfy the Ore condition. For this we will need the cone
construction.

Definition 12.4. For (C, d) ∈ C(A) define (Cone(C), Cone(d)) ∈ C(A) by

Cone(C)i := C i ⊕ C i+1, Cone(d)(a, b) := (da + b,−db).

Notation 12.5. For (C, d) ∈ C(A) and k ∈ Z, denote by C[k] the complex given by

C[k]i = C[k + i], d[k]i = (−1)kdk+i.

Lemma 12.6. Exercise

(1) Cone(C) is homotopy equivalent to zero.
(2) ϕ : C → D is homotopic to zero if and only if it can be extended to a morphism

ϕ′ : Cone(C)→ D.

Lemma 12.7. Any morphism of complexes is homotopy equivalent both to an epimor-
phism and to a monomorphism.

Proof. Since cones are homotopy equivalent to zero, any ϕ : C → D is homotopy
equivalent to the monomorphism ϕ′ : C → Cone(C)⊕D given by ϕ′

k(a) := (a, 0, ϕk(a))
and to the epimorphism ϕ′′ : C⊕Cone(D)[−1]→ D given by ϕ′′

k(a, b, c) := ϕk(a)+c. �

Let us give some geometric intuition on cones. For every topological space X one
can define a contractible space that includes it by Cone(X) := X × [0, 1]/(X × {1}).
Moreover, for any continuous map ν : X → Y we can define Cone(ν) to be the quotient
of (X × [0, 1])

∐
Y by the equivalence relation (x, 0) ∼ ν(x). Then Cone(ν) includes

Y and the quotient is the suspension S(X) = X × [0, 1]/(X ×{0} ∪X ×{1}). By this
analogy we will now define the cone of a morphism.

Definition 12.8. Let ϕ : C → D be a morphism in C(A). Define Cone(ϕ) ∈ C(A) by

Cone(ϕ) := (Cone(C)⊕D)/ΔC ,

where (ΔC)i = {(c, 0, ϕ(c)) | c ∈ Ci}. In other words:

Cone(ϕ)i := Di ⊕ Ci+1 with differential given by d(a, b) = (da + ϕ(b),−db).

Lemma 12.9 (Exercise). (1) The following short sequence of complexes is exact

0→ D → Cone(ϕ)→ C[1]→ 0.

Moreover, the connecting morphism in the corresponding long exact sequence of
cohomologies is Hi+1(ϕ).
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(2) Cone(D → Cone(ϕ)) is homotopy equivalent to C[1].
(3) Cone(Cone(ϕ)→ C[1]) is homotopy equivalent to D[1].

The triple C,D, Cone(ϕ) is called a distinguished triangle (or an exact triangle).
The Lemma 12.9 shows that the exact triangles are symmetric (up to shifts), unlike

short exact sequences.

Corollary 12.10. ϕ is a quasi-isomorphism if and only if Cone(ϕ) is an acyclic com-
plex.

Proposition 12.11. The system of quasi-isomorphisms in K(A) satisfies the Ore con-
ditions. In other words for any quasi-isomorphism μ : C → D and any morphism
q : E → D there exists a quasi-isomorphism ν : L → E and a morphism p : L → C
with μ ◦ p = q ◦ ν.

Proof. By Lemma 12.7 we can assume that μ⊕ q : C⊕E → D is an epimorphism. Let
L := Ker(μ⊕ q), and let ν : L→ E and p : L→ C be the projections. From the short
exact sequence 0→ L→ C ⊕ E → D → 0 we obtain the long exact sequence

∙ ∙ ∙ → Hi−1(D)→ Hi(L)→ Hi(C)⊕ Hi(E)→ Hi(D)→ Hi+1(L)→ . . .

Since μ is a quasi-isomorphism, Hi(C) is mapped isomorphically to Hi(D), which im-
plies that the morphism Hi(L) → Hi(E) is onto. Since Hi−1(C) is mapped isomor-
phically to Hi−1(D) we obtain that the map Hi−1(D) → Hi(L) is zero and thus the
morphism Hi(L)→ Hi(E) is an isomorphism. Thus ν is a quasi-isomorphism. �

Definition 12.12. Let C,D ∈ K(A). A (C,D)-triple is a triple (E, ν, ϕ), where
ν : E → C is a quasi-isomorphism and ϕ : E → D is a morphism.

We say that two (C,D)-triples (E, ν, ϕ) and (E ′, ν ′, ϕ′) are linked if there exists an
(E,E ′)-triple (L, α, β) such that both α and β are quasi-isomorphisms and

ν ◦ α = ν ′ ◦ β, ϕ ◦ α = β ◦ ϕ′.

For L ∈ K(A), a join of a (C,D)-triple (E, ν, ϕ) and a (D,L)-triple (M,μ, ψ) is
defined to be the (C,L)-triple (N, ν ◦ α, ψ ◦ β), where (N,α, β) is an (E,M)-triple
satisfying ϕ ◦ α = μ ◦ β. Note that the triple (N,α, β) satisfying the condition always
exists by Proposition 12.11.

Lemma 12.13. The link relation is an equivalence relation, and the equivalence class
of the join of two equivalence classes of triples is well-defined, i.e. does not depend on
the representatives and on the choice of the triple (N,α, β).

This lemma follows from Proposition 12.11. We leave the deduction as a long exer-
cise.

Definition 12.14. The derived category D(A) is defined by Ob(D(A)) = Ob(K(A))
and for C,D ∈ Ob(D(A)),

HomD(A)(C,D) = {equivalence classes of (C,D)− triples}.

Lemma 12.15 (Exercise). The derived category D(A) is additive.
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Hint. Let us explain how to add morphisms. Let C,D ∈ Ob(D(A)), and let η =
(E, ν, ϕ) and ζ = (L, μ, ψ) be (C,D)-triples. Proposition 12.11 implies that there
exists an (E,L)-triple (M,α, β) such that both α and β are quasi-isomorphisms and
ν ◦ α = μ ◦ β. Then η is equivalent to (M, ν ◦ α, ϕ ◦ α) and ζ to (M,μ ◦ β, ψ ◦ β). We
define their sum to be (the equivalence class of) (M, ν ◦ α, ϕ ◦ α + ψ ◦ β). �

Note that the derived category is not abelian. Rather, it is a triangulated category.
Note that we have well-defined cohomology functors H i : D(A)→ A.

Definition 12.16. The truncation functors are defined as

τ≤n (X) :=
(
∙ ∙ ∙ → Xn−1 → ker

(
Xn → Xn+1

)
→ 0→ . . .

)

τ≥n (X) :=
(
∙ ∙ ∙ → 0→ coker

(
Xn−1 → Xn

)
→ Xn+1 → . . .

)

Then we have natural transformations τ≤n (X)→ X, X → τ≥n (X), which are isomor-
phisms if Hk(X) = 0 for any k > n (resp. k < n).

τ≥n (resp. τ≤n) is a (co)reflection onto the subcategories of complexes bounded
from above (below). For any X the morphisms τ≤nX → X → τ≥n+1X form an exact
triangle.

Definition 12.17. For a subset S ⊂ Z define DS(A) to be the subcategory of D(A)
consisting of objects C with Hk(C) = 0 for k /∈ S. Define Db(A) :=

⋃
finiteS DS(A).

Remark 12.18. Db(A) is equivalent to the category of bounded complexes, with link
relation through bounded complexes. We will not have time to prove that.

Lemma 12.19. A ∼= D{0}(A)

Proof. The functors are given by A 7→ (∙ ∙ ∙ → 0 → A → 0 → . . . ) and C 7→ H0(C).
One composition is the identity. To see that the other composition is isomorphic to
identity consider the isomorphisms C → τ≥0C and H0(C)→ τ≥0C. �

We will say that an object is glued from two others if together they form an exact
triangle. We will say that it is glued from some set S of objects if either it lies in S or
it is glued from two others, each of which is glued from S.

Exercise 12.20. Let a ≤ b ∈ Z and let I := Z ∩ [a, b]. Then any DI(A) is glued from
D{a}(A), D{a+1}(A), . . . D{b}(A).

Definition 12.21. A bicomplex in A is a collection of objects Bij ∈ A parameterized
by Z2 and two collections of morphisms dij

1 : Bij → Bi+1,j and dij
2 : Bij → Bi,j+1 such

that d2
1 = 0, d2

2 = 0, and d1d2 + d2d1 = 0.
For a bicomplex B = (Bij , dij

1 , dij
2 ) define its total complex (Tot(B), d) by

(Tot(B))k :=
⊕

i+j≥k

Bij , d = d1 + d2.

Note that we can obtain a bicomplex from a complex of complexes by changing the
sign of differentials in every odd column.

Lemma 12.22 (Grothendieck). Let (B, d1, d2) be a bicomplex, and assume that d1 is
acyclic, and on any diagonal i + j = k, Bij = 0, i � 0. Then its total complex Tot B
is acyclic.
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Proof. Let c ∈ Tot(B)k with dc = 0. Let N be s.t. Bi,k−i = 0 for all i > N .
We want to show that c = dx for some x ∈ Tot(B)k−1. We do this by induction on

l s.t. ci,k−i = 0 for all i < N + 1 − l. As a base we take l = 0. Then c = 0. For the
induction step, assume ci,k−i = 0 for all i < N + 1 − l, and let α := cN+1−l,k−N−1+l.
Then d1α = 0, thus α = d1β for some β ∈ BN+1−l,k−N+l. Then c ∼ c′ := c − dβ, and
c′N+1−l,k−N−1+l = 0. Thus c′ = dx′ by the induction hypothesis. Now, c = d(β+x′). �

Corollary 12.23. If ν : B → B′ is an isomorphism of bicomplexes that satisfy the
support condition as above. Suppose ν is a d1-quasi-isomorphism. Then Tot ν is a
quasi-isomorphism.

Corollary 12.24. If B is acyclic except at row 0 and satisfies the support condition
as above then Tot B is quasi-isomorphic to the cohomology complex H0,•(B).

Proof. Let B•j denote the j-th column of B. Consider the exact triangle of complexes:

τ<0B•j → B•j → τ≥0B•j.

The first one is acyclic, and thus B•j → τ≥0B•j is a quasi-isomorphism. We get a d1-
quasi-isomorphism of bicomplexes B → τ i≥0B. By the previous corollary this implies
a quasi-isomorphism Tot(B)→ Tot(τ i≥0B).

In the same way, the exact triangle

τ<1(τ≥0B•j)→ τ≥0B•j → τ≥1B•j .

gives a quasi-isomorphism τ i<1(τ i≥0B) → τ i≥0B, and by taking total complexes, a
quasi-isomorphism H0,•(B) → Tot(τ i≥0B). Together, we get isomorphisms in the
derived category between Tot(B), Tot(τ i≥0B) and H0,•(B). �

Now we would like to define derived functors. Suppose that A has enough injective
objects.

Lemma 12.25. Any C ∈ C≥0(A) has an injective resolution, i.e. is quasi-isomorphic
to a complex consisting of injective objects.

Proof. First of all, let us show that C can be embedded into an injective complex.
Embed C0 into an injective I0, and C1 into (an injective) I1. Then the composed map
C0 → I1 can be lifted (by the injectivity of I1) to d0 : I0 → I1. Then we embed C2 into
(an injective) I2, and lift the map C1/d0

C(C0) → I2 to a map (d2)′ : I1/d0(I0) → I2.
We continue building I by induction.

Now we embed C into an injective complex I0, then I0/C into I1 and so on. In
this way we construct a bicomplex 0 → I0 → I1 → . . . . By Corollary 12.24 the total
complex will be quasi-isomorphic to C. �

Lemma 12.26 (Exercise). Let I, J be bounded on the left complexes consisting of
injective objects, and let ϕ : I → J be a quasi-isomorphism. Then ϕ is an isomorphism
in the homotopic category.

Let F : A → B be a left-exact functor.

Definition 12.27. For any C ∈ D(A) choose an injective resolution I and define
DF (C) := F (I). This defines a functor DF : D(A)→ D(B).

We say that an object X ∈ A is F -acyclic if DF (X) ∈ D{0}B.
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Proposition 12.28 (Exercise). Let C be a bounded on the left complex consisting of
F -acyclic objects. Then DF (C) ∼= F (C).

13. The derived category of D-modules

From now on we assume for simplicity that X is a quasi-projective variety. Let
M(OX) denote the category of sheaves of OX-modules, and Mq.c.(OX) ⊂ M(Ox)
denote the subcategory of quasi-coherent sheaves of OX-modules.

Proposition 13.1. The category Mq.c.(OX) has enough objects injectives, that are
also injective as object in M(OX).

Proof. For affine X, we take duals to free objects: HomK(O(X)J ,K). For non-affine
X, we take localizations of O(X)-modules of the form

⊕
i(jUi

)∗Ii, where {Ui} is an
open affine cover, and Ii are injective quasi-coherent sheaves on Ui. �

Corollary 13.2. The embedding of Db(Mq.c.(OX)) into the category Db
q.c.(M(OX))

consisting of bounded complexes with quasi-coherent cohomologies is an equivalence of
categories.

Proof. It is enough to show that every complex C in Db
q.c.(M(OX)) is quasi-isomorphic

to a complex consisting of quasi-coherent injective sheaves of OX-modules.
First of all, using the truncation functors we showed before that we can assume that

C−i = 0 for any i > 0. Now, Ker(d0) is quasi-coherent, and thus can be embedded
into an injective quasi-coherent I0. Denote this embedding by ϕ0. Next, we consider
(I0 ⊕ C1)/(ϕ0 ⊕ d)(C0) and let ϕ1 be an embedding of this sheaf into an injective
quasi-coherent I1. Restricting ϕ1 to the first coordinate we obtain a map d0

I : I0 → I1.
Continuing by induction we build a complex I consisting of quasi-coherent injective
sheaves, and a map of complexes ϕ : C → I.

Let us show that ϕ is indeed a quasi-isomorphism. We have

H0
I = Ker(d0

I) = (I0 ⊕ 0) ∩ Im(ϕ0 ⊕ d0) ∼= Ker(d0) = H0
C

Similarly, each ϕi defines an isomorphism between Ker di
C and Ker di

I , and between
Im di and Im di

D. Thus, ϕ is a quasi-isomorphism. �

Lemma 13.3 (Exc*). Let F ∈ Mq.c.(OX) and let U ⊂ X be an open subset. Let
H ⊂ F|U be a coherent subsheaf. Then there exists a (non-unique) coherent subsheaf
H′ ⊂ F such that H′|U = H.

Corollary 13.4. Any quasi-coherent sheaf is a direct limit of coherent ones.

Corollary 13.5. Any coherent sheaf is a quotient of a locally-free coherent sheaf.

Let Mcoh(OX) ⊂ Mq.c.(OX) denote the subcategory of coherent sheaves, and let
Db

coh(Mq.c.(OX)) denote the subcategory consisting of complexes with coherent coho-
mologies.

Corollary 13.6. The embedding of Db(Mcoh(OX) into Db
coh(Mq.c.(OX)) is an equiv-

alence of categories.
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Proof. Let

0→ C0 → C1 → ∙ ∙ ∙ → Cn → 0

be a bounded complex with coherent cohomologies. Then there exists a coherent free
sheaf Kn and an epimorphism ϕn : Kn � Cn/dn−1(Cn−1). Let Cn−1 ×Cn K :=
Ker(dn−1−ϕn : Cn−1⊕K → Cn). Then there exists a coherent free sheaf Kn−1 and an
epimorphism ϕn−1 : Kn−1 � Cn−1 ×Cn K. Continuing in this way we build a complex
of free coherent sheaves and a quasiisomorphism from it to C. �

Now let Db(DX) denote the bounded derived category of left DX-modules. Recall
that the category of DX-modules has enough injectives and enough locally projectives.

Now we would like to construct the pullback and pushforward functors between
derived categories of D-modules. We start with pullback.

13.1. The pullback π!. Recall that for affine varieties we have the pullback functor
π0(H) = H ⊗O(Y ) O(X), on which we defined the action of D(X). For general maps
of general varieties, let π• denote the pullback of sheaves and define

π0(H) := π•(H)⊗π•OY
OX

This functor is right-exact since π• is exact, and tensor product is right-exact. Define
π! to be the derived functor of π0, shifted by the difference of dimensions:

π! := Lπ0[dim X − dim Y ]

Since (π ◦ τ)0 ∼= τ 0 ◦ π0, we have

Lemma 13.7. (π ◦ τ)! ∼= τ ! ◦ π!

This allows to analyze the pullback functor by decomposing the map π into simple
parts. Any map can be decomposed as a composition of open embedding, closed
embedding, and projective projection.

For an open embedding j : U ↪→ Y , j!(F) = F|U . For a projection Y × Pn � Y ,

π!F = F �OPn [n]

Let us now analyze i! for a closed embedding i : Z ↪→ Y . For this purpose we need
to analyze i!DY . This analysis will be based on the following lemma. Let ωY denote
the invertible sheaf of top differential forms on Y .

Lemma 13.8. Extj
i•OY

(OZ , ωY ) ∼=

{
ωZ j = dim Y − dim Z

0 otherwise

Proof. Step 1 Enough to prove this locally, since the isomorphism is canonical and thus
glues on intersections.

Step 2 Can assume that Y is affine, and that Z is given by a single equation t.
Step 3 In this case, we have a free resolution of O(Z): 0 → (t) → O(Y ) → 0. Taking

Hom into ωY we get 0→ ωY
t∙
→ ωY , and the cohomologies are 0 and ωZ .

�
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Now recall the functor i+ : Mr(DY ) → Mr(DZ) of taking sections strongly sup-
ported at Z.

i+(H) := HomDY
(DZ→Y ,H) = HomDY

(i•(DY )⊗i•(OY ) OZ ,H) ∼= HomOY
(i•OZ ,H)

Recall also the equivalence of categories E between left and right D-modules given by
tensoring over O with ω. From the previous lemma we get

Corollary 13.9. Li0(DY )[dim Z − dim Y ] ∼= Ri+(DY ⊗OY
ωY )

This implies

Theorem 13.10. i! := Li0[dim Z − dim Y ] ∼= Ri+ ◦ E.

Proof. The previous corollary gives a canonical isomorphism for free modules, and since
it’s canonical it extends to locally free modules, and thus to complexes of locally free
modules. Now, any complex is quasi-isomorphic to a complex of locally free modules.

�

This functor does not in general preserve coherence. This can be seen for i : pt→ Y ,
i!DY is infinite-dimensional. We will show later that a complex C has holonomic
cohomologies if and only if i!xC has finite-dimensional cohomologies for every point
x ∈ Y . But for smooth maps π, π! does preserve coherence - that is, being (locally)
finitely-generated as D-modules. Smooth maps are maps such that their differentials
are onto. In differential geometry this is called submersion.

Theorem 13.11. If π is smooth then π! preserves coherence.

Sketch of proof. A smooth map can be decomposed as the composition of a projection
and an etale map (i.e. a map with differentials being isomorphisms. For a projection
p : X × Y → Y , p!(H) = OX �H, which clearly preserves coherence. Pullbacks under
etale maps preserve coherence since as a complex of O-modules this is the derived
pullback of O-modules and this operation preserves O-generation, and since dxπ is an
isomorphism for every point. �

Definition 13.12. For two complexes of left modules F ,H ∈ Db(M(DX)), define

F ⊗! H := Δ!(F �H),

where Δ : X ↪→ X ×X is the diagonal embedding.

13.2. The pushforward π∗. Recall that for affine X and Y , π0 is defined by π0(M) =
M ⊗DX

DY . For general varieties, we will need also to compose this functor with the
pushforward of sheaves, defined by π•(F)(U) = F(π−1(U)). There is a difficulty here:
tensor product is a right-exact functor, while π• is left exact, and the composition will
not be exact on either side. However, in the derived category we can compose their
derived functors. We define

π∗(F) := Rπ•(F ⊗
L
DX
DX→Y )

To compute this, we can use locally projective resolutions for the tensor product, and
injective resolutions for π•. Another way to compute is again to decompose the map as
a composition of a closed embedding, an open embedding and a projective projection.
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For a closed embedding i, the i0 is an equivalence with a subcategory of Mr(DY ),
and i∗ is given by just applying i0 to all the sheaves in a complex.

For an open embedding j : U ↪→ Y , we have DU→Y |U = DU and thus j∗ = Rj•.

Proposition 13.13. Let U ⊂ Y be an open subset, and let Z be its complement. Let
j : U ↪→ Y and i : Z ↪→ Y denote the embeddings. Let F ∈ Db(M(DY )), and let
FZ := i∗i

!F and FU := j∗j
!F = j∗(F|U ). Then we have a distinguished triangle

FZ → F → FU .

Proof. Step 1 FZ = RΓZF by Kashiwara’s lemma.
Step 2 For any sheaf G, we have

0→ ΓZG → G → j•(G|U),

and if G is injective then the rightmost map is an epimorphism.
Step 3 We can replace F by its injective resolution, i.e. by a complex of injective

sheaves of modules quasi-isomorphic to F .
�

It is left to compute p∗ for the projection p : Pn → pt. Since the category of (sheaves
of) D-modules on Pn is generated by DPn , it is enough to compute p∗(DPn).

Lemma 13.14. For p : X → pt, Hi(p∗(DX ⊗OX
ωX)) ∼= Hi(X,ωX).

Proof. DX→pt = OX . Thus

DX ⊗OX
ωX ⊗DX

DX→pt
∼= ωX ⊗OX

OX
∼= ωX

Also, p• = Γ, thus Rp• = RΓ, and has cohomologies Hi(X, ∙). �

We will use without proof the following well-known lemma in algebraic geometry.

Lemma 13.15. Hi(Pn, ωPn) ∼=

{
K i = n

0 i 6= n

Corollary 13.16. For p : Pn → pt, p∗(DPn ⊗OPn ωPn) ∼= K[−n].

Proof. By the previous lemma and corollary, p∗(DPn ⊗OPn ωPn) is acyclic away of index
n, and the cohomology there is K. Thus it is K[−n]. �

Corollary 13.17. For projective morphisms π, π∗ preserves coherence.

Proof. A projective morphism is a composition of a closed embedding with a projective
projection. For a closed embedding this is clear. For a projective projection π :
Y × Pn → Y , we have π∗(F � G) = F � p∗G, where p : Pn → pt. Since p∗ preserves
coherence by the previous corollary, and exterior products of the form F � G generate
the category of D-modules on Cartesian product, π∗ preserves coherence. �

Let us now compute the direct image of ωX . For this we will need a locally free
resolution. We will use the algebraic de-Rham complex DRX

(4) 0→ OX → Ω1
X → ∙ ∙ ∙ → Ωn

X → 0,

where n := dim X. The Ωi
X are locally projective OX-modules, but the differential in

this complex is not a morphism of OX-modules. It is the classic exterior derivative of
differential forms. Here are two ways to define it:
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(1) In local coordinates: dω =
∑

i
∂ω
∂xi
∧ dxi

(2) Axiomatically:
(a) For f ∈ OX , df(v) = vf for any vector field v
(b) d(d(w)) = 0 (enough to require this for any 0-form ω ∈ O(X) )
(c) d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ

The cohomologies of the algebraic de-Rham complex are complicated.
Generalizing, we can construct the de-Rham complex of DR(M) for any left DX-

module M :
0→M → Ω1

X ⊗OX
M → ∙ ∙ ∙ → Ωn

X ⊗OX
M → 0

Indeed, Ωi
X ⊗OX

M is the sheaf of M -valued forms, and in the axiomatic definition of
differential, we only needed to know what vf is for any vector field v, so we replace
axiom f ∈ OX by m ∈ M in axiom (a). As before, the elements of the complex are
OX-modules, and the differentials are merely linear maps. But if we take M := DX

then the complex (and its differentials) becomes a complex of right DX modules:

(5) 0→ DX → Ω1
X ⊗OX

DX → ∙ ∙ ∙ → Ωn
X ⊗OX

DX → 0

Lemma 13.18. (5) is a locally projective resolution of ωX = Ωn
X .

To prove this lemma we will need the dual one. Let τX denote the tangent sheaf
of X, and for any 0 ≤ i ≤ dim X, let Λi(τX) be its exterior power (over OX). Define
d : DX ⊗OX

Λi(τX)→ DX ⊗OX
Λi−1(τX) by

d(P ⊗ θ1 ∧ ∙ ∙ ∙ ∧ θk) :=
∑

i

(−1)i+1Pθi ⊗ θ1 ∧ ∙ ∙ ∙ ∧ θ̂i ∧ ∙ ∙ ∙ ∧ θk+

+
∑

i<j

(−1)i+jP ⊗ [θi, θj ] ∧ θ1 ∧ ∙ ∙ ∙ ∧ θ̂i ∧ ∙ ∙ ∙ ∧ θ̂j ∙ ∙ ∙ ∧ θk

This defines a complex

(6) 0→ DX⊗OX
Λn(τX)→ DX⊗OX

Λn−1(τX)→ ∙ ∙ ∙ → DX⊗OX
τX → DX → OX → 0

Lemma 13.19. The complex (6) is acyclic, and thus defines a locally free resolution
of OX .

Proof. It is enough to show that the associated graded complex with respect to the
geometric filtration is acyclic. This associated graded is the pushforward under the
affine map π : T ∗X → X of the complex

OT ∗X ⊗π•OX
Λnπ•τX → OT ∗X ⊗π•OX

Λn−1π•τX → . . .OT∗X → i•OX ,

where i : X → T ∗X is the zero section. The latter complex is acyclic because it is the
Kozhul complex of i•OX (Exc - verify this). Since π is an affine map, the pushforward
to X is also acyclic. �

Now, Lemma 13.18 follows by tensoring with ωX
∼= Ωn

X over OX .

Corollary 13.20. For π : X → pt, π∗(ωX) = RΓ(DRX)

Proof. By definition, π∗(ωX) = RΓ(DX→pt ⊗L
DX

ωX). Also by definition we have

DX→pt = OX . To compute ⊗L
DX

we take a locally projective resolution (5) of ωX .
Tensoring it over DX with OX we obtain DRX . �
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Remark 13.21. More generally, for every submersion π : X → Y one can define the
relative de-Rham complex DRX/Y . The same argument will show that π∗ωX in this
case is Rπ•(DRX/Y ), as a complex of OY -modules. How to recover the DY -module
structure? In general it is hard to say, but if we assume further that π is proper
then one can recover the DY -module structure on the cohomologies of this complex.
The cohomologies will be OY -coherent, and thus will be just vector bundles with flat
connections. The additional information is the connections. They are known in the
literature as Gauss-Manin connections.

Theorem 13.22. Let π : Y → Z and τ : X → Y be morphisms of algebraic varieties.
Then (π ◦ τ)∗ ∼= π∗ ◦ τ∗.

Proof. Step 1 DX→Z
∼= DX→Y ⊗τ•(DY ) τ •(DY →Z) ∼= DX→Y ⊗L

τ•(DY ) τ •(DY →Z).
Indeed, for the first isomorphism we have

DX→Z = (π ∙ τ)•DZ ⊗(π∙τ)•OZ
OX
∼= τ •(π•DZ ⊗π•OZ

OY )⊗τ•DY
π•DY ⊗π•OY

OX

For the second isomorphism, we note that DZ is a locally free OZ- module,
and thus DY →Z is a locally free OY -module. Thus τ •(DY →Z) is “flat with
respect to DX→Y ”.

Step 2 For any F ∈ Db(Mr(DY )), and G ∈ Db(M(τ •DY )) we have

F ⊗L
DY

Rτ•(G) ∼= Rτ•(τ
•F ⊗L

τ•DY
G))

Since the question is local on Y , we can assume that that Y is affine and that
F is free (replacing it by a locally free resolution). Now the statement follows
since Rτ• commutes with direct sums.

Step 3 Let M ∈ Db(Mr(DX)). Then

(π ◦ τ)∗(M) = Rπ•Rτ•(M ⊗
L
DX
DX→Z) ∼= Rπ•Rτ•(M ⊗

L
DX
DX→Y ⊗

L
τ•DY

τ •(DY →Z)) ∼=

Rπ•(Rτ•(M ⊗
L
DX
DX→Y )⊗L

DY
DY →Z) ∼= π∗τ∗M

�

13.3. Functors between modules on singular varieties. We mostly assume our
varieties to be smooth. In particular, this allows to identify the categories of left
and right D-modules, using ∙ ⊗OX

ωX . Thus we can also speak of pullback of right
D-modules.

Over a singular variety Z, we define the derived category of complexes of right D-
modules in the same way as we did for affine varieties - by embedding Z into a smooth
variety X, and define this category to be subcategory of Db(Mr(DX)) consisting of
complexes with cohomologies supported in Z. This is justified by Kashiwara’s theorem,
and as before the same theorem shows that this does not depend on the embedding.
Note that such an embedding exists, since we consider quasi-projective varieties, that
by definition are closed subvarieties of open subsets of a projective space. Otherwise
we would have to embed locally, which also works but is more messy.

How to define the functors? We will need the following elementary exercise.

Exercise 13.23. Let X,Y be smooth, and let π : X → Y be a morphism. Let F ∈
Db(Mr(DX)) and H ∈ Db(M(DY )). Then Supp π∗F ⊂ π(SuppF) and Supp π!H ⊂
π−1(SuppH).
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Here, we define the support of a complex to be the union of the supports of the
cohomologies.

Suppose we have a map W → Z between singular varieties. First of all, we can
embed Z into a smooth Y , and consider now the map π : W → Y . By the previous
exercise on the preservation of supports, it will be enough to define the pullback and
the pushforward for this map. Embed W into a smooth X, and then embed W into
X × Y using the graph of π. This is a closed embedding, and thus we can identify
the category of D-modules on X × Y with the category of (bounded complexes of)
D-modules supported on W . Now, from X×Y we can easily push to Y , and vice versa
- pull from Y to X × Y . This pullback will be just exterior product with ωX [dim X]
(ωX and not OX since we consider right D-modules in this subsection, since that is
what singular varieties need). Then, to define pullback to W we will need to apply the
derived functor of the functor of taking sections supported at W .

14. Base change, and adjunction

14.1. Base change. Let π : X → Y and τ : Z → Y be morphisms of algebraic
varieties, and let W := X ×Y Z be the fiber product. Let p : W → Z and t : W → X
be the natural projections.

W
t //

p

��

X

π

��
Z

τ // Y

Theorem 14.1 (Base change). p∗t
! ∼= τ !π∗

Proof. Case 1 Z = Y × Q, and Z → Y is the projection. Then the statement is that
direct image commutes with �.

Case 2 τ is an open embedding. Then the claim is that the direct image is a local
operation.

Case 3 τ is a closed embedding. Then W is the preimage of Z in X. Let U := Y \ Z.
Then we have the exact triangles

(π∗F)Z
// π∗F // (π∗F)U

'
��

π∗(FW ) // π∗F // π∗(Fπ−1(U))

From the isomorphisms of the two rightmost terms (compatible with the
rows) we get that the leftmost terms are isomorphic as well. The isomorphism
is not canonical for exact triangles in general, but it is unique up to maps from
the leftmost term to the rightmost. In our case, there are no maps between
(π∗F)Z and (π∗F)U , and thus the isomorphism (π∗F)Z ' π∗(FW ) is unique.

�
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Let us give an application of the base change to families of D-modules. Intuitively,
a family of D-modules parameterized by an algebraic variety Y is the following in-
formation: for every point y ∈ Y a pair consisting of an algebraic variety Xy and a
DXy -module. The pair should depend ”algebraically” on the point y, and here is the
way to formalize this notion.

Definition 14.2. A family of D-modules parameterized by an algebraic variety Y is
a morphism of algebraic varieties π : X → Y and a DX-module (or rather a complex
of modules) F ∈ Db(M(DX)). For any y ∈ Y we have the pair Xy := π−1(y) and
Fy := i!yF where iy : Xy ↪→ X is the embedding.

For every map τ : Z → Y we can pullback the family: Xz := Yτ(z) and Fz := Fτ(z).
It is easy to see that the pullback of an algebraic family is an algebraic family. Indeed,
let W := W ×Y Z as before, and let G := t!F , where t : W → X is the natural
projection. Then for every z ∈ Z, Xz

∼= Wz and i!zG ∼= i!zt
!F ∼= i!τ(z)F

∼= Fz.
Similarly, if we have a map Z → X, we can pullback the family to Z.
Let us now consider a pushforward of an algebraic family. Let τ : X → T and

ν : T → Y be morphisms of algebraic varieties such that ν ◦ τ = π. Then we can
pushforward F to T , that is consider τ∗F . What does this do to fibers? It is natural to
assume that τ∗(F)y

∼= (τy)∗Fy, where τy : Xy → Ty is the restriction of τ . This indeed
follows from the base change theorem: X ×T Ty

∼= Xy, and the two ways of going from
X to Ty are isomorphic.

Finally, let us show adjointness of pushforward and pullback for projective mor-
phisms.

Theorem 14.3. For any projective morphism π : X → Y , π∗ is left adjoint to π!,
after we identify left modules with right ones. That is for any F ∈ Db(Mr(DX) and
any H ∈ Db(M(DY )) we have

HomDY
(π∗F ,H⊗OY

ωY ) ∼= Hom(F , π!H⊗OX
ωX)

Proof. Case 1 π is a closed embedding. By Kashiwara’s lemma:

HomDY
(π∗F ,H⊗OY

ωY ) = Hom(π∗F , ΓX(H⊗OY
ωY )) ∼=

Hom(F , π!ΓX(H⊗OY
ωY )) ∼= Hom(π∗F , π!H⊗OZ

ωZ)

Case 2 π is a projection Pn×Y → Y . Since the question is local on Y , we can assume
that Y is affine. Then it is enough to show for F ∼= DPn �DY and H ∼= DY [j]
for some j. Then

HomDY
(π∗(DPn �DY ),DY [j]⊗OY

ωY ) ∼= HomDY
(K[−n]�DY ,DY [j]⊗OY

ωY ) ∼=

HomDY
(DY ,DY [j+n]⊗OY

ωY ) ∼= HomDPn (DPn , ωPn [n])⊗KHomDY
(DY ,DY [j+n]⊗OY

ωY ) ∼=
∼= HomDPn×Y

(DPn �DY , ωPn [n]� DY [j + n]⊗OY
ωY ) ∼=

HomDPn×Y
(DPn �DY , π!DY [j]⊗OY ×Pn ωY ×Pn)

�
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15. Duality

Assume again that X is smooth.

Exercise 15.1. DX
∼= (ΔX)∗(ωX)⊗OX

Ω∗
X .

Definition 15.2. For every F ∈ Db
coh(M(DX)), define the dual module by

DF := RHomDX
(F ,DX)[dim X] ∈ Db

coh(M
r(DX))

Similarly, we define the dual of any right DX-module.
Some time ago, we showed that if F is a single module then Exti(F , Π) vanishes for

i > dim X. This implies that the dual complex is indeed bounded.

Theorem 15.3. D2 ∼= Id

Proof. First of all let us describe the canonical map Id → D2. Let F ∈ Db
coh(M(DX))

and let H := DF [− dim X] = RHomDX
(F ,DX). Then we have a canonical map

F �H = F ⊗C H → DX . Now, Hom = H0(RΓ(RHom)), and

RHomDX�DX
(F �H,DX) ∼= RHomDX

(F , RHomDX
(H,DX))

Thus HomDX�DX
(F � H,DX) ∼= Hom(F , RHomDX

(H,DX)), and thus the canonical
map F � H → DX gives a map F → RHomDX

(H,DX) ∼= D2F . In order to show
that this map is an isomorphism, it is enough to show this in the case of affine X, and
F ∼= DX . This case is obvious. �

Lemma 15.4. D(OX) ∼= ωX .

Proof. We have to show that RHomDX
(OX ,DX)[n] ∼= ωX .

Recall the locally projective resolution of OX given by

0→ DX ⊗OX
Λn(τX)→ DX ⊗OX

Λn−1(τX)→ ∙ ∙ ∙ → DX ⊗OX
τX → DX → 0

Note that

HomDX
(DX ⊗OX

Λi(τX),DX) ∼= HomOX
(Λi(τX),DX) ∼= Ωi

X ⊗OX
DX

Thus, RHomDX
(OX ,DX)[n] is isomorphic to the de-Rham resolution of ωX , and

thus to ωX . �

In the same way one proves

Lemma 15.5. Let M be a smooth DX-module. Then DM ∼= HomOX
(M,ωX) as an

OX-module.

In the proof we use the fact that every smooth DX-module is locally free over OX

and thus on can just tensor the resolution of OX with M over OX to obtain a resolution
of M .

Exercise 15.6. For F ,H ∈ Db
coh(M(DX)), Hom(F ,H) ∼= D(F)⊗L H[− dim X].

Proposition 15.7. For projective morphisms π : X → Y , π∗D ∼= Dπ∗ on Db
coh(M(DX)).
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Proof. By the Yoneda lemma, it is enough to show that

HomDY
(π∗DF ,H) ∼= HomDY

(Dπ∗F ,H).

Since π∗ is adjoint to π! for projective π, we have

HomDY
(π∗DF ,H) ∼= HomDX

(DF , π!H).

Since Hom = H0(RΓ(Hom)), it is enough to show that

Rπ•(Hom(DF , π!H)) ∼= Hom(Dπ∗F ,H)

By the previous exercise,

Hom(DF , π!H) ∼= F ⊗L
DX

π!H[− dim X] and Hom(Dπ∗F ,H) ∼= π∗F ⊗
L
DY
H[− dim Y ].

Further,

π∗F ⊗
L
DY
H[− dim Y ] ∼= Rπ•(F ⊗

L
DY
DX→Y )⊗L

DY
H[− dim Y ] ∼=

∼= Rπ•(F ⊗
L
DX

π•(H)⊗L
DY
DX→Y )[− dim Y ] ∼= Rπ•(F ⊗

L
DX

π!H)[− dim X]

Altogether,

Rπ•(Hom(DF , π!H)) ∼= Rπ•(F⊗
L
DX

π!F)[− dim X] ∼= π∗F⊗
L
DY
H[− dim Y ] ∼= Hom(Dπ∗F ,H)

as required. �

We can use this proposition to define D on singular varieties: we define the functor
locally, and on affine variety we do this by embedding into an affine space.

Some time ago, we proved the following theorem (for smooth X).

Theorem 15.8. For any F ∈Mcoh(DX) we have

(i) Exti(F ,DX) = 0 ∀i < codim SingSupp(F)
(ii) codim SingSupp(Exti(F ,DX)) ≥ i ∀i

Corollary 15.9. For any F ∈Mcoh(DX), the following are equivalent:

DF ∈Mcoh(DX)⇔ F is holonomic ⇔ DF is holonomic

Finally, let us show that D preserves singular support for all complexes of modules.

Exercise 15.10. Let (A,F ) be an algebra with a good filtration such that GrF A
is commutative, and let (M, Φ) be a good filtered module. Then for any i there
exists a good filtration on Exti(M,A) such that Gr Exti(M,A) is a subquotient of
Exti(Gr M, Gr A).

Corollary 15.11. Supp Gr Exti(M,A) ⊂ Supp Gr M

Definition 15.12. The singular support of a bounded complex of (sheaves of) DX-
modules is the union of singular supports of the cohomologies.

Corollary 15.13. For any F ∈ Db
coh(M(DX)), we have SingSuppDF = SingSuppF .

Proof. Since D2 ∼= Id, it is enough to prove that SingSuppDF ⊂ SingSuppF . Since D
is an equivalence, it preserves exact triangles. For F ∈ D[l,m] we have the triangle

Hl(F)→ F → τ>lF

Using this triangle, and induction on m− l, we can assume that F is a single module.
Localizing, we can assume that X is affine. For affine X it is the previous corollary. �
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16. Preservation of holonomicity

In this section we show that the functors defined above preserve holonomicity. For
the duality we already proved this.

Theorem 16.1. Pushforward preserves holonomicity.

Proof. For closed embeddings this holds since they are affine maps, and since pushfor-
ward is an equivalence of categories for them.

For projections Pn → pt pushforward sends all coherent complexes to complexes
with finite-dimensional cohomologies.

Thus it is enough to prove for open embeddings j : U ↪→ X. Since the statement is
local on X, we can assume that X is affine. Let U =

⋃
Ui be a cover of U by basic

open subsets. Let ji : Ui ↪→ X be inclusions, and F be a holonomic DU -module. Then
j0F embeds into

⊕
(ji)0(FUi

), which is holonomic as we showed some time ago. Now,
j∗ of a complex is obtained by applying j0 elementwise. �

Remark 16.2. The proof for open affine embeddings that we gave some time ago is
based on the case of affine spaces. For them we used Fourier transform and Bernstein
filtration, and in some sense this was a trick. In particular, this trick does not work
in the parallel realm of analytic D-modules. Thus, Kashiwara invented an alternative
proof. I write it in the end of the section, and we will go over it if we will have time.

Theorem 16.3 (Bernstein). The natural embedding Db(Hol(DX)) ↪→ Db
Hol(M(DX))

is an equivalence of categories.

We will neither use nor prove this theorem.

16.1. Holonomicity can be checked fiberwise, and thus is preserved by pull-
backs. We will use the following lemma from algebraic geometry.

Lemma 16.4. For any morphism π : W → X and any coherent OW -module, there
exists an open subset U ⊂ X such that π•(F|π−1(U)) is OU -free.

Corollary 16.5. For any coherent DX-module F , there exists an open subset U ⊂ X
such that F|U is OU -free.

Proof. GrF is a coherent OT ∗X-module. Now we use the previous lemma for π :
T ∗X → X. We have F|U = π•(GrF|π−1(U)) as an OU -module. �

Proposition 16.6 (Fiberwise holonomicity criterion). A complex F ∈ Db
coh(M(DX))

is holonomic if and only if the fiber i!xF has finite-dimensional cohomologies for every
point x ∈ X.

Proof. First suppose that F is holonomic and let x ∈ X. Let j denote the open
embedding j : X \ {x} ↪→ X. Then we have the distinguished triangle

(ix)∗i
!
xF → F → j∗(F|X\{x})

The pushforward j∗(F|X\{x}) is holonomic, and cone of holonomic complexes is holo-
nomic. Thus (ix)∗i

!
xF is holonomic and thus so is i!xF .

To the other direction, let F ∈Mcoh(DX) be a coherent module such that all fibers
i!xF have finite-dimensional cohomologies. We want to prove that F is holonomic. It
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is enough to prove for the case of a single module since every complex is glued from its
cohomologies.

By the previous corollary, there exists U ⊂ X such that F|U is OU -free, and thus flat.
Thus the fiber is concentrated in the zero’s cohomology, and F|U is O-coherent (since
the fiber of Oα is Kα. But O-coherent modules are holonomic, so F|U is holonomic.
Let Z := X \U . We can assume that the theorem holds for Z by Noetherian induction.
The fibers of i!ZF are the fibers of F in points of Z, and thus have finite-dimensional
cohomologies. Thus i!ZF is holonomic. Now, we have the exact triangle

(iZ)∗i
!
ZF → F → (jU )∗j

!
UF

and pushforward preserves holonomicity. Thus F is holonomic. �

Corollary 16.7. Let π : X → Y be a morphism of algebraic varieties, and F ∈
Db

Hol(M(DY )). Then π!F ∈ Db
Hol.

Proof. For every x ∈ X, i!xπ
!F ∼= i!π(x)F . Thus the statement follows from the previous

proposition. �

Altogether we obtain

Corollary 16.8. The functors π!, π∗, and D preserve holonomicity.

Remark 16.9. Let us give two negative examples so that you appreciate the fiberwise
holonomicity criterion. First of all, some fibers of non-holonomic coherent modules
have infinite-dimensional cohomologies. Next, all fibers of coherent O-modules are
finite-dimensional, but there exist non-coherent O-modules with all fibers vanishing.
For example, M = K(t) over X = A1.

16.2. 6 functors of Grothendieck. In this subsection we consider only holonomic
complexes, and define two new functors:

π∗ := Dπ!D and π! := Dπ∗D.

Why do we only define these for holonomic modules? Because D2 ∼= Id only for
coherent modules, and π∗ and π! do not preserve coherence in general.

Proposition 16.10. π∗ is left adjoint to π∗ and π! is left adjoint to π!.

Proof. We will prove this for π! and π!, since for the other pair this is similar. Since
Hom ∼= H0(RHom), it is enough to show that

Rπ•RHomDX
(F , π!H) ∼= RHomDY

(π!F ,H)

We have

Rπ•RHomDX
(F , π!H) ∼= Rπ•(DF ⊗

L
DX

π!H))[− dim X] ∼=

Rπ•(DF⊗
L
DX
DX→Y ⊗

L
π•DY

π•H)[− dim Y ]) ∼= Rπ•(DF⊗
L
DX
DX→Y )⊗L

DY
H)[− dim Y ] ∼=

∼= π∗DF ⊗
L
DY
H[− dim Y ] ∼= RHom(F ,H)

�
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This again implies that for projective morphisms, π∗
∼= π!, after we identify left

modules with right ones. We actually already showed this for all coherent modules in
Proposition 15.7.

Thus, for projective π, π∗ and π! are left resp. right adjoint to the same functor on
two different sides. Similarly, for an open embedding j : U ↪→ X, j! and j∗ are left
and right adjoint functors to the restriction F → F|U .

Exercise 16.11. Let p : X → pt, and let F ,H ∈ Db
Hol(M(DX)). Then

RHomDX
(F ,H) ∼= p∗(DH⊗

! F).

Hint. Since RHomDX
(F ,H) ∼= RΓ(RHom(F ,H)), and

RHom(F ,H) ∼= DF ⊗L
DX
H[− dim X],

it is enough to show that DF ⊗L
DX
H[− dim X] ∼= (DF ⊗! H)⊗L

DX
OX . �

16.3. Functors given by kernels. This subsection refers to general modules, not
necessarily holonomic. Let X and Y be algebraic varieties. Any K ∈ Db(DX×Y )
defines a functor Db(DX)→ Db(DY ) by

TK(F) := (πY )∗(K ⊗
! π!

X(F)),

where πX : X × Y → X and πY : X × Y → Y are projections. I remind that
∙ ⊗! ∙ = Δ!(∙� ∙).

This mimics the way matrix define linear operators: F can be viewed as a vector
v = (vi), π!

XF is viewed a matrix given by Bij = vj , K is a matrix, tensor product
corresponds to elementwise multiplication: Cij = KijBij = Kijvj , and (πY )∗ is parallel
to summation over Y :

∑
j Cij =

∑
j Kijvj .

Proposition 16.12. (i) ν∗ is given by the kernel (Γν)∗OX , where Γν : X → X × Y
is the graph of ν: Γν(x) = (x, ν(x)).

(ii) ν ! is given by the kernel (Γ′
ν)∗OX , where Γ′

ν : X → Y × X is given by Γ′
ν(x) =

(ν(x), x).
(iii) TK1TK2 = TK1∗K2, where K1 ∗K2 = (πX×Z)∗(Δ

!
Y (K1 �K2))

Note that (iii) mimics matrix multiplication.
For the proof we will need the following lemma.

Lemma 16.13. Let ν : X → Y be a morphism of algebraic varieties and let F ∈
Db(M(DX)) and H ∈ Db(M(DY )). Then

ν∗(F ⊗
! ν !H) ∼= ν∗F ⊗

! H.

Proof. Decomposing Γν : X ↪→ X × Y into X
Δ
→ X ×X

Id×ν
→ X × Y , we get that

F ⊗! ν !H ∼= Γ!
ν(F �H).

The lemma follows now from the base change theorem applied to the following Carte-
sian square:
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XF⊗!ν!H
Γν //

ν

��

X × Y F�H

ν×Id
��

Y ν∗F⊗!H
Δ // Y ×Y ν∗F�H

�

Exercise 16.14. For any DX-module F , OX ⊗! F ∼= F .

Proof of Proposition 16.12(i).

(πY )∗((Γν)∗OX ⊗
! π!

XF) ∼= (πY )∗(Γν)∗(OX ⊗
! Γ!

νπ
!
XF) ∼= ν∗(OX ⊗

! F) ∼= ν∗F

�

Exercise 16.15. Prove the rest of the proposition.

16.4. Radon transform. Motivation: let F be a finite field, and V be a finite-
dimensional vector space over F . Let X := P(V ) and X ′ := P(V ∗). Let F (X) denote
the space of all functions X → F . For any y ∈ X ′ denote by Hy ⊂ X the hyperplane
on which y vanishes.

Define R, R̃ : F (X) → F (X ′) by Rf(y) =
∑

x∈Hy
f(x) and R̃f(y) :=

∑
x/∈Hy

f(x).
To describe the kernels of these operators let

I = {x ∈ X, y ∈ X ′ | x ∈ Hy}.

Then the kernel of R is the characteristic function χI of I, and the kernel of R̃ is 1−χI .
Going back to D-modules we let V be a vector space over K, X = P(V ), X ′ = P(V ∗),

and I be as above. Let U := X×X ′\I and let j denote the embedding j : U ↪→ X×X ′.
Define R̃ : Db(M(DX))→ Db(M(D′

X)) by the kernel j∗OU .

Exercise 16.16. The functor R̃ is an equivalence of categories, with pseudo-inverse
given by j!OU ′ , where U ′ ⊂ X ′ ×X is the subset corresponding to U .

Hint. Show that K := j∗OU ∗ j!OU
∼= (ΔX)∗OX in two steps:

1. ∀x 6= y ∈ X, i!(x,y)(K) = 0, and thus K is supported on ΔX . 2. Δ!
XK ∼= OX . �

Here we use

Exercise 16.17. Every non-zero coherent D-module has a non-zero fiber.

16.5. Kashiwara’s proof that pushforward under open affine embedding pre-
serves holonomicity. We will first prove some properties of holonomic modules.

Lemma 16.18. Holonomic modules have finite length.

Proof. Let F ∈ Hol(DX). Then F is Noetherian. But D(F) is also holonomic, thus
also Noetherian, thus F ∼= D(D((F)) is Artinian, thus finite length. �

Lemma 16.19. Let F ∈ M(DX), let U ⊂ X be an open subset, and let H ⊂ F|U be
a holonomic submodule. Then there exists a holonomic H′ ⊂ F such that H′|U = H.
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Proof. By a similar lemma on coherent modules proven before we can assume that F
is coherent. Consider DF - a complex concentrated in degrees ≤ 0. Let Q := τ≥0DF
- a single module. We have a map DF → Q, and its dual gives DQ → D2F ∼= F .
Then the image G ⊂ F of this map is the maximal holonomic submodule of F . This
construction is compatible with restrictions to open subsets, since τ≥0 and D are local
operations. Thus, G|U is the maximal holonomic submodule of F|U , and thus includes
H. Let H′′ ⊂ G be the preimage of H under the restriction G → G|U . �

Now let X be affine, and U is a basic open subset: U = Xf = {x ∈ X | f(x) 6= 0},
for some polynomial f ∈ O(X). For any D(Xf )-module M , j∗M = j0M = M , viewed
as a D(X)-module. First of all we need to show that M is finite-generated. For this
we need to obtain f−k−1u from f−ku for some k ∈ Z and some generator u of M
(holonomic modules are cyclic). We have already done such a thing, when proving
analytic continuation of pλ.

Lemma 16.20. Let M = 〈u〉 be a holonomic D(U)-module. Then there exist d ∈
D(X)[λ] and b ∈ K[λ] such that d(fλ+1u) = bfλu, where λ is a formal parameter.

Proof. Let D̃ := D(X)[λ], D̃f = D(U)[λ], R̃ := R[λ]. Consider new D̃f -module Q :=

R̃fλ. It consists of elements of the form rfλ with r ∈ R̃ with the action of vector fields
given by

ξrfλ := (ξ(r) + λrf−1ξ(f))fλ

Extend scalars to K(λ), i.e. tensor with it over K[λ]

Step 1 QK(λ) is a holonomic D(U)K(λ)-module.
Pf: Consider the automorphism of D(U)K(λ) given by τ(g) := g, τ (ξ) := ξ +
λf−1ξ(f). Then τRK(λ)

∼= QK(λ), and thus QK(λ) is holonomic.
Step 2 ∃ d′ ∈ D(X)K(λ) s.t. d′(uffλ) = ufλ.

Pf: Q = 〈ufλ〉, so j0QK(λ) = 〈ufkfλ, k ∈ Z〉. Thus j0QK(λ)|U is holonomic, thus
by the holonomic extension lemma (Lemma 16.19) there exists a submodule
H ⊂ j0QK(λ) s.t. H|U = QK(λ) = j0QK(λ)|U . Since (j0QK(λ)/H)|U = 0, any
element of this quotient is annihilated by some power of f . Let ũ := ufλ ∈
j0QK(λ). Then fkũ ∈ H. For any i ≥ 0, let Mi ⊂ H be the submodule generated
by f i+kũ. Since H is holonomic, it has finite length and thus the sequence Mi

stabilizes. Thus there exists d′′ ∈ DK(λ) such that

f i+kufλ = d′′(f i+k+1ufλ)

Conjugating d′′ by the automorphism λ→ λ + k we get d′ s.t.

ufλ = d′(ufλ+1)

Finally, write d′ = b−1d with b ∈ K[λ] and d ∈ D(X)[λ].

�

Corollary 16.21. M is holonomic as a DX-module.

Proof. By the previous lemma, M is generated by fku for some k ∈ Z. Consider the
decreasing sequence of submodules Mi := 〈fk+iu〉. For i big enough, Mi are holonomic
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by the extension lemma (Lemma 16.19). Consider D̃ := D(X)[λ]. Then

Spec(Gr(D̃)) = T ∗X × A1.

We have
Δ̃ := SingSupp(M [λ]) ⊂ T ∗X × A1,

and
SingSuppMi = Δ̃i := Δ̃ ∩ (T ∗X × {k + i}).

Under τ : λ 7→ λ + 1, τM [λ] ⊂ M [λ]. Thus Δ̃ is τ -invariant, and thus Δ̃ = Δ × A1.
Thus all Mi are holonomic, including M = M0. �

17. Perverse extensions and classification of simple holonomic modules

Let j : U ↪→ X be an open embedding, and F be a holonomic DU -module. Then
we have a canonical map ϕF : j!F → j∗F (where we define j∗ using identification of
left and right D-modules). Indeed,

Hom(j!F , j∗F) ∼= Hom(F , (j∗F)|U ) ∼= Hom(F ,F) 3 Id

The cone of ϕF is supported on Z := X \U . In some sense it is the limit of ϕ at Z.
If U is affine then both j∗F = j0F and j!F are single DX - modules, then the image

of ϕF is also a single module. It is called the perverse extension of F and denoted
by j!∗F . It is the minimal submodule of j∗F whose restriction to U is F . Indeed, for
any H ⊂ F with H|U = F we have from adjunction of j! and j! =restriction a map
j!F → H. Since the canonical map ϕF : j!F → j∗F is obtained in the same way, it
factors as j!F → H ⊂ j∗F , and thus H includes the image j!∗ of ϕ.

If U is not affine then j∗F = Rj0F ∈ D
≥0
hol(M(DX), i.e. it is supported in non-

negative indices. On the other hand, j!F ∈ D
≤0
hol(M(DX)). Thus the map j!F → j∗F

factors as
j!F → τ≥0j!F → τ≤0j∗F → j∗F

Here, τ≥0j!F and τ≤0j∗F are single modules, and we define j∗!F as the image of the
map τ≥0j!F → τ≤0j∗F .

Example 17.1. Let j : U = A1 \ {0} ↪→ A1, and F = OU = L := K[x, x−1] - Laurent
polynomials. Then j∗F = L as DX = D1-module. It is generated by x−1. We have

0→ O → L→ Δ→ 0,

where Δ = K[x, x−1]/K[x], and it is isomorphic to the DX-module generated by Dirac’s
δ-function. Since O and Δ are self-dual, we get that j!OU

∼= DL and we have the short
exact sequence

0→ Δ→ DL→ O → 0.

Thus, j!∗F ∼= OX and Cone(ϕF) is glued from Δ and Δ[−1] (or Δ[−1]?).

For locally closed embeddings j : W ↪→ U ↪→ X, with U ⊂ X open, and W a closed
subset of U , we define j!∗ := (jU)!∗ ◦ (iW )∗.

Apparently, any simple holonomic module is a perverse extension of a smooth D-
module from a locally closed subvariety.

Theorem 17.2. Let X be a (quasi-projective) algebraic variety.
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(i) Let W be a locally-closed subvariety such that j : W → X is affine, and let F be
a simple holonomic DW -module. Then L(W,F) := j!∗F is also simple, and is the
unique simple submodule of j∗F and the unique simple quotient of j!F .

(ii) Any simple holonomic DX-module is isomorphic to a module of the form L(W,F)
for some locally-closed W and some smooth DW -module F .

(iii) L(W,F) ' L(W ′,F ′) ⇐⇒ W = W ′ and F|W∩W ′ ∼= F ′|W∩W ′

Proof. (i) We can assume that X is affine, and W = U ⊂ X is open affine. Let
S ⊂ j∗F be a simple submodule. Then S|W ⊂ j∗F|W = j!F|W = F . Thus
S ∩ j!∗F 6= 0 and since S is simple we have

0→ S → j!∗F → C → 0

for some C supported in Z := X \W . But j!F has no quotients supported at Z.
Indeed,

Hom(j!F , C) ∼= Hom(F , j !C) ∼= Hom(F , C|U) = 0

Thus C = 0 and thus S = j!∗F and thus j!∗F is simple.

(ii) Let H be a simple holonomic DX-module, and let Z be an irreducible component
of SuppF , and Z ′ be an open dense smooth subvariety. As we showed before,
there exists an open dense subset W ⊂ Z ′ such that F|W is smooth (i.e. OW -
coherent). Let F := j!

WH. Let F ′ ⊂ F be a simple submodule. From the
inclusion F ′ ↪→ F = j!

WH, we get a map (jW )!F ′ → H.
We claim that this map factors through (jW )!∗F ′. To show this, we can as-

sume that Z = X and thus W is open in X. In this case we have maps
j!F ′ → H → j∗F ′, and their composition is the map j!F → j∗F . Since H is
simple, the map H → j∗F ′ is an isomorphism to its image, which in turn equals
j!∗F ′. Thus, we get a non-zero map (jW )!∗F ′ → H in general. It is an isomor-
phism since both modules are simple.

(iii) Since SuppL(W,F) = W , we can assume W = W ′ = X, and W,W ′ ⊂ X are
open affine. Let U := W ∩W ′. It is enough to show that for any simple holonomic
H ∈ Hol(DX), H ∼= j!∗H|U . We have

Hom(H, j∗(H|U )) ∼= Hom(H|U ,H|U ) ∼= Hom(j!(H|U ),H)

Thus, H is a simple submodule of j∗(H|U ). But the only simple submodule of
j∗(H|U) is j!∗(H|U). Thus H ∼= j!∗(H|U ).

�

Example 17.3. Let a connected algebraic group G act on X with finitely many orbits.
Then any strongly G-equivariant coherent DX-module is holonomic (since its singular
support is a union of cotangent bundles to orbits). By the theorem, every simple
strongly G-equivariant DX-module is the !*-extension of a simple smooth G-equivariant
D-module on an orbit. A smooth simple strongly equivariant module on an orbit is in
turn an irreducible representation of the component group of the stabilizer.

Here, by an equivariant G-module we mean that g(dm) = g(d)g(m) where m ∈ M ,
and d ∈ DX . Then the Lie algebra g of G acts on M in two ways: one obtained by
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deriving the action of G, and the other through the map g → τX → DX . If the two
actions coincide we call the module strongly equivariant.

Exercise 17.4. Let K = C, and j : A1 \ {0} ↪→ A1. Compute j!∗F and Cone(ϕF) if
F is the D(A1 \ {0})-module generated by the function f on R>0 where:

(i) f(x) = xλ for some λ ∈ C
(ii) f(x) = log x
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