
EXISTENCE OF KLYACHKO MODELS FOR GL(n,R) AND GL(n,C)
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Abstract. We prove that any irreducible unitary representation of GL(n,R) and
GL(n,C) admits an equivariant linear form with respect to one of the subgroups consid-
ered by Klyachko.
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1. Introduction

Let F be either R or C and Gn := GL(n, F ). For any decomposition n = r + 2k we
consider a subgroup of Gn defined by

Hr,2k =

{(
u X
0 h

)
∈ Gn : u ∈ Nr, X ∈Mr×2k(F ) and h ∈ Sp(2k)

}
.

Here Nr ⊂ Gr denotes the group of r × r upper unitriangular matrices and

(1) Sp(2k) =
{
g ∈ G2k : tgJkg = Jk

}
where Jk =

(
wk

−wk

)
and wk ∈ Gk is the permutation matrix with (i, j)th entry equal to δk+1−i,j. Let ψ be a
non-trivial additive character of F . We associate to ψ the character ψr of Nr defined by

ψr(u) = ψ(u1,2 + · · ·+ ur−1,r)
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and the character φr,2k of Hr,2k defined by

φr,2k

(
u X
0 h

)
= ψr(u).

Let Ĝn denote the unitary dual of Gn. For π ∈ Ĝn we consider the space
HomHr,2k(π

∞, φr,2k) of continuous (Hr,2k, φr,2k)-equivariant linear forms on the Frechét
space π∞ of smooth vectors in π. We refer to a non-zero element of HomHr,2k(π

∞, φr,2k)
as a Klyachko linear form of type (r, 2k). Let

Mr,2k = {f : Gn → C : f is smooth and f(hg) = φr,2k(h)f(g), h ∈ Hr,2k, g ∈ Gn}.
If π is an irreducible Hilbert representation of Gn then a non-zero element ` ∈
HomHr,2k(π

∞, φr,2k) defines a realization of π∞ in the space of functions Mr,2k via
v 7→ fv : π∞ → Mr,2k where fv(g) = `(π(g)v), g ∈ G. We therefore refer to Mr,2k

as the Klyachko model of type (r, 2k). With this relation in mind for the rest of this
paper we focus on Klyachko linear forms rather than Klyachko models.

In order to formulate our main result we recall that the partition V(π), the SL(2)-type

of π, is defined in [Ven05, §2.2] for every π ∈ Ĝn based on the classification of Ĝn. (See
Section 2.3 below.)

Theorem A. Let π ∈ Ĝn and let r be the number of odd parts of the partition V(π).
Then HomHr,n−r(π

∞, φr,n−r) 6= 0.

An analogue of this finite family of spaces of linear forms associated with representa-
tions of GL(n) over a finite field was first considered by Klyachko [Kly84] followed by
Inglis-Saxl [IS91] and Howlett-Zworestine [HZ00]. In the finite field case the properties
existence, disjointness and uniqueness of Klyachko linear forms hold for all irreducible
representations.

Over a p-adic field, the problem was first considered by Heumos-Rallis [HR90] and fur-
ther studied by Offen-Sayag [OS07, OS08a, OS08b, OS09] and Nien [Nie09]. The outcome
is disjointness and uniqueness of Klyachko linear forms for all irreducible admissible repre-
sentations and existence for any representation in the unitary dual. The partition V(π) of
an irreducible unitary representation π is also defined in [Ven05] in the non-archimedean
case. If r is the number of odd parts of the partition V(π) then HomHr,2k(π

∞, φr,2k) 6= 0
(see [OS09, (5.1)]).

The existence of a Klyachko linear form in the p-adic case is proved along the following
lines. Let π be an irreducible unitary representation of GL(n) over a p-adic field and let
r be the number of odd parts of V(π). The case r = 0 is treated in two steps using the
fact that generalized Speh representations are building blocks for the unitary dual. If π
is a Speh representation a linear form invariant by the symplectic group is constructed
on π by a global (automorphic) argument[OS07, Proposition 1]. For any π with r = 0,
the invariant linear form is obtained by a construction for induced representations based
on Bernstein’s principle of meromorphic continuation [OS07, Proposition 2]. The general
case, treated in [OS08a], is obtained by a reduction to the case r = 0 using the theory
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of derivatives of Bernstein-Zelevinsky [BZ77]. By the classification of Ĝn, Leibnitz rule
([BZ77, Lemma 4.5]) and the r = 0 case the r-th derivative of π admits a linear form
invariant by the symplectic group. The Klyachko linear form is obtained by composing it
with the projection of π to its r-th derivative.

The scheme of the proof in the p-adic case, described above, serves us as a guideline to
prove Theorem A. Nevertheless, certain difficulties are specific to the archimedean case.
First steps towards a theory of derivatives for smooth Fréchet representations are taken
in [AGS]. However, an appropriate Leibnitz rule is not yet formulated. We bypass the
use of derivatives by applying the theory of adduced representations developed in [Sah89].
Certain operations E and I between unitary representations of different groups are defined
in [Sah89]. We adapt these operations to products of twists of unitary representations by
a (not necessarily unitary) character.

Given π ∈ Ĝn let r be the number of odd parts in V(π). For r = 0 as in the p-adic case
we apply global methods to treat Speh representations and the work of Carmona-Delorme
[CD94] for induced representations. For r > 0 applying [GS, Theorem B] we associate to
π a representation σ of Gn−r which is a product of a twist of unitary representations by
a character. There is a linear map from the space of π to the space of Ir−1E(σ) which is,
in particular, equivariant with respect to a Klyachko type subgroup (H ′n−r,r, φ

′
n−r,r) (see

Section 5). By the r = 0 case σ∞ admits a linear form invariant by the symplectic group
Spn−r. Composing it with a natural map from π∞ to σ∞ we obtain a Klyachko type
linear form on π∞. However, since σ may be reducible it is not clear whether this form
is not identically zero. We overcome this obstacle by introducing a meromorphic family
of equivariant linear forms. We apply an irreducibility result of Mœglin and Waldspurger
[MW89, Proposition 1.9] to show that this meromorphic family is non-zero. By taking
a leading term we obtain a Klyachko linear form on π. In order to justify that various
maps are well defined and continuous on the level of smooth vectors we apply a result of
Poulsen on smooth vectors in induced representations [Pou72].

This work addresses existence of Klyachko linear forms in the archimedean case. Dis-
jointness is obtained in [AOS1]. Uniqueness, at this point, is only obtained for some
special cases. For the case n = r it was obtained by Shalika in [Sha74], for r = 0 in
[Say, AS] and for the cases r = 1 and r = n− 2 in the upcoming work [AOS2] (recall that
r ≡ n mod 2).

The paper is structured as follows. In §2 we give the necessary preliminaries regarding
smooth vectors in induced representations, the unitary dual of GL(n) and the irreducibil-
ity result mentioned above. In §3 we recall the definition of the highest derivative with the
needed adaptations. We also review a recent result of [GS] which implies that the highest
derivative of an odd representation is even. In §4 we deal with the purely symplectic
case (i.e. r = 0). A global argument similar to the p-adic case treats Speh represen-
tations and an explicit construction for induced representations is based on the work of
Carmona-Delorme [CD94]. In §5 we provide the proof of the main theorem.
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2. Preliminaries

2.1. Smooth vectors and induction. Let (π,H) be a continuous Hilbert representation
of a Lie group G. A vector v ∈ H is called smooth if the map g 7→ π(g)v : G → H is
infinitely differentiable. Both G and its Lie algebra g act on the space of smooth vectors in
H and we denote the corresponding representation by (π∞,H∞). It is naturally a Fréchet
representation of G.

Theorem 2.1.1 (Harish-Chandra). Let (π,H) be a unitary representation of a real reduc-
tive group G. Then π is irreducible if and only if π∞ is irreducible. (cf. [Wal88, Theorem
3.4.11]).

Remark 2.1.2. In fact [loc. cit.] says that π is irreducible if and only if πK, the un-
derlying (g, K)-module with respect to a compact subgroup K of G, is irreducible. Since
a G-invariant decomposition of π (resp. π∞) clearly provides one of π∞ (resp. πK), the
above Theorem is indeed straightforward from [loc. cit.].

Let G be a Lie group with a Lie algebra g. Denote by ∆G : G → R>0 the modular
function associated with G, i.e.

∆G(g) = |det(Ad(g)|g)| .
Let H be a closed subgroup of G, (σ, V ) a Hilbert representation of H and δ : H → R>0

defined by δ (h) = ∆H (h) /∆G (h).
Let W denote the Hilbert space of equivalence classes of measurable functions f : G→

V such that

f(hg) = δ
1
2 (h)σ(h)f(g) and ‖f‖2W :=

∫
H\G
‖f (g)‖2V dg <∞.

Let (π,W ) be the representation of G defined by π(g)f(x) = f(xg), x, g ∈ G. Denote
the representation (π,W ) by IndGH(σ), the normalized induction of σ from H to G. If
(σ, V ) is unitary then IndGH(σ) is also unitary.

Recall the following result of Poulsen. It can be interpreted as a representation-theoretic
version of Sobolev’s embedding theorem.

Theorem 2.1.3 (see [Pou72], Theorem 5.1). Let (σ, V ) be a unitary representation of H
and let (π,W ) = IndGH(σ). Then IndGH(σ)∞ consists of all infinitely differentiable functions
f ∈ W such that all their derivatives with respect to left-G-invariant differential operators
on G are square integrable.

We will apply Poulsen’s Theorem for certain Hilbert representations induced from a
one dimensional twist of a unitary representation. For the rest of this section let χ be a
(not necessarily unitary) character of H that extends to a smooth function χ′ : G→ C∗.
Let (σ, V ) be a unitary representation of H and (π,W ) = IndGH(σ).

There is an isomorphism of Hilbert representations (πχ,W ) ' IndGH(σ ⊗ χ) given by
f 7→ χ′f , f ∈ W where πχ(g)f(x) = χ′(x)−1χ′(xg)f(xg), g, x ∈ G. Since χ′ is smooth it
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follows that w ∈ W is smooth with respect to πχ if and only if it is smooth with respect to
π. The following Corollaries are therefore immediate consequence of Poulsen’s Theorem.

Corollary 2.1.4. Every element of IndGH(σ ⊗ χ)∞ is an infinitely differentiable function
on G with values in V .

Corollary 2.1.5. Suppose that H\G is compact and let f ∈ IndGH(σ ⊗ χ). Then f ∈
IndGH(σ ⊗ χ)∞ if and only if f : G→ V is an infinitely differentiable function.

2.2. Induced representations of GL(n). Let F be either R or C and let Gn =
GL(n, F ). Let K = Kn be the standard maximal compact subgroup of Gn, i.e. O(n) if
F = R and U(n) if F = C.

For a Hilbert representation (π, V ) of Gn and s ∈ C we denote by (| |s π, V ) the Hilbert
representation on the same space V given by g 7→ |det g|s π(g).

Let (n1, . . . , nk) be a decomposition of n and let P = MU be the standard parabolic
subgroup of Gn consisting of matrices in upper triangular block form, where

M = {diag(m1, . . . ,mk) : mi ∈ Gni , i = 1, . . . , k}
is the standard Levi subgroup of P and U is its unipotent radical. Let (σi, Vi) be a
Hilbert representation of Gni , i = 1, . . . , k and let (σ, V ) = (σ1 ⊗ · · · ⊗ σk, V1 ⊗ · · ·Vk) be
the associated Hilbert representation of M . We also view (σ, V ) as a representation of P
where U acts trivially. We use the following standard notation for normalized parabolic
induction to Gn

σ1 × · · · × σk = IndGnP (σ).

For ϕ ∈ IndGnP (σ) and λ = (λ1, . . . , λk) ∈ Ck let

ϕλ(g) =

[
k∏
i=1

|detmi|λi
]
ϕ(g), g = umk ∈ Gn, u ∈ U,m = diag(m1, . . . ,mk) ∈M, k ∈ Kn.

We further associate to σ a family I(σ, λ) of induced representations parameterized by
λ ∈ Ck realized in the underlying vector space of IndGnP (σ). The representation I(σ, λ) is
defined by

(I(g, σ, λ)ϕ)λ(x) = ϕλ(xg), ϕ ∈ IndGnP (σ), g, x ∈ Gn.

We have

I(σ, λ) ' | |λ1 σ1 × · · · × | |λk σk
and the underlying space for I(σ, λ)∞ is independent of λ (as explained in Section 2.1).

2.3. The unitary dual of GL(n) and the SL(2)-type. The unitary dual Ĝn of Gn was
classified by Vogan in [Vog86]. In [Tad86], Tadic classified the unitary dual ofGL(n) over a
p-adic field and expressed the classification in a uniform language for both the archimedean
and non-archimedean cases. We recall the classification as it appears in [Tad86, Theorem
D]. (As noted in [ibid.] Tadic’ Theorem D is also valid in the archimedean case, see also
[Tad09].)
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Let δ ∈ Ĝr be square-integrable (thus r = 1 if F = C and r ∈ {1, 2} if F = R). For an
integer t ≥ 1 denote by U(δ, t) the unique irreducible quotient of

| |
t−1
2 δ × | |

t−3
2 δ × · · · × | |

1−t
2 δ

and for 0 < α < 1
2

let
π(δ, t, α) = | |αU(δ, t)× | |−αU(δ, t).

For r = 1 the representation U(δ, t) is one dimensional. For r = 2 it was constructed
in [Spe83] using the theory of automorphic forms. Later it was given an explicit Hilbert
space model in [SS90].

Let B be the set of all representations of the form U(δ, t) or π(δ, t, α) as above. Then

for any π1, . . . , πk ∈ B the representation π1 × · · · × πk ∈ Ĝn for an appropriate n and

any π ∈ Ĝn is of this form for a uniquely determined multi-set {π1, . . . , πk} in B.

In particular, for any π ∈ Ĝn there exist integers k1, . . . , km, t1, . . . , tm, square integrable

representations δi ∈ Ĝki and −1
2
< αi <

1
2

such that

π = |det|α1 U(δ1, t1)× · · · × |det|αm U(δm, tm).

The following is therefore immediate from [MW89, Proposition 1.9].

Lemma 2.3.1. Let πi ∈ Ĝni, i = 1, 2. Then the set

{s ∈ C : π1 × |det|s π2 is reducible}
is discrete in C.

A partition of n is a multi-set of positive integers adding up to n. By abuse of notation
we will sometimes denote a partition λ as a tuple (n1, . . . , nk) but we keep in mind that
order is irrelevant. The integers n1, . . . , nk are referred to as the parts of λ. The transpose
partition λt is the partition (m1, . . . ,ml) where mi = #{j : 1 ≤ j ≤ k, i ≤ nj} (l is the
maximal integer so that {j : 1 ≤ j ≤ k, l ≤ nj} is not empty). If λ and µ are partitions
their union (as a multi-set) is denoted by (λ, µ). We call a partition even if all its parts
are even and odd if all its parts are odd. For two natural numbers r and n let

〈n〉r =

r︷ ︸︸ ︷
(n, . . . , n)

be the partition of nr with r equal parts.

The SL(2)-type associated to π ∈ Ĝn is denoted by V(π) and characterized by the

following properties. For any δ ∈ Ĝr square integrable, 0 < α < 1
2
, π1 ∈ Ĝn1 and

π2 ∈ Ĝn2 we have

(1) V(U(δ, n)) = 〈n〉r;
(2) V(π(U(δ, n), α))) = 〈n〉2r;
(3) V(π1 × π2) = (V(π1),V(π2)).

Definition 2.3.2. A representation π ∈ Ĝn is called even if V(π) is even and odd if V(π)
is odd. We denote by r(π) the number of odd parts in V(π).
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Note that a product of two even representations is even. The following statement is

straightforward from the definitions and the classification of Ĝn.

Corollary 2.3.3. Let π ∈ Ĝn. There is a decomposition n = k + l, k, l ≥ 0, πe ∈ Ĝk

an even representation and πo ∈ Ĝl an odd representation, uniquely determined up to
isomorphism, such that π = πe × πo.

3. The highest derivative

The following convention will be used whenever convenient. For n < m we view Gn as
a subgroup of Gm through the imbedding g 7→ diag(g, Im−n). This convention will freely
be used throughout the paper for subgroups of Gn without further notice.

For subgroups Ai of Gki , i = 1, 2, by (A1 ×A2) nMk1×k2(F ) we mean the subgroup of
Gk1+k2 consisting of matrices of the form

diag(a1, a2) nX :=

(
a1 X
0 a2

)
, ai ∈ Ai, i = 1, 2, X ∈Mk1×k2(F ).

In accordance with our convention, when A2 = {e} we also set A1 nMk1×k2(F ) = (A1 ×
A2) nMk1×k2(F ).

For a representation (σ, V ) of A1 × A2 and a character χ of Mk1×k2(F ) we denote by
(σ n χ, V ) the representation of (A1 × A2) nMk1×k2(F ) defined by

(σ n χ)(diag(a1, a2) nX) = χ(X)σ(diag(a1, a2)), ai ∈ Ai, i = 1, 2, X ∈Mk1×k2(F ).

We recall the archimedean analog, as formulated in [Sah89], of the Bernstein-Zelevinsky
notion of highest derivative [BZ77].

Denote by Pn the “mirabolic” subgroup of Gn consisting of matrices with last row
en := (0, 0, ..., 0, 1), i.e. Pn = Gn−1 n F n−1. Note that

∆Pn(g) = |det g| , g ∈ Pn.

The starting point of the archimedean theory of highest derivatives is the following

Theorem 3.0.4. Let π ∈ Ĝn, then π|Pn is irreducible.

Remark. The result was conjectured by Kirillov. In the p-adic case it was proved in
[Ber84], in the complex case in [Sah89] and finally in the real case in [Bar03].

For a Hilbert representation (σ, V ) of Gn let E(σ) = σ n 1Fn be the associated repre-
sentation of Pn+1 on the same space V .

For a Hilbert representation (τ, V ) of Pn let

I(τ) = Ind
Pn+1

PnnFn(τ n ên),

where ên denotes the character of F n defined by ên(v) = ψ(env). Note that E|Ĝn : Ĝn →
P̂n+1 and I|P̂n : P̂n → P̂n+1.
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Based on Theorem 3.0.4 and Mackey theory it is shown in [Sah89] that for π ∈ Ĝn

there exists a unique integer d, 1 ≤ d ≤ n and a unique σ ∈ Ĝn−d such that

(2) π|Pn ' Id−1E(σ).

The representation σ is called the highest derivative (or adduced) of π and is denoted by
A(π). The integer d is called the depth of π and we denote it by depth(π).

Recursively we define Aj+1(π) = A(Aj(π)) as long as Aj(π) is a representation of Gi

for some integer i ≥ 1. Let k be such that Ak(π) is the trivial representation of G0. The
depth sequence of π is defined to be

(3) d(π) = (d1, . . . , dk) where dj+1 = depth(Ajπ), j = 0, . . . , k − 1.

The following Theorem follows from [GS, Theorem B].

Theorem 3.0.5. Let π ∈ Ĝn and d(π) = (d1, . . . , dk) then d1 ≥ · · · ≥ dk and viewed as
a partition d(π) satisfies

(4) V(π) = d(π)t.

Corollary 3.0.6. Let π ∈ Ĝn. Then

(1) depth(π) is the number of parts in V(π). In particular, depth(π) ≥ r(π) and
equality holds if and only if π is odd.

(2) If π is odd then A(π) is even.

Proof. We use the notation of the Theorem. It is clear that d1 is the number of parts
in d(π)t. Since by definition d1 = depth(π) the first part follows from (4). It follows
from the definitions that d(A(π)) = (d2, . . . , dk). Applying (4) again we obtain that
V(A(π)) = d(A(π))t consists of parts of the form m − 1 where 1 < m is a part of
d(π)t = V(π). The second part follows. �

Let n = m+ r. For Hilbert representations π of Gm and τ of Pr we set

π × τ = IndPn(Gm×Pr)nMm×r(F )((π ⊗ τ) n 1Mm×r(F )).

Lemma 3.0.7. Let s ∈ C and consider the Hilbert representations π of Gm, σ of Gr and
τ of Pr. We have

(1) E(| |s π) = | |sE(π);
(2) I(| |s τ) ' | |s I(τ);
(3) E(π × σ) = π × E(σ);
(4) I(π × τ) = π × I(τ).

Proof. Part (1) is straightforward. Indeed, the underlying representation space of both
E(| |s π) and | |sE(π) is that of π and the two actions by Pm+1 are identical. For part
(2) set fs(p) = |det p|s f(p), p ∈ Pn. The map f 7→ fs is an isomorphism from | |s I(τ)
to I(| |s τ). Parts (3) and (4) are proved in [Sah89, Lemma 2.1 (ii) and (iii)] when π, σ
and τ are unitary. The proof of [ibid.] is valid verbatim in the more general context of
Hilbert representations.
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�

Given a decomposition n = m + r the Iwasawa decomposition on Gn−1 implies that
Pn = [(Gm × Pr) nMm×r(F )]Kn−1. For λ = (λ1, λ2) ∈ C2 and ϕ ∈ π × τ let

ϕλ(p) = |det g1|λ1 |det g2|λ2 ϕ(p), p = [diag(g1, g2) nX]k

where g1 ∈ Gm, g2 ∈ Pr, X ∈ Mm×r(F ) and k ∈ Kn−1. It will also be convenient to
denote by I(π ⊗ τ, λ) the representation of Pn on the space of π × τ defined by

(I(p, π ⊗ τ, λ)ϕ)λ(x) = ϕλ(xp), ϕ ∈ π × τ, p, x ∈ Pn.
Thus

I(π ⊗ τ, λ) ' | |λ1 π × | |λ2 τ
and the underlying space of I(π ⊗ τ, λ)∞ is independent of λ. The following is straight-
forward from Lemma 3.0.7.

Corollary 3.0.8. Consider the Hilbert representations % of Gr and π of Gm and let
λ ∈ C2. Then for every j ≥ 0 we have

I(π ⊗ IjE(%), λ) ' IjE(I(π ⊗ %, λ)).

Let Sm,r be the subgroup of Gn defined by Sm,r = (Gm ×Nr) nMm×r(F ).

Proposition 3.0.9. Let d ≤ n, Q = MU a standard parabolic subgroup of Gn−d with
its standard Levi decomposition (M ' Gm1 × · · · ×Gmk), τ a non-zero unitary represen-

tation of M , λ ∈ Ck and (σ, V ) = Ind
Gn−d
Q (τ, λ). Let π = Id−1E(σ) be the associated

representation of Pn.

(i) We have π ' IndPnSn−d,d((σ ⊗ ψd) n 1Mn−d×d(F )).

(ii) There is a continuous linear transformation prd,σ : π∞ → V ∞ that is not identically
zero on any non-zero Pn-invariant subspace of π∞ and satisfies

(5) prd,σ(π(s)v) = ψd(u) |det g|
d−1
2 σ(g)prd,σ(v), v ∈ π∞ and s =

(
g X
0 u

)
∈ Sn−d,d

where g ∈ Gn−d, u ∈ Nd and X ∈Mn−d×d(F ).

Proof. Part (i) follows by iteratively applying transitivity of induction. For part (ii) note
that V ∞, the space of smooth vectors for σ, is also the space of smooth vectors of the
representation (σ ⊗ ψd) n 1Mn−d×d(F ) of Sn−d,d. Let

τ1 = (τ ⊗ ψd) n 1Mn−d×d(F )

be a unitary representation of the subgroup Q1 := (Q ×Nd) nMn−d×d(F ) of Sn−d,d and
let

η1 = (χλ × 1Nd) n 1Mn−d×d(F )

be a character of Q1 where χλ is the unramified character of Q associated to λ by

χλ(diag(g1, . . . , gk)u) =
k∏
i=1

|det gi|λi , gi ∈ Gmi , i = 1, . . . , k, u ∈ U.
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It follows from Corollary 2.1.4 that the elements of IndPnQ1
(τ1⊗ η1)∞ are smooth functions

on Pn with values in the space of τ . Let δ1 = ∆Pn/∆Sn−d,d then transitivity of induction
gives the isomorphism

f 7→ ϕf : IndPnQ1
(τ1 ⊗ η1)∞ → IndPnSn−d,d((σ ⊗ ψd) n 1Mn−d×d(F ))

∞

where ϕf (p)(s) = δ
1
2
1 (s)f(sp), s ∈ Sn−d,d, p ∈ Pn. Since f is a smooth function on Pn it

now follows that ϕf is a smooth function on Pn with values in V . It further follows from
Corollary 2.1.5 that ϕf (p) ∈ V ∞ for p ∈ Pn.

To summarize so far, the elements of IndPnSn−d,d((σ ⊗ ψd) n 1Mn−d×d(F ))
∞ are smooth

functions on Pn with values in V ∞.
Thus, prd,σ(ϕ) := ϕ(e) is a well defined linear transformation from IndPnSn−d,d((σ×ψd)n

1Mn−d×d(F ))
∞ to V ∞. Evaluation at the identity is clearly not identically zero on any

non-zero Pn-invariant space of smooth functions on Pn. The continuity of the evaluation
morphism follows from [Pou72, Lemma 5.2]. The equivariance property (5) is immediate
from the definition of an induced representation. The Proposition follows. �

4. Representations with symplectic models

The purpose of this section is to study linear forms invariant by the symplectic group.
We begin with a result on Speh representations that we obtain by global means.

Proposition 4.0.1. Let n = 2mr, δ ∈ Ĝr square integrable and π = U(δ, 2m) ∈ Ĝn.
Then HomSp(2n)(π

∞,C) 6= 0.

Proof. If r = 1 then π = δ ◦ det is a character of Gn. The Proposition is obvious in this
case. Assume from now on that r = 2 (and in particular that F = R). To complete
the Proposition we globalize π to a discrete automorphic representation for which the
symplectic periods have already been studied.

Let Π be a cuspidal automorphic representation of GL(2,AQ) with archimedean com-
ponent Π∞ ' δ. The existence of Π is verified, for example, using the Jacquet-Langlands
correspondence. Indeed, let D be the multiplicative group of the standard quaternion
algebra defined over Q. Let δ′ be a representation of D(R) associated with δ by the local
Jacquet-Langlands correspondence [JL70, §5]. Since R∗\D(R) is compact, it is easy to
construct using the trace formula an automorphic representation Π′ of D(AQ) so that
Π′∞ ' δ′ and Π′p is unramified for all primes p > 2. It then follows from [JL70, Theorem
14.4] that π is associated by the global Jacquet-Langlands correspondence to a cuspidal
automorphic representation Π of GL(2,AQ). In particular Π∞ ' δ as required.

Let % be the unique irreducible quotient of |det|
m−1

2 Π×|det|
m−3

2 Π×· · ·×|det|
1−m

2 Π. It
is a discrete automorphic representation of GL(n,AQ) obtained by residues of Eisenstein
series (see [MW89]). Furthermore, its local component at infinity is %∞ = π. Let %aut
be the space of automorphic forms in (the unitary representation) %. Based on [Off06,
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Theorem 3], the symplectic period defined on %aut by

`(φ) =

∫
Sp(n,Q)\Sp(n,AQ)

φ(h) dh

is not identically zero. Recall that %aut ' ⊗p≤∞τp where τ∞ = (ρ∞)K is the (g, K)-module
of K-finite vectors in %∞ and τp is the smooth part of %p for p < ∞ [Fla79]. There is
therefore an automorphic form φ ∈ %aut that as a vector is of the form φ∞ ⊗ φ∞ with
φ∞ ∈ τ∞ and φ∞ ∈ ⊗p<∞τp such that `(φ) 6= 0. Define

λ(v) = `(v ⊗ φ∞), v ∈ τ∞.
Then λ is a non-zero Sp(n)∩K and sp(n)-invariant linear form on τ∞ where sp(n) is the
Lie algebra of Sp(n). By the automatic continuity for reductive symmetric spaces (cf.
[vdBD88, Theorem 2.1] or [BD92, Theorem 1]) λ extends to an Sp(n)-invariant linear
form on the smooth part of ρ∞, i.e. it defines a non-zero element of HomSp(n)(π

∞,C).
The Proposition follows. �

Remark 4.0.2. In [GSS] an Sp(n)-invariant functional on the Speh representation
U(δ, 2m) is constructed by purely local means using [SS90].

Next we consider induced representations. Our main tool is a result of Carmona-
Delorme that we now recall.

Let (n1, . . . , nk) be a decomposition of n and P = MU the standard parabolic subgroup
of G2n of type (2n1, . . . , 2nk) with unipotent radical U and standard Levi subgroup M .
Let  = diag(Jn1 , . . . , Jnk) where Jn is defined by (1) and

H = Sp() = {g ∈ G2n : tgg = }.
Set τ(g) = tg−1−1 and let θ(g) = tg−1 be the standard Cartan involution of G2n. Note

that H = Gτ and P is θτ - stable. Let σi ∈ Ĝ2ni and 0 6= `i ∈ HomSp(2ni)(σ
∞
i ,C), i =

1, . . . , k. Set σ = σ1⊗· · ·⊗σk and ` = `1⊗· · ·⊗`l. Thus 0 6= ` ∈ HomM∩H(σ∞,C). There
is a permutation matrix η ∈ G2n so that tηη = Jn and therefore η−1Sp()η = Sp(2n).
The following is therefore an application of [CD94, Proposition 2 and Theorem 3].

Proposition 4.0.3. With the above notation the integral

ξ(ϕ; `, λ) =

∫
(M∩H)\H

`(ϕλ(hη)) dh, ϕ ∈ (σ1 × · · · × σk)∞

converges absolutely for Re(λ1)� Re(λ2)� · · · � Re(λk) and extends to a meromorphic
function of λ ∈ Ck. Whenever holomorphic at λ it defines a non-zero element ξ(`, λ) ∈
HomSp(2n)(I(σ, λ)∞,C).

Theorem 4.0.4. Let π ∈ Ĝ2n be an even representation then HomSp(2n)(π
∞,C) 6= 0.

Proof. By the classification of the unitary dual and the recipe for the SL(2)-type we may
write π = I(σ, α) where σ = U(δ1, 2m1)⊗ · · · ⊗ U(δk, 2mk) with δi square integrable and

α = (α1, . . . , αk) with −1
2
< αi <

1
2
, i = 1, . . . , k. Let ni be such that U(δi, 2mi) ∈ Ĝ2ni .
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By Proposition 4.0.1 there exists 0 6= `i ∈ HomSp(2ni)(σ
∞
i ,C). By Proposition 4.0.3 and

using its notation we obtain a non-zero meromorphic family of linear forms ξ(`, λ) ∈
HomSp(2n)(I(σ, λ)∞,C). There exists a generic direction µ ∈ Ck such that ξ(`, α + zµ) is
meromorphic in a punctured neighborhood of z = 0 in C. Let k0 be the smallest integer
k such that zkξ(`, α + zµ) is holomorphic at z = 0. We can now define

L = lim
z→0

zk0ξ(`, α + zµ).

Thus 0 6= L ∈ HomSp(2n)(π
∞,C).

�

5. Proof of Theorem A

We change the setting by defining another family of Klyachko subgroups compatible
with the theory of highest derivatives. Fix a decomposition n = 2k + r and let

H ′2k,r =

{(
h X
0 u

)
∈ Gn : u ∈ Nr, X ∈M2k×r(F ) and h ∈ Sp(2k)

}
.

Let φ′2k,r be the character of H ′2k,r defined by

φ′2k,r

(
h X
0 u

)
= ψr(u).

Let τ be the involution on Gn defined by gτ = wn
tg−1wn. Note that H ′2k,r = Hτ

r,2k and

φ′2k,r(h) = φr,2k(h
τ ), h ∈ H ′2k,r. It follows that for any π ∈ Ĝn we have

HomHr,2k(π
∞, φr,2k) ' HomH′2k,r

((πτ )∞, φ′2k,r).

By the Gelfand-Kazhdan Theorem πτ ' π̃ where π̃ denotes the dual of π (see e.g. [AGS08,
Theorem 2.4.2]) and therefore

HomHr,2k(π
∞, φr,2k) ' HomH′2k,r

(π̃∞, φ′2k,r).

It further follows from the classification and the definition of the partition V(π) that
V(π̃) = V(π) and hence r(π̃) = r(π). Theorem A is therefore equivalent to the statement

(6) HomH′
n−r(π),r(π)

(π∞, φ′n−r(π),r(π)) 6= 0, π ∈ Ĝn.

Let π ∈ Ĝn. If r(π) = 0, i.e. π is even, then (6) follows from Theorem 4.0.4. Assume
from now on that r = r(π) > 0 and let k = (n− r)/2. Note then that H ′2k,r is a subgroup
of Pn.

Write π = πe × πo where πe ∈ Ĝ2k1 is even and πo ∈ Ĝt is odd as in Corollary 2.3.3.
For s ∈ C let

πs = I(πe ⊗ πo, (0, s))
be a representation of Gn and

τs = I(πe ⊗ (πo|Pt), (
1

2
, s))
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a representation of Pn. By Corollary 2.1.5 restriction of functions to Pn is a well defined
(and clearly Pn-equivariant) map

κs : π∞s → τ∞s .

In the parameter s it is holomorphic and non-zero at each s.
Let d = depth(πo). By Corollary 3.0.6 d = r(π) and A(πo) is even. By (2) we have

πo|Pt = Id−1E(A(πo)). Let

σs = I(πe ⊗ A(πo), (
1

2
, s)).

By Corollary 3.0.8 there is an isomorphism of Hilbert representations of Pn

τs ' Id−1E(σs).

Denote by

ιs : τ∞s → Id−1E(σs)
∞

its restriction to the corresponding isomorphism between the spaces of smooth vectors.
Thus

ιs ◦ κs : π∞s → Id−1E(σs)
∞

is a holomorphic family of non-zero Pn-equivariant maps. Let

prd,σs : Id−1E(σs)
∞ → σ∞s

be the map provided by Proposition 3.0.9. It is defined by evaluation at the identity and
therefore it is independent of s. By Proposition 3.0.9 its restriction to the image of ιs ◦κs
is non-zero. Thus

prd,σs ◦ ιs ◦ κs : π∞s → σ∞s

is non-zero. Since prd,σs is an evaluation map at e and κs is a restriction map to Pn,
up to the identification given by the isomorphism ιs, the map prd,σs ◦ ιs ◦ κs is also an
evaluation at e. It therefore follows from [Pou72, Lemma 5.2] that it is continuous. Note
that k = k1 + t−r

2
. By (5) prd,σs ◦ ιs ◦ κs is, in particular, G2k-equivariant.

It follows from Theorem 4.0.4 together with Proposition 4.0.3 that there exists a non-
zero holomorphic family of linear forms

`s ∈ HomSp(2k,F )(σ
∞
s ,C)

in a punctured disc centered at s = 0. By possibly taking a smaller disc it further
follows from Lemma 2.3.1 that σs is irreducible in the punctured disc. By Theorem 2.1.1
in this punctured disc prd,σs ◦ ιs ◦ κs : π∞s → σ∞s has a dense image and therefore the
holomorphic family of linear forms Ls := `s ◦ prd,σs ◦ ιs ◦ κs on π∞s is non-zero. By the
equivariance property (5), Ls ∈ HomH′2k,r

(π∞s , φ
′
2k,r). There is therefore an integer a such

that 0 6= L := lims→0 s
aLs. Thus 0 6= L ∈ HomH′2k,r

(π∞, φ′2k,r) and (6) follows. This

completes the proof of Theorem A.
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