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Abstract. We establish a method for constructing equivariant distributions on smooth real algebraic

varieties from equivariant distributions on Zariski open subsets. This is based on Bernstein’s theory of
analytic continuation of holonomic distributions. We use this to construct H-equivariant functionals on

principal series representations of G, where G is a real reductive group and H is an algebraic subgroup.

We also deduce the existence of generalized Whittaker models for degenerate principal series represen-
tations. As a special case, this gives short proofs of existence of Whittaker models on principal series

representations, and of analytic continuation of standard intertwining operators. Finally, we extend our

constructions to the p-adic case using a recent result of Hong and Sun.

1. Introduction

The utility of the theory of distributions in representation theory and harmonic analysis is well estab-
lished since the foundational works of Bruhat and Harish-Chandra. In particular, invariant distributions
provide a basic tool to study linear functionals on induced representations, maps between induced rep-
resentations, and characters of infinite dimensional representations. In many of these applications, the
representation theoretic question is translated to a question of existence of certain equivariant distribu-
tions on a homogeneous space, usually obtained as points over a local field of an algebraic variety. In
some cases one can guess the restriction of the equivariant distribution to an open subset and would like
to extend it to the entire space. Although such an extension problem is too general to decide we have
found that in many interesting cases, the mere existence of an equivariant distribution on a subvariety
implies the existence of such an equivariant distribution on the entire space.

To illustrate our idea we let a linear algebraic group S act on a smooth affine algebraic variety X,
both defined over R. Let q be a polynomial on X transforming under the action of S by some character
ψ. Define a polynomial q̄ by q̄(x) := q(x̄). Let p := qq̄ and let Y := Xp be the basic open subset
defined by p. Let X,Y and S denote the real points of X,Y and S. Let ξ be an (S, χ)-equivariant
tempered distribution on Y , i.e. a continuous functional on the space of Schwartz functions on Y (see
§2.4 below). Since p is positive on Y , we can consider the product pλξ as a tempered distribution on Y ,
for any λ ∈ C. Since p vanishes on the complement of Y , for Reλ large enough the new distributions
pλξ naturally extend to the entire space X. If ξ generates a holonomic D(X)-module (see §3 below for
this notion) then [Ber72] implies that this family of distributions on X has a meromorphic continuation
to the entire complex plane. The obtained family ηλ is (S, χ|ψ|2λ)-equivariant. This implies that the
leading coefficient of the family ηλ at 0 is (S, χ)-equivariant, and the constant term η0 is generalized
(S, χ)-equivariant. In addition we have η0|Y = ξ. For the detailed proof see Lemma 4.1 below.

Let us provide a class of examples in which for given S,X and Y, an equivariant polynomial q describing
Y always exists. Namely, we require S to be solvable and assume that it has an open orbit O on X. Then
the Lie-Kolchin theorem implies that the ideal of polynomials vanishing on the complement to Y := O
has a non-zero S-equivariant element q. Note that in this case, the equivariant distribution ξ on O is
necessarily a measure.

We show that it suffices to assume the existence of a measure on an arbitrary orbit, not necessary
open. Since many invariant distributions arising in representation theory are measures on orbits, we
obtain numerous applications, recasting many well known results under one roof.
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Theorem A. Let a solvable linear algebraic group S act on a smooth affine algebraic variety X, both
defined over R. Let S and X denote the real points of S and X, and let χ be a (continuous) character of
S. Suppose that some S-orbit O ⊂ X admits a non-zero (S, χ)-equivariant tempered measure.

Then there exists a non-zero (S, χ)-equivariant tempered distribution on X.

Here, a measure is called tempered if it defines a tempered distribution. Note that an (S, χ)-equivariant
measure on O is unique up to a multiplicative constant, and it is tempered if and only if the restriction
of χ to the unipotent radical of S is unitary. See §2.4 below for more details.

Example 1.1. Let S := R×, X := R and O := R×. Then O carries an S-invariant measure µ = dx/x,
that extends to a generalized-invariant distribution ξ on X given by

ξ(f) :=

∫ −1

x=−∞
f(x)x−1dx+

∫ 1

−1

(f(x)− f(0))x−1dx+

∫ ∞
x=1

f(x)x−1dx.

However, ξ is not S-invariant. To obtain an S-invariant distribution on X, we derive ξ and get the delta-
distribution δ0. This shows that we can either obtain a generalized-invariant extension of the original
distribution, or an invariant distribution, but (in general) not an invariant extension.

To demonstrate the power of Theorem A, let G be a quasi-split real reductive group, B be a Borel
subgroup, N be the unipotent radical of B, χ1 be a character of B and χ2 be a non-degenerate unitary
character of N . Take S := B×N , consider the two-sided action of S on G, let X := G and χ := χ1⊗χ2.
Then Theorem A implies the existence of Whittaker models for the principal series representations of G.

We prove a generalization of Theorem A in §4 below. This generalization allows S to be an extension
of a compact group by a solvable one. An example of such S is any algebraic subgroup of a minimal
parabolic subgroup of a real reductive group. We also extend the result to p-adic local fields, using a
recent work [HS]. Our method also works in the case of quasi-projective X, provided that the action of
S extends to the ambient projective space.

Another natural way to generalize Theorem A is to consider also generalized sections of bundles on X.
We do that for the case when X is a transitive space of a group G that includes S. More specifically, let F
be a local field of characteristic zero, and let G be a linear algebraic F -group. Let P0 ⊂ G be a minimal
parabolic F -subgroup. Let H ⊂ G and S ⊂ P0 be F -subgroups and let N be the unipotent radical of
S ×H. Let H,S,N,G be the groups of F -points of H,S,N, and G. Consider the action of S ×H on
G given by left multiplication by S and right multiplication by H. Let (σ, V ) be a finite-dimensional
(continuous) representation of S ×H.

Theorem B. Suppose that some double coset SgH ⊂ G admits a non-zero tempered S ×H-equivariant
V -valued measure. If F is non-archimedean suppose in addition that the restriction σ|N is the trivial
representation C.

Then there exists a non-zero S ×H -equivariant V -valued tempered distribution on G.

Taking S = H = P0 we obtain the existence of Knapp-Stein intertwining operators [KnSt80]. More
generally, by taking S = P0 and H arbitrary, Theorem B can be used to construct H-invariant functionals
on principal series representations of G. Namely, assume that G is reductive, let σ be a finite-dimensional
representation of P0 and let IndGP0

(σ) denote the smooth induction. For any g ∈ G let Ig denote the

group g−1Hg ∩ P0, and let ∆Ig and ∆H denote the modular functions of Ig and H. Define a character

χg of Ig by χg(x) := ∆Ig (x)∆−1
H (gxg−1).

Corollary C. Suppose that for some g ∈ G, σ has a vector that changes under the action of Ig by the

character χg. Then there exists an H-invariant continuous functional on IndGP0
(σ).

Once we show that the space W of S ×H-equivariant tempered distributions on G is non-zero, it is
natural to ask what its dimension is. In §4 below we prove a generalization of Theorem B that bounds
dimW from below by the number of (S×H,V )-measurable double cosets that lie in the same S×H-double
coset (see Theorem 4.5). Our method provides no upper bounds on dimW .

Another natural question that arises is whether one can extend distributions supported on an orbit,
and not just measures defined on an orbit. While we do not have a general result in this direction, in
Example 4.8 below we show how Theorem A can be used for this purpose.
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1.1. Applications to generalized Whittaker models. Let G be a real reductive group. As mentioned
above, Theorem A implies the well known result regarding the existence of Whittaker models for principal
series representations of G [Jac67, Kos78]. More generally, we deduce from Theorem B the non-vanishing
of generalized Whittaker spaces for degenerate principal series representations. In §5 we recall the notion
of generalized Whittaker spaces, and prove the following theorem.

Theorem D. Let P ⊂ G be a parabolic subgroup and let e be an element of the nilradical of the Lie
algebra of P . Let V be a finite-dimensional (continuous) representation of P , and let IndGP (V ) denote

the smooth induction of V to G. Then the generalized Whittaker space We(IndGP (V )) does not vanish.

Note that if P is a minimal parabolic then Theorem D implies the non-vanishing of We(IndGP (V )) for
all nilpotent e in the Lie algebra of G.

1.2. Related results. Let G be a real reductive group, and H be a (not necessarily compact) symmetric
subgroup. In [vdB88, BD92] similar constructions were performed to give H-invariant functionals on
principal series and generalized principal series representations of G. A recent preprint [MOO] deals with a
related problem of constructing symmetry-breaking operators. Namely, [MOO] construct H-intertwining
operators from certain principal and degenerate principal series representations ofG to certain (degenerate
or not) principal series representations of H. Note that the space of such intertwining operators (a.k.a.
symmetry braking operators) is isomorphic to the space of ∆H-invariant functionals on (degenerate or
not) principal series representations of G×H, where ∆H denotes the image of the diagonal embedding of
H into G×H. Thus, Corollary C extends some results of [vdB88, BD92, MOO] by considering functionals
invariant under arbitrary algebraic subgroups. On the other hand, [vdB88, BD92, MOO] allow inductions
from non-minimal parabolic subgroups.

The point of departure in the above-mentioned works is the theory of Knapp-Stein intertwining oper-
ators, and is thus directly based on analytic considerations. Our approach is more algebraic, and covers
also spaces that do not arise from symmetric pairs, in particular non-affine homogeneous spaces.

One can view both [MOO] and the ∆H ⊂ G × H-case of Corollary C above as part of the general
program of constructing symmetry braking operators, see [Kob] and references therein. Some of the
operators are constructed in that project through their kernel distribution (as in Corollary C), while
some others are given by explicit differential operators.

We remark that a special case of our key Lemma 4.1 was formulated in [GSS15, Remark 3(ii)].
Our main motivation for the study of generalized Whittaker spaces comes from [MW87], which char-

acterizes the existence of generalized Whittaker spaces for representations of p-adic reductive groups in
terms of the wave-front sets of the representations. In [Mat90] a certain partial analog of [MW87] is
provided for complex reductive groups. However, for F = R only very partial analogs of [MW87, Mat90]
are proven. We view Theorem D as one more partial result of this kind, since it establishes the existence
of all the generalized Whittaker models for degenerate principal series that were expected to exist.

1.3. Structure of the paper. In Section §2 we collect some basic results on invariants of quasi-
elementary groups and some basic facts about Schwartz distributions.

In Section §3 we collect some facts about holonomic D modules and, following Bernstein, show their
utility in meromorphic continuation of families of distributions.

In Section §4 we prove a key result concerning extension of equivariant distributions (Lemma 4.1)
and deduce from it generalizations of Theorems A and B. We also discuss the possibilities of further
generalizations. Finally, we deduce Corollary C from Theorem B.

In §5 we recall the notion of generalized Whittaker spaces and prove a generalization of Theorem D.

1.4. Acknowledgements. We thank Avraham Aizenbud, Joseph Bernstein, Michele Brion, Shachar
Carmeli, Herve Jacquet, Bernhard Kroetz and Andrey Minchenko for fruitful discussions.

D.G. was partially supported by ERC StG grant 637912, and ISF grant 756/12. E.S. was partially
supported by ERC grant 291612.
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2. Preliminaries

Let F be a local field of characteristic zero. We will denote algebraic varieties and algebraic groups
defined over F by bold letters and their F -points by the corresponding letters in regular font.

For a representation V of a group G we denote by V G the space of invariants.

Definition 2.1. Let (π, V ) be a representation of a group G. A vector v ∈ V is called a generalized
invariant vector if there is a natural number k such that

(π(g0)− Id)(π(g1)− Id) · · · (π(gk)− Id)v = 0 ∀ g0, g1, . . . , gk ∈ G.

Note that if G is a connected Lie group and π is a smooth representation then v is generalized invariant
if it only if the Lie algebra of G acts nilpotently on the subrepresentation generated by v.

2.1. Meromorphic families. Let C((λ)) denote the field of Laurent power series, and let E be a complex
vector space. For any real a > 0 define aλ :=

∑
i≥0(ln a)i/(i!)λi ∈ C((λ)).

Lemma 2.2. Let a group G act on E linearly, and let ψ be a character of G. Extend this action to
E ⊗C C((λ)) in the natural way. Let

f =

∞∑
i=−n

aiλ
i ∈ E ⊗C C((λ)) satisfy gf = |ψ(g)|λf.

Then a−n is G-invariant. Moreover, a−n+l is generalized G-invariant for any l ≥ 0.

Proof. From gf = |ψ(g)|λf , comparing term by term, we obtain

(1) gai = χ(g)

i∑
j=−n

(ln |ψ(g)|i−j/(i!))aj

This implies that a−n is G-invariant. The “moreover” part follows by induction on l. �

Definition 2.3. For f =
∑∞
i=−n aiλ

i ∈ E ⊗C C((λ)) with a−n 6= 0 we say that a−n is the leading
coefficient and a0 is the constant term.

Lemma 2.4. Let k ⊂ C((λ)) be a subfield that contains λ. Let L ⊂ E ⊗C k be a finite-dimensional
k-vector space, and W ⊂ E be the C-subspace given by the leading coefficients at 0 of the series in L.
Then

dimCW = dimk L.

Proof. Let l := dimk L. Let us first show that dimW ≤ l. Indeed, any l + 1 vectors in W are leading
coefficients of some l+1 vector series in L that are linearly dependent. Their dependence induces a linear
dependence of their leading coefficients.

Let us now show that dimCW = l. Since λ ∈ k, we can choose a basis w1, . . . , wn for W that consists
of constant terms of vectors v1, . . . , vn in L with no poles or zeros at 0. Complete v1, . . . , vn to a set
v1, . . . , vm that spans L (over k) and consists of vectors with no poles and no zeros at 0. Let A ⊂ k
denote the subalgebra of all series in k with no poles at 0. Then the {vi}mi=1 generate an A-module M ,
and {vi}ni=1 generate a submodule N . Since the zero terms of {vi}ni=1 span W , we have λ(M/N) = M/N .
Since λ generates the only maximal ideal of A, Nakayama’s lemma implies that M/N = 0, hence M = N
and thus L is spanned by {vi}ni=1. Thus n = l. �

2.2. Semi-invariants of quasi-elementary groups.

Proposition 2.5 ([Pop14, 1(A)(2) and Proposition 2.6]). Let X be an irreducible F -variety that has a
smooth F -point. Then X is F -dense, i.e. the set of F -points in X is (Zariski) dense in X.

Let Q be a linear algebraic F -group. Following [KK, §3] we say that Q is quasi-elementary if it does
not contain a proper parabolic F -subgroup. Actually, [KK, §3] give a different definition, but explain why
it is equivalent to the one given here. Note that all solvable groups are quasi-elementary and if F = R
then so are all the groups with compact-by-solvable R-points.

Assume that Q is quasi-elementary and let Q act on an affine F -variety X.
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Proposition 2.6 ([KK, Proposition 3.10]). Suppose that X is F -dense. Let I ⊂ O(X) be a non-zero
Q-stable ideal. Then I contains a non-zero Q-equivariant polynomial defined over F .

Corollary 2.7. Let O be an open orbit for Q on X that has an F -point. Then O is a basic open subset
of X defined by a Q-equivariant polynomial defined over F .

Proof. Suppose first that X is irreducible. Then Proposition 2.5 implies that X is F -dense. Let I be
the ideal defining X \O. By Proposition 2.6, I contains a non-zero Q-equivariant polynomial p. Then
p(x) 6= 0 for some x ∈ O and thus for all x ∈ O.

For general X, let Z be the irreducible component that includes O, and Y be the union of all other
components. Let p be the polynomial on Z that defines O. Then p vanishes on Z∩Y and thus there exists
a polynomial q on X that equals some power of p on Z and vanishes on Y. Clearly q is Q-equivariant. �

Example 2.8. Let G be a reductive group defined and quasi-split over F , B be its Borel subgroup, and
consider the two-sided action of Q := B×B on X := G. Let us describe the polynomial p that defines
the open Bruhat cell in G.

Let n be the nilradical of the Lie algebra of B and n̄ be the nilradical of the Lie algebra of the opposite
Borel subgroup B̄. Let d := dim n = dim n̄. Let g denote the Lie algebra of G. Let v ∈ Λd(n) ⊂ Λd(g)
and v̄ ∈ Λd(n̄) ⊂ Λd(g) be non-zero vectors. Let (σ, V ) and (σ̄, V̄ ) be the subrepresentations of Λd(g)
generated by v and v̄. Then V and V̄ are irreducible and contragredient to each other, v is the highest
weight vector of V and v̄ is the lowest weight vector of V̄ . They define a matrix coefficient function
p(g) := 〈v̄, σ(gw)v〉, where w is a representative of the longest Weyl group element.

Note that p is Q-equivariant, p(1) 6= 0 and that p vanishes on all the Weyl group elements except the
longest one. Thus the zero set of p is precisely G−BwB.

Corollary 2.9. Let G be a linear algebraic F -group and let Q,H be F -subgroups, where Q is quasi-
elementary. Let g ∈ G. Let Q ×H act on G by left multiplication by Q and right multiplication by H.
Then there exists a non-zero Q×H-equivariant F -polynomial q on the (Zariski) closure Z of QgH that
vanishes outside QgH.

Proof. By Chevalley’s theorem (see e.g. [Bor87, Chapter II, Theorem 5.1]) there exist an algebraic
representation W of G and a line D ⊂W both defined over F such that H = {x ∈ G |xD = D}.

Let X denote the closure of QgD in W. By Proposition 2.5, X is F -dense. Note that QgD is open in
X and let I be the ideal of all polynomials on X that vanish outside QgD. By Proposition 2.6 I contains
a non-zero Q-equivariant polynomial p′. Let p be the leading homogeneous term of p′. Note that p is
Q-equivariant as well and p ∈ I. Let v ∈ D be a non-zero F -vector and define a map a : G → W by
a(x) := xv. Then a−1(QgD) = QgH and thus a(Z) = X. Define q on Z by q := p ◦ a. Note that q is
non-zero, Q×H-equivariant and vanishes outside QgH. �

2.3. Equivariant distributions on l-spaces. For non-archimedean F we will consider distributions on
l-spaces, i.e. locally compact totally disconnected Hausdorff topological spaces. This generality includes
F -points of algebraic varieties defined over F (see [BZ76]). For an l-space X, the space S(X) of test
functions consists of locally constant compactly supported functions and the space of distributions is
S∗(X), the full linear dual. All distributions on l-spaces are tempered. In this subsection we assume
that F is non-archimedean and let G be a linear algebraic group defined over F . Let χ be a continuous
character of G. A generalized χ-equivariant distribution on X is defined to be a generalized invariant
vector in the representation HomC(S(X), χ) of G. Our main tool in the non-archimedean case is the
following special case of [HS, Theorem 1.5].

Theorem 2.10. Let X be an algebraic variety defined over F such that G acts algebraically on X with
an open orbit U ⊂ X. Assume that there is a (G, ψ)-equivariant regular function f on X (for some
character ψ of G) such that

U = Xf = {x ∈ X with f(x) 6= 0}.
Assume also that χ vanishes on the F -points of the unipotent radical of G. Then every generalized
χ-equivariant distribution ξ on U(F ) extends to a generalized χ-equivariant distribution on X(F ). More-
over, there exists a meromorphic family ηλ of (G,χ|ψ|λ)-equivariant distributions such that the constant
term η0 of this family at 0 extends ξ.
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The “moreover” part is not formulated in [HS, Theorem 1.5] but rather follows from the proof. More
precisely, it follows from [HS, Propositions 5.20 and 6.22].

2.4. Schwartz functions and tempered distributions on real algebraic manifolds. Let X be an
algebraic manifold (i.e. smooth algebraic variety) defined over R and X := X(R). If X is affine then the
Fréchet space S(X) of Schwartz functions on X consists of smooth complex valued functions that decay,
together with all their derivatives, faster than any polynomial. This is a Fréchet space, with the topology
given by the system of seminorms |φ|d := maxx∈X |df |, where d runs through all differential operators on
X with polynomial coefficients.

For a Zariski open affine subset U ⊂ X, the extension by zero of a Schwartz function on U is a Schwartz
function on X. This enables to define the Schwartz space on any algebraic manifold X, as the sum of the
Schwartz spaces of the open affine pieces, extended by zero to functions on X. For the precise definition
of this notion see e.g. [AG08]. Elements of the dual space S∗(X) are called tempered distributions. The
spaces S∗(U) for all Zariski open U ⊂ X form a sheaf. We say that a measure is tempered if it defines a
tempered distribution.

For a finite-dimensional complex vector space V we define the space S∗(X,V ) of V -valued tempered
distributions as the space of all continuous linear maps from S(X) to V . Note that S∗(X,V ) ' S∗(X)⊗V .
If a group G acts on X and on V then we consider the diagonal action on S∗(X,V ) and denote the space
of invariants by S∗(X,V )G. We call the elements of this space equivariant distributions.

Let U ⊂ X be a Zariski open subset and let Z denote the complement to U in X.

Theorem 2.11 ([AG08, Theorem 4.6.1 and §5.3]). The restriction to Z defines an epimorphism S(X) �
S(Z).

Dualizing the map S(X) � S(Z) we obtain an embedding S∗(Z) ↪→ S∗(X). We call this map
extension of distributions by zero.

Theorem 2.12 ([AG08, Theorem 5.4.3]). We have

S(U) ∼= {φ ∈ S(X)| φ is 0 on Z with all derivatives}.
In particular, extension by zero defines a closed imbedding S(U) ↪→ S(X).

Corollary 2.13. The restriction map S∗(X)→ S∗(U) is onto.

Remark 2.14. Note that this corollary does not hold for arbitrary distributions. For example, the
distribution exdx does not extend from R to RP 1. Indeed, since RP 1 is compact, any distribution on it
is tempered and therefore restricts to a tempered distribution on R.

Let us record one more corollary of this theorem. Let G be an algebraic group defined over R, and V
be a finite-dimensional representation of G := G(R).

Corollary 2.15. Let G act on X algebraically let U ⊂ X be a G-invariant Zariski open subset and
U := U(R). Let ξ ∈ S∗(U, V )G. Then for some natural number n, ξ extends to a G-intertwining operator
ξ′ : Fn(X,U)→ V , where Fn(X,U) is the space of Schwartz functions on X that vanish on Z with first
n derivatives.

Moreover, there exist (n, ξ′) as above such that for any differential operator d on X with polynomial
coefficients satisfying ξ ◦ d = 0, ξ′ vanishes on d(Fn+deg d(X,U)), where deg d denotes the degree of d.

Proof. We can assume that X is affine. Then the Fréchet space S(X) is the inverse limit of the Fréchet
spaces Sn(X) consisting of n times differentiable functions that decay rapidly at infinity together with
their first n derivatives. Note that S(X) is dense in each of these spaces. Denote by Sn(X,U) the
closed subspace of Sn(X) consisting of functions that vanish on Z with first n derivatives. Then both
Fn(X,U) and S(U) are dense in Sn(X,U), and by Theorem 2.12 we have S(U) = lim

←
Sn(X,U). Thus ξ

extends to a continuous linear map ξ̃ : Sn(X,U) → V for some n. Note that the action of G preserves

all the spaces mentioned above. Thus the equivariance of ξ̃ follows from the equivariance of ξ and the
density of S(U) in Sn(X,U). To obtain ξ′ we restrict ξ̃ to Fn(X,U). To prove the moreover part, note

that ξ(d(S(U))) = 0 and the density of S(U) in Sn+deg d(X,U) implies that ξ̃(d(Sn+deg d(X,U))) = 0.
Restricting to Fn+deg d(X,U) we deduce the vanishing of ξ′ ◦ d on this space. �
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Remark 2.16. More generally, one can define Schwartz sections of Nash (=smooth semi-algebraic)
bundles on Nash manifolds. Theorem 2.12 is proven in [AG08] in this generality, and Corollary 2.15
stays true in this wider generality with identical proof.

2.4.1. Finite-dimensional representations of moderate growth. A smooth function f on X is called tem-
pered if for any open affine U ⊂ X and any algebraic differential operator d on U, there exists a polynomial
p on U such that |d(f |U )(x)| < p(x) for any x ∈ U .

Let G be an algebraic group defined over R and G := G(R). We say that a character χ of G has
moderate growth if it is tempered as a function on G. All unitary characters have moderate growth.
If G is a unipotent group, then a character χ has moderate growth if and only if χ is unitary. If G is
reductive, then all continuous characters have moderate growth. These statements reduce to the case
of one-dimensional groups, and in this case they are straightforward. We say that a finite-dimensional
representation has moderate growth if all its matrix coefficients are tempered.

The following lemma is standard.

Lemma 2.17. Let V be a (continuous) finite-dimensional representation of G. Let H ⊂ G be a Zariski
closed subgroup. Let ∆G and ∆H denote the modular functions of G and H. Then the space of G-
invariant V -valued measures on G/H is isomorphic to (V ⊗∆G ⊗∆−1

H )H . Moreover, if V has moderate
growth then all G-invariant V -valued measures on G/H are tempered.

For the next two lemmas assume that G is reductive and let P ⊂ G be a parabolic subgroup. Let N
be the unipotent radical of P and n be the Lie algebra of N .

Lemma 2.18. Let V be a (continuous) finite-dimensional representation of P . Then

(i) The action of n on V is nilpotent.
(ii) V has moderate growth.

Proof. (i) Note that there exists a hyperbolic semi-simple S ∈ p such that p =
⊕

λ≥0 g(λ), where g(λ)

denotes the λ-eigenspace of the adjoint action of S. Then n =
⊕

λ>0 g(λ). Decomposing V to generalized
eigenspaces of S and using the finiteness of the dimension we obtain that n acts nilpotently.

(ii) We can assume that V is irreducible. By (i) this implies that N acts trivially on V , and thus the
reductive quotient P/N acts on V . Thus V = W ⊗ χ, where W is an algebraic representation of P/N
and χ is a character of P/N . Since both W and χ are tempered, so is V . �

Let IndGP (V ) denote the smooth induction, and let (IndGP (V ))∗ denote the continuous linear dual.

Lemma 2.19 (See e.g. [GSS15, Lemma 6]). We have a natural isomorphism of G - representations

(IndGP (V ))∗ ∼= (C∞(G,V )P )∗ ∼= S∗(G,V ⊗∆−1
P )P ,

where G acts on C∞(G,V ) and S∗(G,V ⊗∆−1
P ) from the left and P from the right.

3. Preliminaries on holonomic D-modules and distributions

We will now recall some facts and notions from the theory of D-modules on smooth affine algebraic
varieties. For the proofs and for further details we refer the reader to [Ber72, Bor87, HTT08].

By a D-module on a smooth affine algebraic variety X we mean a module over the algebra D(X) of
differential operators. The algebra D(X) is equipped with a filtration, defined by the order of differential
operators. This filtration is called the geometric filtration. The associated graded algebra with respect
to this filtration is the algebra O(T ∗X) of regular functions on the total space of the cotangent bundle
of X. This implies that the algebra D(X) is Noetherian.

This allows us to define the singular support of a finitely generated D-module M on X in the following
way. Choose a good filtration on M , i.e. a filtration compatible with the filtration on D(X) such that
the associated graded module is a finitely-generated module over O(T ∗X). Define the singular support
SS(M) to be the support of the associated graded module. One can show that the singular support does
not depend on the choice of a good filtration on M , and that a good filtration exists if and only if M is
finitely generated.
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The Bernstein inequality states that, for any non-zero finitely generated M , we have dimSS(M) ≥
dimX. If the equality holds then M is called holonomic. This property is closed under submodules,
quotients and extensions, and implies finite length.

For any finite-dimensional vector space V , the space S∗(X,V ) of tempered V -valued distributions has
a structure of a right D(X)-module, given by (ξd)(f) = ξ(df), where d ∈ D(X), X = X(R), ξ ∈ S∗(X,V )
and f ∈ S(X). A distribution ξ ∈ S∗(X,V ) is called holonomic if the submodule ξD(X) ⊂ S∗(X,V )
generated by ξ is holonomic. Note that if ξ is holonomic then so is ξp, for any polynomial p on X.

Lemma 3.1 (See e.g. [Bor87, Theorem VI.7.11] and [AG09, Facts 2.3.8 and 2.3.9]). Let Z ⊂ X be a
closed smooth subvariety, let ξ ∈ S∗(Z, V ), and let η ∈ S∗(X,V ) be the extension of ξ to X by zero. Then

(i) η is holonomic if and only if ξ is holonomic.
(ii) Let an algebraic group G act transitively on Z, and its R-points G act linearly on V . Suppose that

ξ is G-equivariant. Then ξ is holonomic.

For any polynomial p ∈ O(X), the algebra D(Xp) of differential operators on the basic open affine set
Xp := {x ∈ X with p(x) 6= 0} is isomorphic to the localization D(X)p, i.e. the algebra of fractions of the
form dp−i. In order to define the latter algebra one proves that the family pi satisfies Ore conditions.
This follows from the next lemma.

Lemma 3.2. For any index n and any d ∈ D(X) there exists d′ ∈ D(X) such that pnd′ = dpn+deg d.

This lemma is proven by induction on deg d.

Theorem 3.3 (See e.g. [Bor87, §VI.5.2 and Theorem VII.10.1]). Let p ∈ O(X) and let M be a holonomic
module over D(Xp). Then M is holonomic also as a module over D(X).

In the case when X is an affine space, another natural filtration on D(X) is possible. This filtration
is called the arithmetic filtration, or the Bernstein filtration. It leads to a different definition of singular
support and thus could a priori lead to a different notion of a holonomic module. However, the two
definitions of holonomicity are equivalent, since both are equivalent to a certain homological property,
see [Bor87, §V.2].

Let p be a polynomial on X with real coefficients, which takes non-negative values on X := X(R).
For any N ∈ R denote C>N := {λ ∈ C | Reλ > N}. For any λ ∈ C>0 denote by pλ the function on
X given by 0 on the zeros of p and by p(x)λ elsewhere. Note that for any natural number N and any
λ ∈ C>N , pλ is N times differentiable. Thus, for any ξ ∈ S∗(X,V ) there exists N such that for any
λ ∈ C>N , the distribution ξpλ is well defined. For any open subset Λ ⊂ C denote by S∗Λ(X,V ) the space
of meromorphic families of distributions in S∗(X,V ) parameterized by λ ∈ Λ. We regard the functions
ξλ and ξ′λ as defining the same element in S∗Λ(X,V ) if they agree in some open subset of Λ.

Our main tool is the following theorem, essentially proven in [Ber72].

Theorem 3.4. Let ξ ∈ S∗(X,V ) be a holonomic distribution. Then the family ξλ ∈ S∗C>0
(X) defined by

ξλ = ξpλ for λ ∈ C>0 has a meromorphic continuation to the entire complex plane. Moreover, all the
distributions in the extended family and all the Laurent coefficients at any λ ∈ C are holonomic.

Proof. Note that we can assume V = C. Then, for the case when X is the affine space An, the theorem
is [Ber72, Corollary 4.6 and Proposition 4.2(3)]. For the general case, consider a closed embedding
i : X ↪→ An and extend ξ to a distribution η on Rn by η(f) := ξ(f ◦ i). Also, extend p to a polynomial p′

on Rn with real coefficients. By Lemma 3.1 η is holonomic, and thus the family ηλ ∈ S∗C>0
(Rn) defined

by ηλ = η((p′)2)λ/2 has a meromorphic continuation to the entire complex plane.
Note that for any polynomial q ∈ O(Rn) that vanishes on X and λ ∈ C>0 we have ηλq = 0. Thus this

holds for all λ ∈ C and thus the family ηλ can be restricted to a family ξλ ∈ S∗C(X). The family ηλ and
all its Laurent coefficients at any λ ∈ C are holonomic, and by Lemma 3.1 the same holds for the family
ξλ and all its Laurent coefficients. �

4. Main results

Let a linear algebraic group Q act (algebraically) on an affine algebraic variety X, both defined over
F . Let (σ, V ) be a (continuous) finite-dimensional representation of Q. For any polynomial p ∈ O(X) we
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denote by Xp the basic open subset

Xp := {x ∈ X with p(x) 6= 0}.

Lemma 4.1. Assume that F = R and X is smooth. Let p ∈ O(X) be real-valued on X and let U :=
Xp(R). Assume that U is Q-invariant. Let ξ ∈ S∗(U, V ) be holonomic. Let ψ be an algebraic character
of Q and assume that ξpn is (Q,ψnσ)-equivariant for any n ≥ 0.

Then ξ can be extended to a holonomic generalized G-invariant η ∈ S∗(X,V ). Moreover, there exists
a meromorphic (Q, |ψ|λσ)-equivariant holonomic family ηλ ∈ S∗(X,V ) such that ηλ|U = ξ|p|λ and the
constant term of ηλ at zero is η.

Proof. Replacing p by p2 if needed we assume that p is non-negative on X, and thus ψ is positive on Q.
By Corollary 2.15, ξ extends to a (Q, σ)-equivariant functional ξ′ on

Fn(X,U) = {φ ∈ S(X,V )|φ ≡ 0 on X \ U with first m derivatives},

for some n, such that for any d ∈ D(X) we have

(2) if ξd = 0 then ξ′(d(Fn+deg d(X,U))) = 0.

Define ηn ∈ S∗(X,V ) by ηn(φ) := ξ′(pnφ). Note that ηn is (Q,ψnσ) - equivariant.
Let us show that ηn is a holonomic distribution. Let I be the annihilator ideal of ξ in D(X), i.e.

the ideal of all d ∈ D(X) with ξ(d|U) = 0. Let d1, . . . dl be a finite set of generators of I Let J denote
the annihilator ideal of ηn in D(X). By Lemma 3.2, for any i ≤ l we can find d′i ∈ D(X) such that
dip

n+deg di = pnd′i. Then for any φ ∈ S(X,V ) we have

(ηnd
′
i)(φ) = ηn(d′i(φ)) = ξ′(pnd′i(φ)) = ξ′(di(p

n+deg diφ)).

Since pn+deg dif ∈ Fn+deg di(X,U), from (2) we have d′i ∈ J . Thus the localization Jp of J includes p−ndi
for all i. Note that {p−ndi} generate the ideal p−nID(U), which is the annihilator of ξpn in D(U). Since
ξpn is holonomic, we get that D(U)/Jp is holonomic. Now, D(U)/Jp = Mp, where M := ηnD(X). Thus
Mp is holonomic, and Theorem 3.3 implies that M is holonomic and thus so is ηn.

Consider the analytic family of equivariant distributions ηλ := ηnp
λ−n defined for Reλ big enough. It

is easy to see that this family is (Q,ψλσ)-equivariant. By Theorem 3.4 the family ηλ has a meromorphic
continuation to the entire complex plane. Now, define η to be the constant term of this family. Note that
η|U = p0ξ = ξ. By Lemma 2.2, η is generalized Q-equivariant. �

Remark 4.2. The distribution η gives rise to Q-equivariant distributions on X. However, the restrictions
of these distributions to U might vanish. E.g. in the situation of Example 1.1, all Q-invariant distributions
on X are supported at the origin. Note also that the temperedness assumption on ξ is necessary. For
example, the R-equivariant measure exdx on R does not extend to RP 1.

Let us now formulate and prove our main results. Let NQ denote the unipotent radical of Q.

Theorem 4.3. Assume that Q is quasi-elementary. Assume that there exists a Q-orbit O ⊂ X that ad-
mits a tempered Q-equivariant V -valued measure µ. Suppose also that one of the following two conditions
holds:

(a) F is non-archimedean, and the restriction σ|NQ
is the trivial representation C.

(b) F = R and X is smooth.

Then there exists a generalized Q-equivariant η ∈ S∗(X,V ) and a Zariski open Q-invariant neighbor-
hood U of O such that the restriction of η to U equals the extension of µ to U by zero.

Proof. By Corollary 2.7, there exists an algebraic character ψ of Q and a non-zero (Q, ψ)-equivariant
F -polynomial q on the Zariski closure Z of O in X. Let µ denote the non-zero equivariant measure on O.

If F is non-archimedean and σ|RQ
is trivial then, by Theorem 2.10, µ can be extended to a generalized

Q-equivariant V -valued distribution on Z := Z(F ). Extending this distribution by zero we obtain a
generalized Q-equivariant η ∈ S∗(X).

Now assume that F = R and X is smooth. Lift q to a polynomial p on X and let U := Xp(R). Note
that O is closed in U and extend µ by zero to ξ ∈ S∗(U). Note that pnξ is (Q,ψnσ)-equivariant for any
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n ≥ 0. By Lemma 3.1 ξ is holonomic. Applying Lemma 4.1 we obtain a generalized (Q, σ)-equivariant
extension of ξ to X. �

Remark 4.4. In Theorem A one can replace the assumption that X is affine by the weaker assumption
that X is a locally closed subset of the projective space P(W), for some algebraic representation W of Q.
This condition holds for example if X is a simple spherical variety of some linear algebraic F -group G
that contains Q, see [Sum74, Theorem 2.3.1].

To prove the theorem in this generality one first of all generalizes Theorem 3.4 and Lemma 4.1 to the
case when X is an arbitrary smooth variety and p is a globally defined regular function on X. These
extensions follow from the versions proven here by the uniqueness of analytic continuation and the sheaf
property of tempered distributions. Next we let X′ := pr−1(X) ⊂W, where pr : W \ {0} → P(W) is the
natural projection. Then we have an isomorphism of Q-representations

(3) S∗(X,V ) ' S∗(X ′, V )F
×
.

Let Q′ := Q×GL1. Note that Q′ is quasi-elementary and X′ is Q′-invariant. Let O′ := pr−1(O) and let
µ′ be the (Q′, χ)-equivariant measure on O corresponding to µ. By Corollary 2.7, there exists an algebraic
character ψ of Q′ and a non-zero (Q′, ψ)-equivariant F -polynomial q on the Zariski closure Z′ of O′ in
W. If F is p-adic we proceed as in the affine case. For F = R we extend q to a polynomial p on the
Zariski closure of X′ in W and restrict p to X′, and then proceed as in the affine case. In this way we

obtain a generalized Q′-equivariant distributions on X ′. This implies S∗(X ′, V )Q×F
× 6= 0, which by (3)

implies S∗(X,V )Q 6= 0.

Let G be a linear algebraic F -group. Let Q,H ⊂ G be F -subgroups such that Q is quasi-elementary.
Consider the action of Q × H on G given by left multiplication by Q and right multiplication by H.
Let (σ, V ) be a finite-dimensional (continuous) representation of Q ×H. Let NH denote the unipotent
radical of H.

Theorem 4.5. Let µ be a tempered Q ×H-equivariant V -valued measure on a double coset QgH ⊂ G.
If F is non-archimedean we assume that the restriction σ|NQ×NH

is the trivial representation.
Then there exists a generalized Q×H-equivariant η ∈ S∗(G,V ) and a Zariski open Q×H-invariant

neighborhood U of QgH such that the restriction of η to U equals the extension of µ to U by zero.
Moreover, the dimension of S∗(G,V )Q×H is at least the number of Q×H-double cosets in (QgH)(F )

possessing non-zero Q×H-equivariant V -valued tempered measures.

Proof. By Corollary 2.9, there exists an algebraic character ψ of Q × H and a non-zero (Q × H, ψ)-
equivariant F -polynomial q on the Zariski closure Z of the double coset QgH. Extend µ by zero to a
Q×H-equivariant V -valued measure on QgH(F ), that we will also denote by µ.

If F is non-archimedean, and σ|NQ×NH
is trivial then, by Theorem 2.10, µ can be extended to a

generalized Q×H-invariant V -valued distribution on Z := Z(F ). Extending this distribution by zero we
obtain a generalized Q×H-invariant distribution η on G.

Now assume that F = R. Lift q to a polynomial p on G and let U := Gp(R). Let ξ ∈ S∗(U, V ) be the
extension of µ by zero and note that pnξ is (Q×H,ψnσ)-equivariant for any n ≥ 0. By Lemma 3.1 ξ is
holonomic. Applying Lemma 4.1 to p, ξ,G and QgH, we obtain a generalized invariant extension η of ξ
to S∗(G,V ).

To prove the “moreover” part, let g1, . . . gn ∈ (QgH)(F ) such that the double cosets QgiH are dis-
tinct and posses invariant measures µ1, . . . µn. These measures extend by zero to linearly independent
distributions ξi on U . Applying Lemma 4.1 we construct meromorphic families ξi,λ of distributions on
G. It is easy to see that the support of each family ξi,λ lies in the closure of QgiH and thus the families
are linearly independent. Let L denote the linear span of these families and let W ⊂ S∗(G,V ) denote
the space spanned by the leading coefficients of the families in L. By Lemma 2.4, dimW = dimL = n
and by Lemma 2.2 all the distributions in W are Q×H-equivariant. �

Remark 4.6. The lower bound on dimension as in Theorem 4.5 can be shown to hold under the conditions
of Theorem 4.3 as well.
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Proof of Corollary C. By Lemmas 2.17 and 2.18(ii), the double coset P0gH has a tempered P0×H equi-
variant σ-valued measure. By Theorem B, this implies that S∗(G, σ)P0×H 6= 0, and thus S∗(G, σ)H×P0 6=
0. By Lemma 2.19 S∗(G, σ)H×P0 is isomorphic to the space of H-invariant continuous functionals on

IndGP0
(σ). �

The next natural question that arises is whether one can extend distributions which are supported on
an orbit but not defined on this orbit.

Question 4.7. Let a quasi-elementary group Q act on an affine variety X defined over R. Let U ⊂ X
be a (Zariski) open Q-invariant subset. Let χ be a character of Q. Let O ⊂ U be a closed Q-orbit and
assume that there exists ξ ∈ S∗(U, χ)Q with Suppξ = O. Does this imply S∗(X,χ)Q 6= 0?

Example 4.8. The answer is yes if Q = upper triangular 2× 2 invertible matrices, X = A2.

Proof. The only case that does not follow from Theorem A is U = A2 \ 0, O = R× × {0}. Fix ξ ∈
S∗(U, χ)Q with Suppξ = O. If yξ = 0 then ξ is a measure on O and we use Theorem A again. Assume
ξy2 = 0, ξy 6= 0. Note that q := Lie(Q) acts on X = R2 by the vector fields α = x∂x, β = y∂y, γ = y∂x.
Thus the coordinate y and the vector field ∂x are Q-equivariant. Since ξ is equivariant ξ∂yy is proportional
to ξ and thus is (Q,χ)-equivariant. Now, we build the family ξyxλ as in Lemma 4.1, take the leading
coefficient at λ = 0 and apply ∂y to obtain a (Q,χ)-equivariant distribution. If ξ has order n along Z,
we consider the family ξyn−1xλ and apply ∂n−1

y . �

5. Application to generalized Whittaker spaces

Let G be a real reductive group, g be its Lie algebra, and κ be the Killing form on g. For any
nilpotent element e ∈ g, one defines a nilpotent subalgebra r := re ⊂ g such that κ(e, [r, r]) = 0 (see
e.g. [GGS, §2.5]). Then e defines a character χ of R := Exp(r) by χ(Exp(y)) = κ(e, y). For any smooth
representation π of G, one defines the generalized Whittaker space We(π) to be the space of (N,χ)-
equivariant continuous functionals on π. While the definition of re involves some choices, for any two
different choices the spaces of functionals are canonically isomorphic.

Now let P ⊂ G be a parabolic subgroup, N ⊂ P be its unipotent radical and p, n be the Lie algebras
of P and N . Let V be finite-dimensional (complex) representation of G, and let IndGP (V ) denote the
smooth induction. The following theorem generalizes Theorem D.

Theorem 5.1. Let e ∈ n. Let r ⊂ g be a nilpotent Lie algebra with κ(e, [r, r]) = 0. Let R := Exp(r) and
let define a character χ of R by χ(Exp(y)) = κ(e, y). Then there exists a non-zero (R,χ)-equivariant

continuous functional on IndGP (V ).

Proof. By Lemma 2.19 we have

((IndGP (V ))∗)R,χ = S∗(G,χ⊗ (V ⊗∆−1
P ))R×P .

Let us show that the double coset RP has a tempered R×P -equivariant χ⊗ (V ⊗∆−1
P )-valued measure.

By Lemmas 2.17 and 2.18(ii) one has to show that (χ⊗∆L)⊗ V ⊗∆−1
C has a C-invariant vector, where

C := R ∩ P is diagonally embedded into R × P and ∆C denotes the modular function of C. Since R is
unipotent, so is C = R ∩ P and thus ∆R = ∆C = 1. Also, C lies in the unipotent radical of a minimal
parabolic subgroup P0 ⊂ P . Applying Lemma 2.18(i) to P0 we obtain that C acts unipotently on V and
thus has an invariant vector. Now, e lies in the nilradical of p, thus is orthogonal to p under the Killing
form and thus χ|C = 1. Altogether, we get that (χ⊗∆R)⊗ V ⊗∆−1

C has a C-invariant vector. Thus the

double coset RP has a tempered R×P -invariant χ⊗ (V ⊗∆−1
P )-valued measure, and by Theorem B we

have

S∗(G,χ⊗ (V ⊗∆−1
P ))R×P 6= 0.

�
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