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GENERALIZED FUNCTIONS LECTURES 3

1. THE SPACE OF GENERALIZED FUNCTIONS ON R"

1.1. Motivation. One of the most basic and important examples of a generalized

function is the Dirac delta function. The Dirac delta function on R at point ¢ is

usually denoted by §;, and while it is not a function, it can be intuitively described
oo r=t1 e L :

by &:(z) = , and by satisfying the equality [ d&;(x)dz = 1. Notice
0 z#t —%

that it also satisfies:

/ 5,(x) f(w)da = (1) / by(w)dz = f(t).

The following are possible motivations for generalized functions:

e Every real function f : R — R can be constructed as an (ill-defined) sum

of continuum indicator functions f := > f(¢)d.
ter
e In general, solutions to differential equations, and even just derivatives of

functions are not functions, but rather generalized function. Using the
language of generalized functions allows one to rigorize such notions.
e Generalized functions are extremely useful in physics. For example, the

density of a point mass can be described by the Dirac delta function.

1.2. Basic definitions. In this book we will consider various spaces of functions
and functionals. Unless specified otherwise, all the functions and functionals will be
real-valued. All the statements below are also valid for complex-valued functions.

In order to define what is a generalized function we first need to introduce some

standard notation.
Definition 1.2.1 (Smooth functions of compact support).
(i) Denote by C(R) the space of smooth functions f : R — R, i.e. functions

that can be differentiated infinitely many times.
(i) Define the support of a function f:R — R by

supp(f) == {z € R: f(x) # 0},
the closure of the set in which it does not vanish.
(i1i) Denote by C°(R) C C*°(R) the space of smooth functions with compact sup-
port.

Definition 1.2.2 (Convergence in C°(R)). Given f € CP(R) and a sequence
{fn}22, of smooth functions with compact support we say that {f,}>2; converges
to f in C°(R) if:

(1) There exists a compact set K C R for which |J supp(f.) C K.
neN

(2) For every order k € Ny, the derivatives ( ék))?f:l converge uniformly to the
deriwative f*).
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We can now define the notion of distributions (cf. [?, ?7] and [Kan04, Section 2.3].

Definition 1.2.3 (Distributions). A linear functional £ : C*(R) — R is con-
tinuous if for every convergent sequence {fm}3°_, of functions fn, € C°(R) we
have

Tim (€, fo) = (€ lim_ ).
We will usually use the notation (£, f) instead of £(f). We call a continuous linear

functional a distribution or a generalized function. The space of all generalized
functions on R is denoted by C~>°(R) := (C°(R))*.

Remark 1.2.4. In §7? below we will define a natural topology on the space C°(R).
The convergence in this topology will be as in Definition IZZ3, but this does not
define the topology uniquely since this topology is not first countable. We will show
that a linear functional on this topological space is continuous if and only if it
satisfies the condition in Definition ["Z3.

Remark 1.2.5. For now the names generalized functions and distributions are
synonymous as there is no difference for R. We will discuss the difference in a

later part of the manuscript, when it will be relevant.

?? Move further: Warning! It might not be the case that f|y € C°(U) even if
feC*(V)and U C V.

Example 1.2.6. For any a € R, define 6, € C~°°(R) by (0q, f) := f(a).

Recall that a function f is locally-L" if the restriction to any compact subset in its
domain is an L' function. We denote the space of such functions L{ .. Given a
real-valued function f € L} _(R) we define &; : C2°(R) — R to be the generalized

Loc

function
(€, 0) = / f(x) - o(x)dx.

Note that this integral converges as ¢ vanishes outside of some compact set K, and

(fo)|x € L*(K). These are sometimes called reqular generalized functions.
Exercise 1.2.7. For any f € L{,.(R), show that & is a well defined distribution.
Note that we have

C*(R) C C(R) C Lo (R) € C™(R),

where the last embedding is given by f +— £;. This embedding motivates the name
generalized function.

Exercise 1.2.8. Prove that there ezists a function f € C°(R) which is not the

zero function. Hint: Use functions such as e~1/(1-2)%,
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Definition 1.2.9. We say that a sequence of generalized functions {£,}52, weakly
converges to £ € C~(R) if for every f € C°(R) we have

Tim (6, f) = (£, f).

Note that in particular this definition applies to locally- L' functions, since as we
have seen above they are contained in the space of generalized functions. Now
we can give an equivalent definition of the space of generalized functions - as the
sequential completion of C2°(R) with respect to the weak convergence. For this we

need the notion of a weakly Cauchy sequence:

Definition 1.2.10. (i) A sequence {f,} in L1 .(R) is called a weakly Cauchy
sequence if for every g € C°(R) and € > 0 there exists a number N € N such

that for all m,n > N we have that 70 (fn(z) = fm(2))g(x)dz| < €.

—0o0
(i) Two weakly Cauchy sequences are called equivalent if their difference weakly

converges to zero.
One can similarly define these notions for sequences of distributions.

Exercise 1.2.11. A sequence {f,} in C~°°(R) is a weakly Cauchy sequence if and
only if for any g € C°(R), the sequence (fy,g) converges.

However, weakly Cauchy sequences in C'2°(R) do not necessarily converge in C°(R).

Remark 1.2.12. One can define the space of generalized functions C~°(R) as the
space of equivalence classes of weakly Cauchy sequences in C°(R). As we will show
in 22, this definition is equivalent to Definition T2ZZ3. It is important that we take
weakly Cauchy sequences rather than weakly Cauchy nets, since otherwise we would

get the full completion of C°(R), which is larger than C~*°(R), as we will see in

Exercise 1.2.13. Find a sequence of functions (fn)S%, in CX(R) converging

weakly to 0 that does not converge point-wise.
One can find a weakly Cauchy sequence that converges to the Dirac’s delta.

Definition 1.2.14. A sequence ¢, € C.(R) of continuous, non-negative, compactly

supported functions is said to be an approximation of identity if:

(1) ¢, satisfy [ én(x)-dx =1 (that is have total mass 1), and

(2) for any fized € > 0, the functions ¢, are supported on [—e,¢] for n suffi-
ciently large.

Exercise 1.2.15. An approzimation of identity weakly converges to dq.



GENERALIZED FUNCTIONS LECTURES 6

The reason for the name “approximation of identity” is that §p is the identity for
the convolution operation that we will define later.
Such sequences can be generated, for example, by starting with a non-negative,

continuous, compactly supported function ¢; of total integral 1, and by then setting

¢n(x) = nep1 (nx).
Exercise 1.2.16. Find an approximation of identity.

Note that given n € C~>°(R) of the form 7 = £y, we can recover the value of f at
t via nlLIr;Q(ff, On(z+1)) = 7}1_{1;0 [ f@)pn(z+t)dx = f(t).

1.3. Remarks on operations on distributions. In general, many spaces of func-
tions can be defined as completions of C° with respect to various topologies. From
this point of view, in order to define an operation on functions such a space, it is
enough to define this operation for functions in C2° and prove that it is continuous
with respect to the relevant topology.

For defining operations on distributions we will often use a different approach.
Suppose that we have an operation o on C2°(R), and we would like to extend it to
generalized functions. We can try to do it in the following way. Given ¢ € C°(R),
we can try to express (£4(y), ¢) in terms of the pairing of £; with various functions in
C2°(R). If we succeed, we can apply the same procedure to an arbitrary distribution

& in place of £f. Let us now apply this approach to the notion of derivative.

1.4. Derivatives of generalized functions. Let f,¢ € C2°(R). Since ({4, ¢) =

oo
[ f'(z)- ¢(x)dz we can use integration by parts to deduce that

(€, 0) = () - ()| — / f(@) - & (x)d.

However, since ¢ and f have compact support, we know that f(z) - ¢(x)|>,, = 0.
Thus, ({4, ¢) = —(f,¢’). This motivates the following definition.

Definition 1.4.1. For any & € C~°°(R), define its derivative &’ € C~°(R) by
(€, ¢) = (&)

for any ¢ € C(R).

For example, the derivative of dy can be intuitively described as

00 z— 0"
56(.’];‘) =< —00 x— 07t

0 otherwise.
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Example 1.4.2. We have
(66", ) = (=1)"(%0,6™) = (=1)"¢™(0).

Exercise 1.4.3. Find a function F € L __ for which F' = & as generalized func-
tions.

Exercise 1.4.4. Define the notion of derivative of a generalized function using
approzimation by C°(R). In other words, prove that if {fn} is a weakly Cauchy
sequence in C2°(R) then so is {f}.

1.5. The support of generalized functions. Let U C R be an open set and let
C2°(U) be the space of smooth functions f : U — R supported in some compact
subset of U. Given a compact subset K of a Euclidean space X, we denote by
C%(X) the space of smooth functions f : X — R with supp(f) C K. In particular
C¥(X) CCP(X) for every K C X.

We cannot evaluate a generalized function at a point. Therefore, we cannot just
define its support as we did before for a function by supp(f) := {x € R | f(x) # 0}.
However, if for some neighborhood U C R we have for every f € C°(U) that
(&, f) = 0, then it is natural to say that supp(§) € R~ U. This leads us to the

following definition:

Definition 1.5.1. Let £ € C~°(R).

(i) For an open subset U C R we say that £ vanishes on U if for any f € C°(U)
we have (€, f) = 0.
(ii) For & € C~>°(R) we define

supp(§) =R~ U{open U C R| €& vanishes on U}
(iii) Denote by C>°(R) the space of distributions with compact support.
The following (difficult) exercise shows that the definition is meaningful.

Exercise 1.5.2 (*). Let £ € C~°°(R).

(i) Let Uy, Uy be two open segments in R. Show that if & vanishes on Uy and Us
then & vanishes on Uy UUs. Hint: Use partition of unity.
(i) Show that if I is a set of arbitrary cardinality and {Uy }acr s a collection of

open subsets of R with compact closures and &|y, = 0 for any o € I then
§|UQEI v, =0.

We will discuss this in more details and in larger generality in 77 below.

Remark 1.5.3. Note that supp(€) is always a closed set.

Example 1.5.4. The support of &y is {0}.

Remark 1.5.5. While the support of 8} is also {0}, given some f € C*(R) for
which f(0) = 0 but f'(0) # 0, we get that (&), f) = —(do, f') = —f'(0) # 0. In
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other words, having f(0) = 0 is not enough to get (£, f) = 0, for a distribution &
supported at {0}. However, if [ vanishes at 0 with all its derivatives, it will imply
(&, ) =0 for any & supported at {0}, as follows from Ezercise [C57X below.

Exercise 1.5.6. Let &1,8 € CT°(R) and a,b € R. Show that:

(1) supp(a&; + b&2) C supp(&1) U supp(&a).
(2) supp(€) — supp(§)° € supp({’) € supp(§).

Exercise 1.5.7. Show that all the generalized functions & € C~*°(R) which are

n .
supported on {0} are of the form Y ¢;6) for some n € N and ¢; € R.
i=0
Hint: prove this in three steps.

(i) Show that there exists n such that ¢ is bounded on the set {f | f®(x) < 1Vx €
R,Vi < n}.
(i) Show that there exists k € N such that £x* = 0, that is (ExF, f) = (¢, 2% f) =
for every f € C°(R).
(iii) From £x* =0 deduce that & = 5 ciééi) for some ¢; € R.
i=0

1.6. Products and convolutions of generalized functions.
Definition 1.6.1. Let f € C®(R) and { € C~°(R). We would like to have
(f-&)(@) = | &) f(z)- ¢(x)dx. Thus, we define (f-£)(¢) = &(f - ¢).

While we can multiply every smooth function f by any generalized function &, the
product of two generalized functions is not always defined. Notice that indeed the
product of two weakly Cauchy sequences is not always a weakly Cauchy sequence,
so we might not be able to approximate the product of two generalized functions
by the product of their approximations.

Recall that given two functions f, g, their convolution is defined by

(f *9)a /f o — t)d

The convolution of two smooth functions is always smooth, if it exists. In addition,

if f and g have compact support, then so does f * g:

Exercise 1.6.2.

(1) Show that supp(f * g) C supp(f) + supp(g), where supp(f) + supp(g) is
the Minkowski sum of supp(f) and supp(g). Thus f,g € C°(R) implies
f*geCER).

(2) Find an example in which the left hand side is strictly contained in the right
hand side.

Given f,g € CX(R) we can write (f * g)(x) = (§f, §), where §,(t) := g(x — t).
This motivates us to define the convolution & * g as the function (£ *g)(z) = (&, gz )-
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Note that the convolution of a smooth function and a generalized function is always

a smooth function:

Exercise 1.6.3. Show that for ¢ € CX(R) and £ € C~*°(R) we get that Ex ¢ is a

smooth function.

Let us now define the convolution of two generalized functions. This will not be
defined for every pair of generalized functions, but for pairs such that at least one
of the generalized functions have compact support. Firstly, for f,g € C°(R) we
would like to have £ * {; = £+g. This means

(Er*&g,0) = /Oo(f*g)( dx—//f g(x —t) - p(z)dtdz.

We would like like to express the right-hand side in terms of convolutions of dis-
tributions with functions. For this purpose, for a function h € C*(R) denote
h™(x) := h(—x). We get

oo o0

) //f “(t—2) - p(a)dtdr = (7.6, * ).

—00 — OO
When convolving functions, the arguments Of the convolved functions sum up to the

convolution’s argument (e.g., (f * g)( f f) —t)dt, and x = t+ (x —1)).

In our case, we denote ¢(z) := ¢(—=x), and wrlte.

7f(t) 7 (2 — 1) - (~a)dadt = / F(O) - (€ * ) (=)t = £4(E, * D).

Definition 1.6.4. We define (€5 * &,, ) == (£7,&, * B).

However, some formal justification is required. Given a compact K C R, we say p
is a cutoff function of K if p|x =1 and p|y = 0, where R\V has compact closure.

Exercise 1.6.5. Let K and V' be as above. Show that there exists a continuous

cutoff function. Hint: use Urysohn’s Lemma.

Thus, given some §{ € C,°°(R) with supp(§) C K we have that £(¢) = {(pk - ¢).
This enables us to define ¢ as a functional over all C*°(R) and not only on CS°(R).
For every ¢ € C*(R) we define £(¢) = £(pk - ¢) where K := supp(§) C R.

Exercise 1.6.6. Let £ € C~*°(R). In an ezxercise above we showed: if ¢ € CX(R)
then the convolution & x ¢ is smooth. Show that if ¢ is smooth, and supp(§) is

compact, then & x ¢ is still smooth.

To summarize, the convolution of two compactly supported distributions is well

defined and compactly supported, while the convolution of a compactly supported
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distribution with an arbitrary distribution is well defined, but usually not compactly
supported.

Exercise 1.6.7. Show the following identities for any compactly supported distri-
butions &1,&2 and &3 in C~°(R).

(1) 00 % &1 = &1

(2) 6 x& = &)

(3) §&1%& =& %&1.

(4) &1x (§2%&3) = (&1 % &2) * &5.
(5) (&% &) =& x & =& x&a.

Exercise 1.6.8. Let K C R be a compact set. Construct a function f € C°(R)
such that fj,, =1 and f, = 0 for some neighborhood K C U (Hint: convolve a

suitable approxzimation of identity with the indicator function of K ).

1.7. Generalized functions on R™. All the notions above make sense for func-
tions and generalized functions in several variables. The definitions and the state-
ments literally generalize to this case. For example, let us restate the definition of

convergence in C2°(R™).

Definition 1.7.1 (Convergence in C°(R")). Given f € C°(R) and a sequence
{fn}S2 of smooth functions with compact support, we say that {f,}22, converges
to f in C°(R™) if:

(1) There exists a compact set K C R™ for which |J supp(fn) C K.

neN

(2) For every multi-indexr «, the partial derivatives ( 7(10‘));’10:1 converge uni-

formly to the partial derivative f(*).

1.8. Generalized functions and differential operators. A differential equa-
tion is given by the equality Af = g, where A is a differential operator. Assume
A is a linear differential operator which is invariant under translations, i.e. we
have that AR:(f) = Ri(Af), where Ri(¢)(z) = ¢(x + t) for some constant t.
An example of such operator is a differential operators with fixed coefficients, e.g.
Af :=f"+5f +6f.

A simple case is the equation AG = §y. Given a solution G, using the invariance
of A under translations, we get that AG, = J,, for G, (t) :== G(t — z). Using the
exercise above we can show that A(f «xh) = (Af)*h for any two functions f, h and
then deduce that A(G % g) = AG *x g = 09 * g = g. Hence, we can find a general
solution f for Af = g by solving a single simpler equation AG = §y. The solution

G is called Green’s function of the operator.

Exercise 1.8.1. Let A be a differential operator with constant coefficients (i.e. as

above).
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(1) Choose any solution for the equation AG = &y, and describe the conditions
G has to meet without using generalized functions.

(2) Without using generalized functions, explain the equation A(G * g) = g we
got for the solution G.

(3) Solve the equation Af = g (where A = 88—;2 is the Laplacian).

1.9. Regularization of generalized functions.

Definition 1.9.1. Let {&\}acc be a family of generalized functions. We say the
family is analytic if (Ex, f) s analytic as a function of A € C for every f € C°(R).

Example 1.9.2. We denote

2 x>0

0 z<0

and define the family by &), = xj\r Re(\) > —1. The behavior of the function changes
as A changes: When Re(\) > 0 we have a continuous function; if Re(A) = 0 we get
a step function and for Re(\) € (—1,0), xi will not be bounded. We would like to
extend the definition analytically to Re(\) < —1.

Deriving xi‘ (both as a complex function or as we defined for generalized function)
gives & = X -& 1. This is a functional equation which enables us to define
En_1 = %, and thus extend &y to every \ € C such that Re(\) > —2, and for every
A by reiterating this process. This extension is not analytic, but it is meromorphic:

it has a pole in A = 0, and by the extension formula, in A = —1,-2,....

This is an example of a meromorphic family of generalized functions. We now
give a formal definition. The family {&)}rec has a set of poles {\,} (poles are
always discrete), whose respective orders are denoted {d, }. A family of generalized
functions is called meromorphic if every pole \; has a neighborhood Uj;, such that
(&, f) 1s analytic for every f € C°(R) and A; # X € U;.

Exercise 1.9.3. Find the order and the leading coefficient of every pole of £y 1= a?ﬁ‘r

Example 1.9.4. For a given p € Clz1,...x,], similarly to before set,

p(ry,...2,)N >0

pi(zy,. . .x0) = .
0 <0

The problem of finding the meromorphic continuation of a general polynomial was
open for some time. It was solved by J. Bernstein by proving that there exists a
differential operator Dpi = b(\) ~pf‘[1, where b(\) is a polynomial pointing on the
location of the poles.

Exercise 1.9.5. Solve the problem of finding an analytic continuation for py(z1,...x,)N

in the following cases:



(1) p(x,y,2) :
(2) p(z,y,2):

GENERALIZED FUNCTIONS LECTURES

22 +y?+22—aanda €R.

x2+y2722‘

12
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2. TOPOLOGICAL PROPERTIES OF C2°(R"™)

We want to analyze the space of distributions C~°°(R™). For this aim, we want to

introduce a topology on this space.
2.1. Normed spaces.

Definition 2.1.1. A normed space over R is a vector space V over R with a
function || - || : V — Rxq satisfying

(1) [|Av][ = [A] - |v]|

(i) [|v + w|| < [Jv]] + [[w]]

(iii) ||v]] =0 <= v =0

If we weaken () to state only ||0|] = 0 we will get the definition of a semi-norm.
The norm defines a Hausdorff topology on V.

Example 2.1.2. (i) [P := {sequences x,, in R| > |z, [P < oo}
(i) LP(R) := {measurable f : R — R||f|P is integrable on R}.

(iii) CP(R) := functions with p continuous bounded derivatives,

P
.: (i)
If1 = sgglf (@)].

=17

Let V be a normed space, and B := {v € V' |||[v|| < 1} be the unit ball.
Exercise 2.1.3. If dimV is finite then B is compact.
Corollary 2.1.4. Any finite-dimensional subspace of any normed space is closed.

Proof. Let V be a normed space, W C V be a finite-dimensional subspace. Let
v € W, and let K be the ball in W with center at 0 and radius 2||v||. Then v
lies in the closure of K. On the other hand, K is compact and thus closed. Thus
ve KCW. O

Infinite-dimensional subspaces are not always closed. They might even be dense - for
example the space of bounded infinitely-differentiable functions in the space of all
bounded continuous functions. One can also have non-continuous linear functionals

- these are precisely the non-zero functionals with dense kernels.
Proposition 2.1.5. If B is compact then dimV is finite.

Proof. Note that B can be covered by open balls of radius 1/2: B C J 5 B(=,1/2).
If B is compact then this cover has a finite subcover. Denote the centers of the
subcover by {z;|};, and let W := Span({z;}?_;). Then

Bc|JB(@i1/2) cW+1/2BCW +1/4BC ...

i=1
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Thus, any v € B can be presented as wy, + z; for any k& € N, where wy, € W and
||2]] < 27%. Thus, v = limwy. But W is finite-dimensional, thus closed, and thus
v € W. Thus V =W and thus dimV = n. (]

2.2. Topological vector spaces.

Definition 2.2.1. A topological vector space (or linear topological space) is a
linear space with a topology such that multiplication by scalar and vectors addition
are continuous. More precisely, there exist continuous operations:

(1) +: VXV =V,

(2) - :RxV —=V.

This demand limits the topologies we can have on V.

Remark 2.2.2. In this definition V is a vector space over R, but in the same way
one defines topological vector spaces over any topological field, e.g. over C or over
the field of p-adic numbers that we will define later.

Since addition is continuous, so is translation by a constant vector. This makes
all points of a topological vector space similar - the open neighborhoods of every
point x are, roughly speaking, the same as those of 0. This property is called
homogeneity.

We assume the topological vectors spaces we consider are well behaved. More specif-
ically, we assume all topological vector spaces are Hausdorff, and locally convex (see
definition bellow). Note that given a non-Hausdorff space V', we can quotient V' by

the closure of {0} and get a Hausdorff space.

Definition 2.2.3. Let V be a topological vector space over R.

(1) We say that a set A CV is convex if for every a,b € A the linear combi-
nation ta + (1 —t)b € A for any t € [0, 1].

(2) We say that V islocally convex if it has a basis of its topology which consists
of convex sets.

(8) We say that a set W CV is balanced if \W C W for all X € R satisfying
[A| < 1. Note that a conver set C is balanced <= it is symmetric
Cc=-C).

(4) For every open convex balanced set 0 € C in'V and x € V we define a
semi-norm Ng(x) = inf{a € R>o: £ € C}.

Exercise 2.2.4. Let V' be a topological vector space over R.

(1) Show that for every neighborhood U of O there exists an open balanced set
W such that 0 e W C U.

(2) Find a topological vector space which is not locally convex (not necessarily
of finite dimension).

(3) Prove that 'V is Hausdorff <= {0} is a closed set.
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(4) Show that if V is finite dimensional and Hausdor(f it is isomorphic to R™.

Remark 2.2.5. From the homogeneity of V, we get that {0} is a closed set <=
{z} is a closed set Vx € V. The previous exercise shows that a linear topological

space satisfies the Ty separation axiom <= it satisfies Ts.

Exercise 2.2.6. Let 0 € C' be an open convex set in a topological vector space V.

(1) Show that No(z) < oo for allxz € V.
(2) Show that if furthermore C is balanced then N (x) is a semi-norm (that
1s satisfies all the axioms of a norm, but can get zero values for non-zero

input).

In a locally convex space we have a basis for the topology consisting of convex sets.
We can assume all the sets are symmetric. Firstly, note that from the homogeneity
of the space it is enough to show this for open sets around 0. Then, given any
open convex neighborhood A of 0, we know AN —A is a (non-empty) symmetric
convex open subset of A. We therefore have a basis for our topology consisting of
symmetric convex sets.

Furthermore, there is a bijection between semi-norms on the space and symmetric
convex sets. Given a semi-norm N on V, the bijection maps N to its unit ball
{z € V| N(z) <1} (exercise: see this is indeed symmetric and convex!). Note the
semi-norm N (x) we defined is not a norm. Indeed, if C contains the subspace
span{v} for a non-zero v, we get that No(v) = 0 where v # 0. However, given
the basis T for our topology, we can not get Ne(v) = 0 for all sets C € T since in
this case we would have span{v} C [\ C, contradicting the Hausdorffness of our
space. cet

Definition 2.2.7. A set C C V is absorbent if Vx € V there exists A € R such
that 5 € C, i.e. multiplying C by a big enough scalar can reach every point in the
space. For absorbent C C V' we have that No(v) < oo for all v € V. Note that
every open set containing 0 is absorbent, and thus we can define a semi-norm for

every set in the basis of the topology at {0}.

Example 2.2.8. The segment {(z,0)|x € [0,1]} in R? is not absorbent, and for
y = (1,0) we get nc(y) = oc.

Exercise 2.2.9. Find a locally convex topological vector space V' such that V
has no continuous norm on it. That is, every convex open set C contains a line

span{v}, so No(v) = 0.

In conclusion, a locally convex space possesses a basis for its topology consisting of
sets which define semi-norms. Some authors use this as the definition of a locally
convex space.

Generalizing the proof of Proposition 2173, one can prove the following theorem.
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Theorem 2.2.10 ([Rud0f, Theorem 1.22]). Ewery locally compact topological vec-

tor space has finite dimension.

2.3. Defining completeness. Given a metric space X, a point belongs to the
closure of a given set U if and only if it is the limit of a sequence of points in U.
The convergence of the sequence (a,, )22 ; to the point z is defined by requiring that
for any € > 0 there is N € N such that d(a,,z) < € whenever n > N. This is
equivalent to requiring that for any neighborhood U of z there is some N € N such
that a,, belongs to U for all n > N.

For a general topological vector space V', even though we do not necessarily have a

metric on V, we can define Cauchy sequence:

Definition 2.3.1. A sequence (x,)52; C V is called a Cauchy sequence, if for
every neighborhood U of 0 € V there is ng € N such that m,n > ngy implies

Ty — Ty €U.

Remark 2.3.2. More generally, if X has a uniform topology, then we can define a
notion of a Cauchy sequence. We will not give the definition of a uniform topology,
but we note that any topological group possesses a uniform topology, and indeed one
can define a notion of a left (resp. right) Cauchy sequence as follows: ()22, is
a Cauchy sequence if for every neighborhood U of e € G there is an index ng € N

such that m,n > ng implies x; 'z, € U (resp. xpxt € U).

Definition 2.3.3. Let V be a topological vector space.

(1) V is called sequentially complete if every Cauchy sequence in it converges.
(2) A subset Y C V is called sequentially closed if every Cauchy sequence
{yn}S2, in'Y converges to a point y €Y.

The next example shows that we can have sets Y that are sequentially complete
but not closed. This example also shows that if the topology is too strong (e.g. not

first countable), then the notion of Cauchy sequence might not be useful.

Example 2.3.4. Let X be the real interval [0,1] and let T be the co-countable
topology on X; that is, T consists of X and @ together with all those subsets U
of X whose complement UC is a countable set. Let A = [0,1), and consider its
closure A. We have that {1} is not open because X\{1} = [0,1) is not countable,
and thus A = [0,1]. Since 1 is not an element of A, it must be a limit point of A.
Suppose that (a,)52 is any sequence in A. Let B = {a1,aq9,...} and let U = B°
be its complement. Then 1 € U and since B is countable, it follows that U is an
open neighborhood of 1 which contains no member of the sequence (a,)S, . It
follows that no sequence in A can converge to the limit point 1. This argument can
be applied to show that A has no Cauchy sequences, so it is (trivially) sequentially

closed, but is not closed.
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Definition 2.3.5. Let V be a topological vector space.
(1) An embedding i : V — W is called a strict embedding if i : V — (V) is
an isomorphism of topological vector spaces.

(2) V is called complete if for every strict embedding ¢ : V. — W, the image
o (V) is closed.

Remark 2.3.6.
(1) Equivalently, we can define that a space V is complete if every Cauchy net

s convergent. From this definition it can be easily seen that any complete
space X 1is also sequentially complete.

(2) In the category of first countable topological vector spaces, completeness is
equivalent to sequentially completeness, and indeed, there the notion of a
Cauchy net is equivalent to the notion of a Cauchy sequence, and a set
Y C X is closed <= it is sequentially complete.

Exercise 2.3.7. Find a sequentially complete space which is not complete. Hint:

see the above example.

Definition 2.3.8. Let V be a topological vector space. A space V is a completion
of V if V is complete and there is a strict embedding i : V — V and i(V) is dense
inV .

Remark 2.3.9. We can also use a universal property in order to define the
completion of V. A strict (?) embedding i : V — V is a completion of V if:
(1) V is complete.
(2) For every map ¢ : V. — W where W is complete, there is a unique map
dw 2V — W, such that ¢ = ¢y oi.

Exercise 2.3.10 (*). Show that these two definitions of completeness are equiva-
lent.

It is often easier to show that a space is complete using the universal property. In
this way we avoid dealing with Cauchy nets or filters. However, in order to show

such completion exists one has to use these notions.

Exercise 2.3.11.

(1) (%) Show that every Hausdorff topological vector space has a completion.
(2) Show that in the category of first countable topological vector spaces both
definitions of completion are equivalent to being sequentially complete.

2.4. Fréchet spaces. Reminder: A Banach space is a normed space, which is
complete with respect to its norm. A Hilbert space is an inner product space which
is complete with respect to its inner product.



GENERALIZED FUNCTIONS LECTURES 18

Theorem 2.4.1. (Hahn-Banach) Let V' be a normed topological vector space, W C
V' a linear subspace, and C € Rsg. Let f: W — R be a linear functional such that
\f(z)| < C ||zl for all z € W. Then there exists f : V — R such that flw = f
and ‘f(x)’ <C:|z| for allxz € V.

Exercise 2.4.2. Let V be a locally convex topological vector space (i.e, not neces-
sarily normed), and let f: W — R be a continuous linear functional, where W C'V

is a closed linear subspace of V. Show that f can be extended to V.

Definition 2.4.3. The space of all continuous functionals on a topological vector

space V' is called the dual space and denoted by V*.

Exercise 2.4.4. Let W C V be infinite-dimensional vector spaces. Show that any
linear functional on W can be extended to a linear functional on V. (There is no

topology in this exercise).

Definition 2.4.5. A topological space (X, 7) is said to be metrizable if there exists

a metric which induces the topology T on X.

Remark 2.4.6. Every normed space is Hausdorff and locally convex, since there is
a basis of its topology consisting of open balls, which are convexr. We also know that
every normed space is metric. However, metrizability does not force local convexity

and vice versa.

Definition: A topological space X is called a Fréchet space if it is a locally convex,

complete space which is metrizable.

Exercise 2.4.7. Show that for a locally convex topological vector space V' the fol-

lowing three conditions are equivalent.

(1) V is metrizable.

(2) V is first countable (that is it has a countable basis of its topology at every
point).

(8) There is a countable collection of semi-norms {n;}ien that defines the basis
of the topology of V', i.e, U; . = {x € V|n;(x) < €} is a basis of the topology
at 0.

Hint: given a countable family of semi-norms define a metric by

= oyl
d =
@9 = 2 T e

Exercise 2.4.8. Let V be a locally convex metrizable space. Prove that V is com-

plete (and consequentially is a Fréchet space) <= it is sequentially complete.

Recall that the completion of a normed space V with respect to its norm is the
quotient space V of all Cauchy sequences in X under the equivalence relation

(,)22 ~ ()2, <= lim ||z, — ys|| = 0. In particular, V is a Banach
n—oo
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space. Completing V' with respect to a semi-norm N results in the elimination of
all elements {x € V|n(z) = 0}. The quotient space equipped with the induced

norm on the quotient then yields a Banach space.

Example 2.4.9. Let V be the space of step functions on R, and consider the norm
I fll1 :== [ |f(z)|dx. The completion of V with respect to || - ||1 is isomorphic to the
Banach space L*(R) (equipped with the norm on the quotient).

Let V be a Fréchet space, then we have a family of semi-norms {n;};cy on V. We

can form a new system of ascending semi-norms by replacing n; with mgx{nj}. Let
It

V; be the completion of V' with respect to n;.

If n; and n; were norms (and not just semi-norms), which satisfy Vo € V,n;(z) >
n;(z), we would get a continuous inclusion V; — V;. A sequence of ascending
norms n; < ng < ... thus gives rise to a descending chain of completions V; <
Vo = V3 «— .... Our space V is then an inverse limit, V = lEnVi, which in this case
has a very nice description: it is an intersection V = [ V; of the Banach spaces
defined above. <

If n; and n; are semi-norms, we get a continuous map V; — V; as every converging
sequence is mapped to a converging sequence which need not be injective. In this
case V will be the inverse limit IEnVi where the topology on V' is generated by all
the sets of the form <pi_1(Ui) where U; is an open set in V; and ¢; : V = ﬁinVi -V

is the natural projection map which is part of the data of limV;.

Example 2.4.10. The following are examples of Fréchet spaces.
(1) V := C>°(S') is a Fréchet space. Define the norms {n;}ien by | f]
max sup {|fU)(x)|}. The completion with respect to ny, is Vi = C*(S'),
3<i pegt

n; -

the space of k-times differentiable functions. This family of norms satisfies
Vz € V we have that nj(x) < n;(z) if j <1, so by the argument above we
indeed have C*(S') = ) Ck(S1).

keN

(2) V.= C>(R) is a Fréchet space. Define n; by || f]

n; i= max sup {|f0) (z)|}
ISt zeK;

where K; = [—i,4]. Notice that this gives an ascending chain of seminorms
so this defines a Fréchet space V- = limV;. A similar argument shows that
C>(R™) is a Fréchet space, as well as C>®(M) for every smooth manifold
M. In these cases we take the supremum over all the possible directional
derivatives.

(3) Let K be a compact set and n € Ny, then CP(R™) is a Fréchet space.
Let k € Ny, Cf( (R™) is a Banach space and in particular a Fréchet space.
C°(R™) is not Fréchet.

2.5. Sequence spaces. An important family of examples of Fréchet spaces are

sequence spaces.
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Example 2.5.1. The space ¢P is the space of all sequences (x,)5%, with values in

R, such that i |zn|P < oco. It is a Banach space, and for p = 2 it is a Hilbert
space. =t

Let SW(N) be the space of all the sequences which decay to zero faster than any
polynomial, i.e. ¥n € N| lir(r)loa:i <" = 0. A family of norms one can consider when

71—
analyzing these spaces is ||(2:)221||n = sup{|x; -i"|}. It is not hard to see that with
ieN

respect to these norms every Cauchy sequence converges. Define the topology on
SW(N) using by the family of norms || - ||n, then SW(N) is a Fréchet space. This
is an example of a Fréchet space which is not a Banach space.

Remark 2.5.2. How can we see every Cauchy sequence converges? Why is not it
a Banach space?

The dual space SW(N)* is {(2;)32, | In,c: |z;| < c-i™}. This is a union of Banach
spaces, as opposed to the intersection we had when defining the completion of a
Fréchet space (we will discuss the dual space more thoroughly next lecture). Note
that both SW(N) and SW(N)* contain the subspace of all sequences with compact

support (that is sequences with finitely many non-zero elements).

Example 2.5.3. Smooth functions on the unit circle, C°>°(S'), correspond to se-
quences (x;)52, decaying faster than any polynomial. More precisely, we can view
[ € C=(SY) as a periodic function in C*°(R) which can be written as f(x) =
o) .
ST an-e™ (for functions of period 1). We thus attach to f the sequence (a,)2

n=1
n=-—oo

where a,, decays faster then any polynomial.

Exercise 2.5.4.

(1) Show that the Fourier series map F : C*®(S') — SW(Z) via f — ap
is an isomorphism of Fréchet spaces. In other words, show that it is a
bijection and that for any semi-norm P; of SW(Z) there exists a semi-
norm S; of C*(S') and C € R such that for any f € C°°(S') we have
that [|7(f)]
theorem for Fréchet spaces).

(2) Define a Fréchet topology on

p, <C- Hf”s] (and vice-versa, or use Banach’s open mapping

S(R) = {f € C*(R)| lim ™ (z) - 2* — 0 for all k}.
2.6. Direct limits of Fréchet spaces.

Definition 2.6.1. The direct limit of an ascending sequence of vector spaces is the

space Voo := |J Vi. This is not a Fréchet space, but a locally convex topological
neN
vector space. A convex subset U C Vi, is open <= U [\ V, is open in V,, for all

n.
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Every space of the form C*°(K) can be given the induced topology from C*°(R).
Taking the union of the ascending chain

C=([-1,1]) € =([-2,2]) C ...

gives all smooth functions with compact support C°(R) = lim C°°([—n,n]) as a
n—oo
direct limit. However, this is not a Fréchet space - it is a direct limit and not an

inverse limit. A basis of the topology of C°(R) at 0 is given by the sets:

Uen k) = »_{F € C™(R) [supp(f) € [-n,n] and |f*)] < e},
neN

where €, € Ros, k, € Ny and 3 denotes Minkowski sum, that is A+ B := {a+bla €
A,be B}.

Exercise 2.6.2. Show that a sequence (f,)5%2; in C°(R) converges to f € C°(R)
with respect to the topology defined above if and only if it converges as was defined
in the first lecture (Definition [Z23), i.e.,

oo

(1) There exists a compact set K CR s.t. |J supp(fn) C K.

n=1

(2) For every k € N the derivatives f,gk)(a:) converge uniformly to f*)(x).

Remark 2.6.3. Notice that the topology on CS°(R) is complicated- it is a direct

limit of an inverse limit of Banach spaces!

Exercise 2.6.4. Show that taking a convexr hull instead of a Minkowski sum (i.e.,
defining Uie, g i= comvnen{f € C(R)|supp(f)  [~n,nl, FE) < €,}) wil
result in the same topology. This shows that C°(R) is a locally convex topological

vector space (Note that this follows since this is a direct limit of Fréchet spaces).

Finally, Fréchet spaces have several more nice properties:

e Every surjective map ¢ : Vi — V5 between Fréchet spaces is an open map
(it is enough to demand that V3 is Fréchet and V; is complete).

e In the previous item, defining K := ker ¢, one can show that the quotient
Vi/K is a Fréchet space, and ¢ factors through V4 /K, that is ¢ : V; —
Vi/K — Vs, where the map Vi /K — V5, is an isomorphism.

e Every closed map ¢ : V; — V5 between Fréchet spaces can be similarly
decomposed. Firstly, by showing Im(¢) is a Fréchet space, and then by
writing Vi — Im(¢) — V5.

2.7. Topologies on the space of distributions.

Remark 2.7.1. Let U C R™ be an open set, we define C~°°(U) to be the continuous
dual of C*(U).

Definition 2.7.2.
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(1) Let V be a topological vector space. A subset B C 'V is called bounded if for
every open U CV there exists A € R such that B C \-U.

(2) Denote V* = {f : V — R : f is linear and continuous}. There are many
topologies one can define on V*, we mention here two of those. Let € > 0
and S CV, and set Ucg ={f € V*:Vz € S, |f(z)| < €}.

(a) The weak topology on V*, denoted V5. The basis for the topology on
Ve at 0 is given by:

By :={Ucs:€>0,S is finite} .

(b) The strong topology on V*, denoted V. The basis for the topology on
V& at 0 is given by:

Bs :={Ues:€¢>0, S is bounded} .

In particular, every open set in V; is open in V*.

By definition, a sequence {f,}°2 ; in V* converges to f € V* if and only if for every
Ue,s € Bthere exists N € Ns.t. (f,—f) € Ue,s forn > N. That is, Vo € S we have
that |f,(z) — f(x)| < e. Therefore (f,,)22; converges to f w.r.t the weak topology
<= it converges point-wise, and it converges to f w.r.t the strong topology <=
it converges uniformly on every bounded set.

Remark 2.7.3. If the topology on V is given by a collection of semi-norms (such
as in Fréchet spaces), a set is bounded if and only if it is bounded with respect to

every Semi-norm.

Theorem 2.7.4. (Banach-Steinhaus) Let V' be a Fréchet space, W be a normed
vector space, and let F' be a family of bounded linear operators Ty, : V. — W. If for
allv € V we have that sup ||T(v)|lw < oo then there exists k such that

TeF

sup IT()||lw < oo.
TEF,||lv]|x=1

(we assume that ||v]|x < ||v||k+1 VE).

Example 2.7.5 (Fleeing bump function). Let V =R and let 1 be a bump function.
Notice that g,(x) = ¥(xz + n) converges pointwise to 0 (and hence also in the weak
topology). Note that g, does not converge uniformly to 0, but it does converge

uniformly on bounded sets to 0, so it strongly converges to 0.

Assume V is a Fréchet space. Recall that we can define V' as an inverse limit
o0

of Banach spaces V = [\ V; where V; is the completion of V' with respect to an
i=1

increasing sequence of semi-norms n;. If we dualize the system {V;}52, we get an

increasing sequence V* C V;¥ C ... C Vg = limV}*, and get that V¢ is a direct limit

of Banach spaces (as a topological vector space).
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Exercise 2.7.6. Let S C C°(R) be a bounded set, then there exists a compact
K C R such that S C CZ(R).

Exercise 2.7.7. Consider the embedding C°(R) — C~>°(R), defined by f +— &;.
Show that:

1) This embedding is dense with respect to the weak topology on C~>°(R).

2) This embedding is dense with respect to the strong topology on C~°°(R).

3) C~°°(R) with the weak topology is sequentially complete but not complete.

4) C—°(R),, = C=(R)# where the latter is the full dual space (that is all function-
als, not necessarily continuous).

5) C=°(R)s is complete.

3. GEOMETRIC PROPERTIES OF C'~*°(R")

3.1. Sheaf of distributions.

Definition 3.1.1. Let U; C Uy C R”™ be open sets. Every function f € C(Uy)
can be extended to a function extof € CZ°(Uz) by defining extof |u,\u,= 0, hence
we have an embedding C°(Uy) «— C(Us). This embedding defines a restriction
map C~*°(Uz) — C~°(Uy), mapping & — & |u,, with (£ |u,, ) = (&, exto f).

Remark 3.1.2.
(1) For an open U C R™, the topology we defined on C° (U) is generally not the

same as the induced topology when considering it as a subspace of C°(R™).
(2) For every compact K C U, we have C3 (U) C C° (U). Here the topology
on C¢ (U) is indeed the induced topology from C° (U).

Next we prove that with respect to the restriction operation for distributions defined

above, the space of distributions is equipped with a natural structure of a sheaf.

Lemma 3.1.3 (Locally finite partition of unity). Let I be an indexing set and
U= U U be a union of open sets. Then there exist functions A\; € C (U) such
il
that:
(i) supp(A;) C U
(i) For every x € U, there exists an open neighborhood U, of x in U and a finite
set S, of indices such that A\;|y, =0 for alli ¢ S.
(iii) For every x € U, Y, Ai(x) = 1.

Proof. Since R™ is paracompact, we can choose a locally finite refinement V; of
U, ie. a set J, a function a : J — I and an open cover {V;};cs of U such
that V; € U, for any j € J and any x € U has an open neighborhood U, that
intersects only finitely many V;. Furthermore, we can assume that Vj; are open

balls B(xj,r;). Since the closures B(z;,r;) are compact, there exist €; such that
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{B(xj,r; — €;)}jes still cover U. For any j, let p; be smooth non-negative bump

functions satisfying Pi | Bz, ) = 1 and Pj|B(a:,-,rj)c = 0. For any ¢ define

Tj—€j

pi(z)
== z el
fZ<LL‘) — ZjEJ pj(x) .
0 x ¢ Ui

Note that the sum in the denominator is finite. Now, for every i define
N(@) = Y fia)
jea=1(d)

O

Theorem 3.1.4. With respect to the restriction map defined above, distributions
form a sheaf, that is given an open U C R™, and open cover U = |J U;, we have:
i€l
(1) (Identity aziom) Let & € C=>°(U). If for every i we have that §, =0,
then &, = 0.
(2) (Glueability axiom) Given a collection of distributions {&}icr, where & €
C~=°(U;), that agree on intersections, i.e. Vi,j € I we have that &;

&

UiﬂU]‘ =

U.nu;, there exists £ € C~°°(U) satisfying &y, =& for any i.

Proof. Choose a locally finite partition of unity 1 = > ._; A; corresponding to the

cover U; by Lemma BT3.

el

(1) Given f € C*(U) we need to show (£, f) = 0. Let f; := A;f. Then
f = Z fi7 and
i=1

n

&N =D =D (&) =0
i=1

i=1
(2) Note that for any compact K C U we then have that A\;|x = 0 for all but
finitely many i. Now suppose we are given &; € C~°°(U;) which agree on
pairwise intersections. For any f € C°(U) define
(& 1) = (& Nif).
iel

Since f is supported on some compact K this sum is finite. It is clear that

¢ is linear, we need to prove that it is continuous, and that |y, = &;.
Let f, converge to f, where all functions lie in C°(U). Then also

Ai - fu — Ai - f as the multiplication (f,g) — f - g is continuous. Since
(oo}

U suppf, C K for some K C U, we have f\; =0 for all but finitely many

n=1

indices i so we can write (£, f) = Zf:1<§i, Aifyand (€, fn) = Zf:1<§i, Aifn)
for any n. By continuity of & we get that (§;,\; - fn) — (&, \i - f) and
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therefore
(€ f) = D (& A+ fu) = Z@,Ai )= (& 1),
so £ continuous. NC:W let f € C°(Uj), then
(6 1) =D {6 Mif) = D (& Aif) = @,ZA =10
where the se(:ond equality fzollows from the fact that \;f € C(U; N U;)
and &;

A second way to prove continuity of £ is working with the open sets

in the topology of C°(U). As & are continuous, they are bounded in
some convex open set 0 € B;, so [(&;, f)| < € for every f € B;. Notice

that conv(|J B;) is open in @, ; C°(U;), where each B; is an open set in
i€l
Cg°(U;) and hence a set in @, ; C°(U;)) as conv(|J B;) N C2(U;) = B;.
icl
Consider the map ¢ : @, ; C°(U;) — C&(U) given by extension by zero
and summation. Note that B := ¢(conv(|J B;)) is open. Now let f € B.
i€l

We can write f = Y a;f; where f;, € Bj, and > a; = 1. Therefore
Jji=1

E(f) =>¢&(aifi) <D a;-e=eand £ is bounded on B.

3.2. Filtration on spaces of distributions.
Exercise 3.2.1. Let U C R", show that in C°(R™) we have

Cx(U)={f € C>®(R"):Va ¢ U, V differential operator L, Lf(z)=0}.
Consider U = R™\R¥. We wish to describe the space of distributions supported on
R¥, which we denote C,>°(R™). Notice that:

Cp®(R") = {¢ € C™=(R™)|Vf € C(R™\R*) we have (¢, f) = 0}

and by continuity this is the same as:
{§ € CT(RM)|Vf € C2(RM\R¥) we have (€, f) = 0} = {§ € CT*(R")[¢|v =0},

where V' = C(U) as described in Exercise B2. Notice that we can define a
natural descending filtration on V' by:
V C V= {f € CR")|Vi € NI7F with |i| < m we have (gj;Rk =0}
x
We immediately see that f € V,, implies f € V,,_1, hence this is a descending
chain. After dualizing, this defines an ascending filtration on Cp,>(R™) by:

Fon(Cp®(R") = Vi = {§ € Cp*(R") = &y, = 0} € Cp® (R™),
Exercise 3.2.2. Show the following.
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(1) () V=V = C (RO\RF).

m>0

(2) U Fn # Cp*(R™).

m>0

(3) Let U C R™ be open and U compact. Show that for every & € Cp>°(R™)
there ezists £’ € F,, such that &ly = €'|u, thus |y F; covers Cri” (R™)
locally.

(4) Show that F,, is stable under coordinate changes. More generally, let ¢ :
R™ — R™ be a smooth proper map that fizes R*¥. Show that for every & € Fj,

©*(§) € Fi, where (¢*(§), ) := (&, f o).

i —oo (mk
Theorem 3.2.3. As vector spaces we have Fy,, ~ w where i € N§~F
li|<m
and al(c—a;;(w)) is the image of C~°°(RK) under the differential operator 88—9; (note

that we only differentiate with respect to coordinates not lying in RF ).

Proof. We prove here the statement for m = 0, and return to the case where m > 0
in section 5. Define a map res* : C~°(R*) — Fyy by (res*¢, f) = (&, f|g») for every
¢ € C~°(R¥). Notice that res*¢(f) = 0 for any f € Fy by definition so it is well
defined.

Furthermore, res* is injective since if (res*¢, f) = (&, flge) = 0 for all f € C°(R™)
then ¢ = 0 since the restriction res : C°(R") — C°(R¥) is surjective.

It is left to prove surjectivity. Define an extension map ext* : Fy — C~(RF)
by (ext*n, f) = (n,ext(f)) where ext(f)ge = f for every f € C2°(RF). Note
that this is well defined since if we choose a different extension ext'(f) we get
that (n,ext’(f) — ext(f)) = 0 since (ext’(f) — ext(f))rs = 0 and thus ext*(n) =

ext™(n). Also, we have that ext*n is a continuous functional, since we can choose

[e%9)
n=1

the extension ext(f) in such a way that if (f,,)52, converges to f then (ext(f,))
converges to ext(f). Finally, note that since res*ext*(n) = 7, we have that ext* is

indeed surjective, and we are done. O
i —oo k
Remark 3.2.4. Note that if we now define G, = P a(caiw we get that
li|<m
Gm = m/Fm—l-

: _ 9(C = ®Y)) o :
Exercise 3.2.5. Show that G, and G(;) = ———5.+, where i is some multi-

index, are not invariant under changes of coordinates, that is we might have that

0(Gm) # G and (G ;) # Gy for a diffeomorphism ¢ : R™ — R".

3.3. Functions and distributions on a Cartesian product. Consider the nat-

ural map
¢ : CZ(R") ® CE(RY) — CZ(R" x RY), given by ¢(f ® g)(z,y) — f(2)g(y)-
Exercise 3.3.1. Show that this map is continuous and has a dense image.

Let us now define a natural map
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®: C7°(R") @ C~®(RF) = C~(R" x R*) by
(@(§®@n), F) == (n, f), where f is given by f(y) := (& Flrnx{y})-
Exercise 3.3.2. Show that this map is continuous and has a dense image.

Let us now denote by L(C~°°(R"),C~>°(RF)) the space of all continuous linear
operators, and define a natural map

S: C™°(R" x R¥) — L(C°(R™), C~>°(R¥)) by
(SN, 9) = (& o(f @9))

Exercise 3.3.3. Show that the map S

(i) is continuous and has a dense image, where L(C°(R™), C~>(R¥)) is endowed
with the topology of bounded convergence.
(ii) maps C=(R"™ x R¥) to L(C(R™), C>=(R*)) by the formula

(SN = | [flz,y)g(x)dx.

R®

Remark 3.3.4. (i) Note that the map S is similar to the matriz multiplication.

(ii) The map S is in fact an isomorphism. This statement is the Schwartz kernel
theorem, see [IreG7, Theorem 51.7]

(iii) There are two natural topologies one can define on a tensor product: the injec-
tive one and the projective one. If the spaces are nuclear these two topologies
coincide. We will not define these notions in the present course, but all the
topological vector spaces we consider are nuclear, and thus our tensor products
possess natural topology. If we complete C~°(R"™) @ C~>(R¥) with respect
to this topology, the map ® will extend, and will become an isomorphism.
The analogous statement for the map ¢ does not hold, but it will hold if we
omit the compact support assumption. In other words, the extension of ¢ to
the completed tensor product C*(R™)&C>®(R¥) by the same formula is an
isomorphism with C*°(R™ x R¥), see [Tte6d, Theorem 51.6].
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4. p-ADIC NUMBERS AND /-SPACES

One motivation to define the p-adic numbers comes from number theory. Assume
we are given a polynomial equation p(z) = 0 where p € Z[z]. If it has an integral
solution zy € Z, then surely it satisfies the equation p(z) = 0 mod n for every
n € N. Now, consider the converse question - if we know that it has a solution
modulo n for every n € N, does it have an integral solution in characteristic zero?
In some cases, such as for quadratic forms, the answer, together with demanding
that there also exists a real solution, is yes (see the Hasse principle for more on
this). To know whether there exists a real solution, we can use simple methods
from analysis. The question of whether an equation has a solution mod n for every
n € N can be simplified in two steps. Firstly, by the Chinese remainder theorem
it is enough to check whether the equation has a solution mod p" for every n € N.
The second step is then by defining a ring Z,, called the ring of p-adic integers,
such that if there exists a solution = € Z, it implies that there is a solution mod
p™ for every n € N. The field Q of p-adic numbers is then defined to be the field of
fractions of Z,,.

A different motivation for introducing the p-adic numbers comes from a more an-
alytic point of view. One construction of the real numbers is via completing Q
with respect to its absolute value. An interesting question is whether this can be
generalized, that is what are the possible absolute value-like functions on Q and
their completions. It turns out that besides the standard and the trivial absolute
values, every absolute value (up to equivalence) is a p-adic absolute value (this is
essentially Theorem ETR below). The p-adic numbers are then obtained as the
completion of Q with respect to such an absolute value.

In this manuscript we take the second approach, starting with defining what prop-

erties we demand from an absolute value function.

4.1. Defining p-adic numbers.

Definition 4.1.1. A topological field is a field F, together with a topology, such
that addition, multiplication and the multiplicative and additive inverses are con-

tinuous operations with respect to this topology.

Definition 4.1.2. Given a field F, an absolute value is a function |-|: F — Rxg
that satisfies:

(1) The triangle inequality : |x +y| < |z| + |y|.

(2) |xllyl = |yl
(8) |zl =0z =0.

If furthermore |z +y| < max{|z|, |y|}, we say that || is a non-Archimedean absolute

value (and Archimedean otherwise).
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For topological fields we demand the absolute value to be a continuous map. Notice
that every absolute value satisfies |1] =1 (as |1| = |1] - |1], and |1| # 0).

Example 4.1.3. The following are absolute values:

—0
(1) The trivial absolute value, defined by |x|o := v
x # 0.
x>0
(2) The standard absolute value on R: |- |o =
—x x<0.

Definition 4.1.4. Let p be a prime number. We define the p-adic absolute value
of x € Q by

p~ ", forz#0,

0, forx =0,

where x = p"¢ and a,b € Z, are coprime to p.

|z|p =

Exercise 4.1.5. Show that | - |, is indeed an absolute value on Q, and that it is

non-Archimedean.

Definition 4.1.6. Two absolute values |-| and |-|" on F are called equivalent, and

denoted | - | ~ || if they induce the same topology on F.

Exercise 4.1.7. Let |- | and | - | be two absolute values on a field F. Show that

the following are equivalent:

(1) || and | -|" are equivalent.

(2) There exists a € Rsq such that |- | = (| - |")*.

(8) Every sequence which is Cauchy with respect to | - | is Cauchy with respect
to|-].

Theorem 4.1.8. [Ostrowski’s Theorem] Every absolute value |-| on Q is equivalent
to either | - |, for a prime p, the standard absolute value |- | on Q induced from

R, or the trivial absolute value | - |o.

Proof. Let | - | be an absolute value, we show it must be one of the above by
cases. Assume | - | is non-Archimedean, i.e. |z + y| < max{|z|,|y|}, and set a =
{z € Z : |x| < 1}. This set is non empty as |0 = 0, and since we assume | - | is

non-Archimedean it is an ideal of Z since,
(1) @+ 2] < Jal,

and thus if € a, meaning that || < 1, then 2y = x+... +z € a. Consider a
—_————

y times

prime p. If |p| = 1 for every prime, we get that |x| = 1 for every 0 # x € Q,
as |1%| = |p|™!, and thus | - | is the discrete absolute value. Thus we can assume
that there exists p € a (note that for every integer |m| < 1 by (I)), implying that
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_ log|p|
logp ’
lp| = p~°. Taking x = p" ¢ where a,b,n € Z and a and b are coprime to p we get:

we see that

pZ C a C Z and consequentially pZ = a. Now, if we put s =

a a _
el = " 21 = ") 191 = ol = p™" = |ay,
—
=1
showing | - | is equivalent to | - |,.
Now, assume | - | is an Archimedean absolute value. We must have that |n| > 1 for
all non-zero integers n € Z. Otherwise, let n be the smallest positive number such

that |n] < 1, and for every n < z € N write it in base n:
(2) z=ao+an+am’+...+an", for0<a;<n-—1, n" <.

We have |a;| < a; < n, thus

1_ r4+1
|x|<Z|anl|<Zn\n|l— |T| )< "
— N

Since is independent of r, it bounds every x > n, and thus we must have that

1— |n\

|z] < 1 for every x > n as otherwise |z|* > for k large enough. We get that

1—|n
|z] <1 for z < n in the same way by conmderl‘nlg n < z¥ for k large enough. But
this means that |z| < 1 for all € Z, so by the previous step it is equivalent to a
p-adic absolute value, in contradiction to the fact that |- | is Archimedean.

We can thus assume |n| > 1 for all n € N . Recall the number r defined in (B) and

note that r < %ggi We now have:

log x log o
z| < anl 1+ —— ) n|n|lsn,
o Z\ ol < (14 122 ) o2

Using these bounds for z*:

o ] 55

)
. 1
2= < Y Jaillnl’ < 40+ ko >n|n|mﬁ.
1=0

By taking k — oo, we get |x\$ < |n\10g¥n But by interchanging = and n we can

[ < (1+k

implying

get that |n| en < || e (note that if n < = we can repeat this process for z and
log |a|

n* for k large enough). Thus |z| T = = |n| Tew = e loa+ is constant, implying that

_ loglz| _ log|n|

=5 T is constant. Now, note that |z| = z*® for every x and get that,
g T ogn

2] = 2° = [,

finishing the proof. O
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Exercise 4.1.9. Show that given a field F and an absolute value | - | on it the
topology it defines makes F a topological field, i.e. that addition, multiplication,

and the inverse operations are continuous.

Exercise 4.1.10. Non-Archimedean locally compact fields such as Q, have some
interesting properties. Prove the following two:
(1) For every open ball B(x,r) = {y € Q) : |z; —yi| < r} of radius r with
center x we have that B(x,r) = B(x,r) for every ' € B(x,r).
(2) Any two p-adic balls B(x,r) and B(z',r") in Q are either distinct or one

contains the other.
We can now define the p-adic numbers.

Definition 4.1.11. Let p be a prime number. We define the field of p-adic numbers
Qy to be the completion of Q with respect to the absolute value | - |p.

Remark 4.1.12.
(1) The completion is defined just as we did in the case of the Archimedean

norm on Q; by equivalence classes of Cauchy sequences. Therefore, any
element a € Q, is represented by a Cauchy sequence {a,}52; C Q with
respect to | - |p.

(2) We get a space which is an uncountable field of characteristic 0, not alge-
braically closed, locally compact (every point has a compact neighborhood)

and totally disconnected, i.e. every connected component is a point.

Definition 4.1.13. We define the p-adic integers Z, to be the unit disc in Qp,
explicitly Z, = {x € Q, : |z|, < 1}.

Exercise 4.1.14. Show that the p-adic absolute value extends from Q to Q,, that is
show that for every Cauchy sequence {a,}5%; of elements in Q the limit lim |ay|,
n—oo

exists.

Remark 4.1.15. Notice that just like R, this completion is not algebraically closed.

Try to find an equation in Q, for some p which does not have a solution Q.

4.2. Misc. -not sure what to do with them (add to an appendix about

p-adic numbers?)

Theorem 4.2.1 (Taken from Koeblitz Theorem 2 page 11). Every equivalence
class a € Q, for which |al, < 1 has exactly one representative Cauchy sequence of
the form {a;}32, for which:

1)0<a; <p' fori=1,2,...

2) a; = a;+1(mod(pt)) fori=1,2,...

For the proof we will use the following lemma:
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Lemma 4.2.2 (Taken from Koeblitz page 12). If € Q and |z||, < 1, then for
any i there exists an integer a € Z such that ||o — z||, < pt.

chosen in the set {0,1,2,...p" —1}.

The integer o can be

Proof. Let x = a/b written in the form where (ged(a,b) = 1). Since [|zf[, < 1 it
follows that p does not divide b and therefore b and p'are relatively prime. Then
we can find m,n € Z such that bm + np’ = 1 . The intuition is that bm is close to
1 up to a small p-adic length so it is a good approximation to 1 so am is a good

approximation to a/b. So we pick « = am and get:

lae — 2| = [lam — a/b]| = [|a/b]| - [bm — 1|| < [[bm — 1] = ||np'|| < 1/p’
Note that we can add multiples of p’ to « and still have

o = k- p' — || < maz(1/p’,1/p") < 1/p".

Therefore we can assume that « € {0,....p" —1}. O

Proof of Theorem [ZZ. At first we prove the uniqueness: If {a}} is a different
sequence satisfying (1) and (2) and if there exists io such that a;, # aj then
a; # ai(mod(p™)) for every i > ig. Therefore |la; —al| > 1/p® so {a’},{a;} are
not equivalent.

Now we prove existence: Suppose we have a Cauchy sequence {b;} € Q,, we want
to find an equivalent sequence {a;} with the above property. Let N; be the number
such that for every ¢,i" > N; we have ||b, —by/|| < p™? , and we can choose N; to
be strictly increasing with j, and N; > j. Observe that ||b;|| < 1if ¢ > N;. Indeed,
for all ¢ > N7 we have that ||b; — by/|| < 1/p, ||b:|| < max(||bi ||, ||b; — bir||) and for
i" — oo we have that [|by/|| — [[a]|, < 1.

Now we use the lemma and get a sequence {a;} when 0 < a; < p’ such that
|la; = bn, || < p~7. We claim that{a;} is equivalent to {b;}, and satisfies the condi-
tions of the theorem. It indeed satisfies the conditions as:

”aj-‘rl - aj” = ||aj+1 - ij+1 + ij+1 - ij - (aj - bNJ)H

y lag =on, ) <p™

So ajy+1 — a; has at least p’as a common divisor as required.

ij+1 - ij

< mam(Haj_H - ij+1’

Furthermore, for any j and any ¢ > IV; we have

||Cli — b1|| = Hal — aj + a; — ij — (bz — bN,l)H S max(Hai — Cle y 1A — ij H y Hbl — ij H) S p_j.

So {ai} v {bz} O

Now, if we have some {a} € Q, with ||a|]| > 1 then there exists some m such that

|la - p™| <1 and we have numbers with negative powers. Therefore we can present
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the p-adic numbers as:

o0
Qp:=A{ Z a; - p', where a; € {0...p" — 1}}.
i=—k
We define the ring of integers , denoted Z, as Z;, := {z € Q| ||z, < 1} or equiv-
alently Z, := {377 a; - p', where a; € {0...p" — 1}} or equivalently Z, := Z I,
the closure of Z with respect to the p-adic norm. Notice that Z, is indeed a ring

and that the only invertible elements are = € Z, with ||z, = 1.

4.3. p-adic expansions. We want to write the p-adic expansions of elements ¢
in Q. If ¢ € N, that’s just writing its p-base expansion. For example, (126)5 =
”...002001.” Let « := ™ be some rational number, with (n,m) = 1. It is enough
to describe the expansion when p { n (that is, when z € Z, N Q) as otherwise we
can multiply 2 by p* for some k, calculate the expansion, and move the point k
places to the left.

We can’t take remainder of x modulo p, as with integers. Instead, we can calculate
the fraction x = * in F,x for k € N. Thus, the expansion of x in Q, is calculated
inductively:

e Write the digit zo := [7*] € [,

e The nominator of the difference ™ —xy = =—>=0

n

is divisible by p. Redefine

our fraction to be z := % - (% — x0), and continue inductively.

Example 4.3.1. Calculate % € Q. We start by solving the equation 2xy =
1(mod7). The answer is xo = 4. In the second step we calculate (3 —4) = x1. So
2. (Tz1 +4) = 1(mod49). Therefore x1 = 3. We continue by induction and get the

required expansion.

Every ball in Q,, is a disjoint union of p balls. For p = 2, the ball Zy = B.(0,1) =
B,(0,2) consists of numbers with no digits to the right of the point. It’s a disjoint
union of two balls, By and By - where each B; consists of all numbers ending with
the digit '¢’. Similarly, By = Bgo|J Bo1, B1 = BiolJ B11, where the elements in
Bi;; end with the digits ¢j’. And so on.

This recursive structure implies p-adic integers are homeomorphic to the Cantor
set.

== Appendix material ends here ==
(oo}

Exercise 4.3.2. Show that Y a, converges in Q, <= |a,|, — 0.
n=0

Exercise 4.3.3. Show Z,, is homeomorphic to the Cantor set as topological spaces,
where the Cantor set has its usual topology induced from the real numbers. In

particular this shows Zy is a compact set.

4.4. Inverse limits.
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Definition 4.4.1. Let Ay «— Ay «— Az «— ... be a sequence of Abelian groups
{A;} together with a system of homomorphisms {fij : A; — A; | j > i}, such that
fir = fij o fik, Vi < 5 < k. An inverse limit of a sequence of Abelian groups is
defined by the collection of compatible sequences:
limA; = {a € [] Ai: fij(a;) = a;,Vi < j €N},
ieN
Exercise 4.4.2. Prove the following:
(1) Let A; := Z/p'Z, and let fi; be the projection Z/p'Z — Z/p'Z. Show that
@Z/p”Z ~ Zyp as a topological ring.
(2) Q, is the localization of Z, by p.
(3) Prove that Q, is homeomorphic to the Cantor set minus a point.
(4) Prove that Q, and Q, are homeomorphic.
(5) Let U C Q, be an open set. Show that either U is homeomorphic to the
Cantor set, or to Cantor set minus a point.

4.5. Haar measure and local fields. Let X be a topological space and let C.(X)
be the space of continuous functions of compact support on X. Recall that the space

*

of continuous linear functionals C.(X)* can be identified with the space of regular

Borel measures on X.

Theorem 4.5.1 (Haar’s theorem). Let G be a locally compact topological group.
Then:

(1) There exists a measure p on G with values in C such that u(U) = p(gU)
for any measurable set. Equivalently, there exists ¢ € C.(G)* such that for

any g € G we have that ¢(f) = ¢(f,) where fy(x) = f(g~"' - z).
(2) This measure is unique up to a scalar.

Exercise 4.5.2.

(1) Prove Haar’s theorem for (Qp,+).
(2) Given a Haar measure p, we can define another invariant measure pq(B) =
w(aB) for any a € Q,. Show that p, = |a| - p.

Definition 4.5.3. A local field is a non-discrete topological field which is locally

compact.

Theorem 4.5.4. Any local field F' is isomorphic as a topological field to one of the
following :
(1) R or C (if F is Archimedean).
(2) A finite extension of Q, for some prime p (if F' is non-Archimedean of
characteristic 0).
(3) The field of formal Laurent series Fps((t)) = {d o, ait'|a; € Fps} for
some prime p and natural number s (if F is non-Archimedean of charac-
teristic p).
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Proof. The main steps of the proof are as follows:

(1) Using Haar’s theorem define a measure on (F,+). Using this measure
we define an absolute value, up to scalar multiplication, that is, we set
la| = a(a) where p, = a(a)p.

(2) We show that for every local field the absolute value which was defined in
(1) defines its topology.

(3) We prove that every compact metric space is complete.

(4) Every local field of characteristic 0 contains Q and one of its completions.
This means that F' contains R if it is archimedean, and Q, if it is non-
archimedean.

(5) We show that if F' has characteristic 0, then F' must be a finite extension
of R or Q,. Otherwise, if it is a non algebraic extension it must be non-
locally-compact.

(6) We show that any finite extension of Q,, R or Fy((t)) is indeed a local field.

(7) For char(F) # 0 we show that F' contains a transcendental element, name
it ¢, and show that it contains F,((t)). We show that F' must be a finite
extension of F,((1)).

O
4.6. Some basic properties of /-spaces.

Definition 4.6.1. An (-space X is a Hausdorff, locally compact and totally dis-

connected topological space.

Remark 4.6.2. We usually add the demand X is o-compact, that is it is the union
of countably many compact spaces. Such a space is also sometimes called countable

at 0.

Exercise 4.6.3. Find a compact £-space X and U C X such that U is not countable
at 0o.

Exercise 4.6.4. Show the following:

(1) Any non-archimedean local field is an £-space.

(2) Finite products, and open or closed subsets of an -space are £-spaces. Note
that any subset of a totally disconmected topological space is totally discon-
nected.

Proposition 4.6.5. Let X be an {-space, then it has a basis of clopen (that is
closed and open) sets (i.e. it is zero-dimensional).

Proof. Taken from [ATOR, 3.1.7]. Assume we have a point z € W C K, with W
open and K = W compact and set P, = {U C K : U is clopen in K and z € U}

and P= () V. Note that K € P, thus P # &.
VeP:
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Now, we claim that for every closed subset F' of K such that FF N P = & there
exists some W € P, such that WNF = @. Indeed, set n={UNF:U € P,}. By

assumption, it is a family of non-empty closed subsets of F', and since F'is compact if

n n
(| V = @, then there is a finite collection of V; such that | Vi= N U;NF =
ven i=0 =0
(note that this is an equivalent characterization of compactness via closed sets).

Now set W := F] U; € P,. Since P, is closed under finite intersections, W € P,.

Now we wish ‘E(;Oshow that P = {z}. Assume the contrary, ie. P # {z}. P
is disconnected since X is totally disconnected, so there exists non-empty closed
x € A and B such that AUB = P and AN B = & which are open in K. Since K
is regular, (Hausdorff + locally compact implies regular), there exist open disjoint
sets U > U and V 2 B in K, where we have F' = K\(U U V) closed in K and
PNF = @. We showed that for such F' we can find W € P, such that FNW = &.

Now, observe that the open set G = U N W is also closed in K as,
G=UnW C(K\V)n(K\F)=K\(VUF)CU.

Therefore G C UNW = G (W was closed). Since z € G, we have G € P,, but as
GNB =g, we get that P = AU B is not contained in G, which is a contradiction,
implying P = {z}.

Since for every open set x € O in K the set K\O is compact and x ¢ K\O, it
follows from the above claim that O contains some V € P,.

Now, given an open set z € A in X, we have that WN A C K N A, is open in K,
and thus contains a clopen U in the topology of K N A from the above. Now, U is
closed in K and thus closed in X, and open in YW N A but contained in YW N A and
thus open in X. This finishes the proof. O

Exercise 4.6.6. Show that every o-compact, first countable ¢-space X is homeo-

morphic to one of the following:

(1) Countable (or finite) discrete space.
(2) Cantor set.

(3) Cantor set minus a point.

(4) Disjoint union of (2) or (3) with (1).

Definition 4.6.7. A refinement of an open cover |J U; = X is an open cover
il
{V;}jes such that for any j, we have that V; C U; for some i.

Exercise 4.6.8.

(1) Let C C X be a compact subset of an ¢-space. Then any open cover has an
open compact disjoint refinement.
(2) Let X be a o-compact £-space, then any open cover has an open compact

disjoint refinement.
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4.7. Distributions on /-spaces.

Definition 4.7.1. Let X be an £-space. A function f : X — C is said to be smooth
if it is locally constant, that is for every point x € X there is an open neighborhood
x € U C X such that the restriction f|y is constant. Similarly to the archimedean

case, the space of smooth functions on X is denoted by C*°(X).

Proposition 4.7.2. Let X be an {-space. Show that smooth functions separate the
points in X . Assuming this, the Stone- Weierstrass theorem implies that C*°(X) is

dense in the space of all continuous functions C(X).

Proof. Let z,y € X. As X is Hausdorff and has a basis of open compact, sets
there exists disjoint U, and U, which are compact and open. Set fj;y, = 1 and
fix\u, = 0. Then f is smooth and f(z) = 1, and f(y) = 0. O

Definition 4.7.3. The space of smooth functions with compact support, C(X) C
C>(X), are called Schwartz functions. We denote them by S(X). We also denote
Dist(X) = C*(X)* = S*(X). We consider S(X) as a vector space, without any
topology.

Exercise 4.7.4. Let X be an £-space, show that S*(X) is a sheaf.

Remark 4.7.5. In R™, the Schwartz functions are the functions whose derivatives
decrease faster than any polynomial, and there is a strict containment C2°(R™) C
S(X) C C*(R™). We will define them in the next lectures.

4.8. Distributions supported on a subspace. Recall that over R, the descrip-
tion of distributions on a space X that are supported on a closed subspace Z is
complicated (we did that using filtrations). Distributions on ¢-spaces behave much
better.

Definition 4.8.1. Let X be an £-space, we define the support of a distribution
€ € S*(X) as we did for distributions on real spaces, by supp(§) = (| Dg, where

£\D%EO

Dg C X are taken to be closed.

Proposition 4.8.2. (Ezact sequence of an open subset). Let U C X be open and
set Z=X\U. Then 0 — S(U) — S(X) — S(Z) — 0 is ezact.

Proof. Tt is clear that extension by zero S(U)—S(X) is injective, we show that
S(X)—S(Z) is onto. Let f € S(Z). As f is locally constant and compactly
supported, we may assume that Z is compact and has a covering by a finite number
of open sets U; (open in Z) with f

n

U, =W,;NZ, where W; is open in X. Therefore, Z C |J W;, and as Z is compact,
i=1

we may refine {W;}7_; and get that Z C |Jj_, V; where V; are open, compact

v, = ¢;. Notice that each U; is of the form
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mutually disjoint and V; N Z C W; N Z = U; for some i¢. We can thus extend f by
setting f(x) = ¢; for z € V; C W, and zero otherwise.

It is left to prove exactness at S(X). Let f € S(X) such that f|z = 0. As fis
locally constant, there is an open set Z C V such that f|y = 0. This implies that
f is supported on Z¢ = U and therefore f|y € S(U). O

Corollary 4.8.3. Let X be an l-space, and Z C X a closed subspace. Then:
(1) The inclusion i : S*(Z) — S5 (X) is an isomorphism.
(2) There is an exact sequence 0 — S*(Z) — S*(X) — S*(X\Z) — 0.

Remark 4.8.4.

(1) Note that if we replace X by R, then the map i is not onto. For example,
for Z := {0} C R, the derivatives 6(()") € S5 (R™) but they are not in the
image of i as in that case S*(Z) ~ C.

(2) This can be corrected by replacing S*(X) by S5 (X). Thus the following is
an ezxact sequence:

0— SZ(X)— S"(X) = S"(X\Z).
Exercise 4.8.5. Let V be a vector space (not necessarily finite dimensional) over

a field K, and L C V a linear subspace. Show that Vf € L* 3g € V* such that

gl = f. Use Zorn’s lemma.

Proposition 4.8.6. Let X|Y be (-spaces. Given f; € S(X) and fo € S(Y),
consider the bilinear map ¢ : S(X)® S(Y) — S(X xY) via

(¢(f ® 9))(@,y) = f(x) - g(y).
Then ¢ is an isomorphism of vector spaces.

Proof. 1t is easy to see that the image lies in the space of locally constant functions.
We first prove this map is surjective. Let f € S(X x Y), then f = > cy,xv, and
by refining {U; x V;}?, we may assume that they are disjoint (note we are using
the fact that suppf is compact). Since each term cy,xv, € Im¢ we are done.

To show ¢ is injective, assume that

k

k
¢(Z [i®gi))(z,y) = Zfi(m) -gi(y) = 0.

i=1 i=1
We can assume that {f;} are linearly independent and that {g;} are non zero and
that k is minimal with respect to these demands. If we take some y such that
g1(y) # 0 we get that for any = € X, we have Zle fi(x) - gi(y) = 0. This implies
that f; are linearly dependent. Contradiction. Hence g; = 0 for all ¢, implying
fi ® g; =0, contradicting the assumption that k is minimal. O

Define a natural map

S:8"(X xY) - Homp(S(X),S*(Y)) by
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(S)(f),9) == (& o(f ®g))-
Exercise 4.8.7.

(i) Show that the map S is a linear isomorphism.

(ii) Assume X = F™ Y = F™ and let p and v be Haar measures on X and
Y. Embed C®(X xY) — S*(X xY) and C*(Y) — S*(Y) by multipli-
cation by the corresponding Haar measures. Then S maps C®(X xY) to
Homp(S(X),C>(Y)) by the formula

(@) = [ fapalan
Exercise 4.8.8. Consider the natural map
O:S(X)S8*(Y) = S(X xY) given by

(@(E®@n), F) == (n, f), where f is given by f(y) :== (& Flxx{y})-
(i) Show that ® is not onto. Hint: take X =Y = Z.
(ii) Endow S(X xY) with the weak topology, i.e. &, — & iff (&n, f) — (&, f) for
every f € S(X xY). Show that the map ® has dense image.

5. VECTOR VALUED DISTRIBUTIONS

Definition 5.0.1. Let F be either R or C, let X be a locally compact space and
let V' be a vector space over F. We define C(X,V) to be the space of smooth
functions on X with compact support with values in V. Here the smoothness of a

function is the usual coordinate-wise one.

Exercise 5.0.2. Let V be a topological vector space over F. Prove that C°(X,V) &
C*(X) ®@r V as topological vector spaces, where the topology on C°(X) @p V is
given by choosing a basis to identify V with F™ and by then taking the product topol-
ogy on CX(X) @p F™ = (CP(X))™. In particular, this topology is independent of

a choice of a basis.

5.1. Smooth measures. Recall that a measure is a ¢ additive map from the o-
algebra of Borel subsets of X into R. For us, the following characterization is
better:

Definition 5.1.1. Let X be a locally compact topological space. The space of signed
measures on X is Ce(X)*, i.e. all continuous functionals on C.(X) (and all linear
functionals if X is an £-space). A signed measure is a measure if it is non-negative

on non-negative functions.

As the space C(X) is larger than C2°(X), its dual is smaller. Explicitly, C.(X)* C
C2°(X)* where the inclusion is the dual of the dense embedding C°(X) — C.(X).
If X is a group then in C.(X)* there is a one-dimensional space of Haar measures,
which for X = R"™ is just the space of multiples of the Lebesgue measure.
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Remark 5.1.2. We usually consider the space of complex valued measures. As in
the real case, it can naturally be identified with C.(X)*.

Definition 5.1.3. Let V' be a locally compact vector space (note that it must be
finite dimensional as otherwise it is not locally compact). The space of Haar mea-
sures on V', denoted Haar(V)) C C.(V)*, is the space of translation invariant mea-

sures (which exists by Haar’s theorem,).

The fact that this space is one dimensional is non-trivial, but the intuition is as
follows: A Borel measure on V' is determined by its value on cubes with rational
coordinates, as they form basis of the topology. It is not hard to see that if the
measure is translation invariant, the measures of these cubes are determined by the

measure of the unit cube.

Definition 5.1.4. Let V be a topological vector space. A measure p on 'V is called
a smooth measure if p € C>°(V,Haar(V)), i.e. p = f(x)h where f is smooth and h
is a Haar measure. We denote this space by p>(V'), and the space of all compactly

supported measures inside it by p® (V).

Exercise 5.1.5 (*). Let V' be a vector space over a local field and let & € C°(V)*
be translation invariant. Prove that & is a Haar measure, i.e. show it is a mea-
sure (note that C*(V)* 2 C.(V)* so a-priori there might be translation invariant

distributions which are not measures).

Remark 5.1.6. Note that by definition p* (V) =~ C(V) @ Haar(V) canonically.
We also have that p° (V) =~ C° (V) by choosing a Haar measure. This isomorphism
is not canonical.

5.2. Generalized functions versus distributions. We are now in a position to
understand the difference between generalized functions and distributions.
A distribution on V is a continuous functional on the space of smooth functions
with compact support:

Dist(V) := C*(V)*.
A generalized function is a continuous functional on the space of smooth measures

with compact support on V, i.e.
C™°(V) := C*(V,Haar(V))".

As functions can be integrated against smooth measures of compact support, we

have a bilinear pairing

C%(V, Haar(V)) x C=(V) ¥ €.
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Thus we have the following picture:
C-®(V) <= Dist(V)
J1 i1
Cx(V) = ux(v)
where the diagonals are dual to each other. Both inclusions ¢ and j are obtained

via the pairing (-, -).

Exercise 5.2.1. Show that Haar(V') ~ Dist(V)V or equivalently that Dist(V)V is

one dimensional, for any finite dimensional vector space V over a local field F'.

Definition 5.2.2. We can also define generalized functions with values in a vector
space by either:

1)C~(V,E) =C~>(V)®FE

2) C~>°(V,E) := C*(V,Haar(V) @ E*)*

and then C~°°(V,Haar(V)) := C~°°(V) @ Haar(V) = C°(V)* = Dist(V).

Exercise 5.2.3.

(1) Show that the two definitions of C~>°(V, E) are equivalent.
(2) Describe an embedding C°(V,E) — C~(V, E).

5.3. Some linear algebra.

Definition 5.3.1. Let V' be a finite dimensional vector space over a local field F.

(1) We define the exterior algebra as

k
where A°(V) = F, and for k > 0 we have A*(V) = (Q V)/Jx where Jj is
i=1
. J
the vector space generated in Q) V by the set

j=1
{n ®...® v :v; =v; for some i #j}.
(2) We define the symmetric algebra Sym(V') as

Sym(V) = € Sym*(V),
k=0

k
where Sym®(V) = F, and for k > 0 we have Sym* (V) = (Q V) /I where
=1

J
k

Ii. is the vector space generated in Q) V by the set
j=1

{vl®...®vk—vg(1)®...®vo(k) SUESk}.
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Note that this implies that the elements of the exterior algebra are anti-symmetric
(ie. v®@u = —u®wv), and that A¥(V) = 0 if k > dim V, since after choosing a
basis for V' and decomposing an element in A*(V') to basic tensors, there must be

a basis element which appears at least twice.

Definition 5.3.2. Let V' be an n-dimensional vector space over a local field F with
absolute value | - |.
(1) We define the space of k-forms QF(V) = AF(V*).

(2) For a 1-dimensional space V we define a real vector space
V= {f:V* > R:Va€ F, f(av) = lalf(v)}.
(8) We define the densities of V' as
Dens(V) :={f: V" - R: f(Avy,..., Av,) = |det(A)|f(v1,...,vn)}.

Now, let Q%P(V) be the space of anti-symmetric n-forms on V. It is a one-
dimensional space, and QP(V) = A"(V*).

Exercise 5.3.3. Let B be the space of bases of V.
(1) Show that Q*°P(V) = {f : B — F : f(B1) = det(M3?)f(B2)VB1, By € B}
where M gf s the respective base changing matriz.
(2) Show that Q©P(V) = {f: V*">F : f(Avy,..., Av,) = det(A) f(vi,...,vn)}.

Definition 5.3.4. For a finite dimensional real vector space V define the orienta-
tion line

Ori(V):={f:B—-R: f(By) = sign(det(]\/[gf)) - f(B2)}.

Exercise 5.3.5. Using the tensor product of the natural maps QP (V) — Dens(V)
and Q"(V) — Ori(V) show that Q*°P(V) = Dens(V) ® Ori(V).

Note that the orientation line is a linear space and not just two points as one is
used to think about orientations. However, we have two distinguished points in
Ori(V), the two functions with absolute value 1. These are the usual orientations
we are used to thinking about.

Proposition 5.3.6. Show that there is a canonical isomorphism Dens(V') ~ Haar(V).

Proof. A Haar measure can be viewed both as a functional on compactly supported,
continuous functions and as a function on a Borel algebra. The absolute value
of the determinant |det| : V™ — R is an element of the one dimensional space
|Q27"(V)| (recall that for finite dimensional spaces V = V**). We have a canonical
isomorphism by choosing a basis {e;}? ; for V, and bijecting between the element
v € |Q"(V)] such that p(e1,...,e,) = 1 with the Haar measure normalized such
that it has the value 1 on the parallelogram spanned by the vectors {e;}7—;. This is
independent of choice of basis since given a different basis both elements would be
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multiplied by the same factor of |det(M)|, where M is the change of basis matrix
with respect to these two bases. (I

Exercise 5.3.7. Show the following:

(1) |L® M| =|L| ® |[M] for two one dimensional vector spaces L and M.
(2) |Q%P(V)| ~ Dens(V).

(3) If W CV then Haar(W) ® Haar(V/W) = Haar(V).

(4) If W CV then Q%P (V) = QP(W) @ QP (V/W).

(5) If F =R, then Ori(V) = Ori(W) ® Ori(V/W).

5.4. Generalized functions supported on a subspace. Let W C V be lin-
ear spaces. We showed that over a non-archimedean local field F' we have that
Disty (V) = Dist(W), and for F' = R we described Disty, (V) for the case where
V =R" and W = R*. The goal now is to describe distributions on V supported
on W for any real linear spaces W C V. Recall we have defined a (non-exhausting)
filtration V,,(W) on C*(V) by

Vin(W) = {f € C°(V)|Vi € Ni" where |i| < m it holds that (g ‘]; |lw =0}
x

where dim(V') = n and dim(W) = k. We then defined F,,(W) C Distw (V) by
Fo(W) = (C&(V)/ Vi (W)™ = {€ € Dist(V)[(£, f) = 0 for any f € Fyy(V)}.

Note that we have that F,,,(W) = V,,(W)+ where V5= := (V1/V2)" for two vector
spaces Vo C V;. We want to describe Fy,,(W)/F,,—1(W) in canonical terms, that is

such that the isomorphism will respect diffeomorphisms of V' which preserve W.
Theorem 5.4.1. We have an isomorphism of vector spaces which commutes with
diffeomorphisms of V' which preserve W :

Fyn(W)/Fi1 (W) Zcan O (W, Sym™ (W))* = Dist(W) @ Sym™ (V/W).
The proof of the theorem is based on the following lemma:
Lemma 5.4.2. F,,(W)/Fp,_1(W) = (Ve t (W) / Vi (W),

Proof. For any ¢ € F,,(W), the restriction ¢y, ) vanishes on V,,(W), and
we send it to the induced functional on V;,_1(W)/V,, (W) which we denote by
(,Z~§. This is an injective morphism, since if 5 = 0 then ¢ly,,_,w) = 050 ¢ €
Fr—1(V)w. Surjectivity follows from the Hahn-Banach theorem in the following
way: any ¢ € (Vi—1(W)/Vin(W))* can be extended to @ € (C°(V)/V,,(W))" =
F,,(W). Therefore [¢] + Fy—1(W) — . O

Hence, in order to prove the theorem it will be sufficient to prove that

Vi1 (W) /Vin (W) 2= (W, Sym" (W)).
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For this we do the natural thing- we attach to f € V,,_1(W)/V,,(W) its i-th
derivatives. Explicitly, we define:

O(f)(w)(v1,...,v;) = Oy, ..0, f(w).
It is well defined as f vanishes identically on W, so this form vanishes on all the
tangential derivatives. It is injective since if ®(f) = 0 then f vanishes with all of
its derivatives up to degree 4, so it is in V,,,(W).
Exercise 5.4.3.

(1) Finish the proof of the lemma - show that ® is onto, hence an isomorphism.

(2) Show that the isomorphism Fp,(W)/Fp_1(W) Zcan C°(W, Sym™ (W+))*
is invariant with respect to diffeomorphism of (V,W).

(8) Find & € Dist(V\W) such that there is no n € Dist(V') such that n|y\w =
&. That is, show that the natural map Dist(V') — Dist(V\W) is not onto.

To get a similar result for generalized functions, we twist by the one dimensional

space of Haar measures:

Fn(W)/Fr—1(W) = C2°(W, Sym™ (W))* = C7>(W, Sym™ (W) ® Haar(W)).
Take G, (W) = F,,,(W) ® Haar(W)* C C~>°(V). We get by the compatibility of
tensor product and quotient the following:

G (W) /G (W) 22 C~°°(W, Sym™ (W) @ Haar(W)) ® Haar(V)*
=~ C°(W,Sym™ (W) ® Haar(W) @ Haar(V)*).
The next exercise shows that Haar(W) ® Haar(V)* can be presented in a simpler
manner:

Exercise 5.4.4. Let W C V.

(1) Show that Haar(W) @ Haar(V/W) .., Haar(V).
(2) Show that Haar(V*) o, Haar(V)*.
(8) Conclude that Haar(W) @ Haar(V)* =,, Haar(W+).

We arrive at the following corollary, yielding the desired description for generalized

functions.

Corollary 5.4.5. By the above argument it follows that:
G (W) /Gy (W) =2 C~°(W, Sym™ (W) @ Haar(W1)).

6. MANIFOLDS

After understanding generalized functions on vector spaces, we move to understand
generalized functions on spaces which locally look like vector spaces. For this we

define the notion of a manifold.
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Definition 6.0.1. Let X be a topological space.

(1) A cover {U,;}ier is called locally finite, if for any © € X there is a neigh-
borhood V' such that V NU; # & only for finitely many i € I.

(2) X is called paracompact, if any open cover has a locally finite refinement.

(8) X is called a topological manifold if X is locally homeomorphic to R™ and
is Hausdorff and paracompact.

Exercise 6.0.2.

(1) Find a space X which is locally homeomorphic to R™ at every point and is
paracompact but is not Hausdorff.

(2) Find a space which is Hausdorff, locally isomorphic to R™ but is not para-
compact.

We now give a definition of a smooth manifold which is different than the usual

definition in differential topology and uses sheaves of functions.

Definition 6.0.3. A sheaf of (K-valued) functions F on a topological space X is
an assignment U — F(U) C{f : U — K| [ is continuous} for every open U C X
such that:
(1) F(U) is an algebra with unity.
(2) If f e F(U) and V C U then the restricted function f|v belongs to F(V).
(3) (Gluing) For every open cover U = |J U, and every collection of functions
{fi € F(Ui)}ier such that filu,nu, zEelfj\UmUj for any i,j € I, there exists
feFWU) st flu,=fi foranyiel.

Note that a sheaf of functions is a sheaf. The identity axiom is automatic.

Example 6.0.4. Continuous or smooth functions on a space X form a sheaf of
functions. So do locally constant functions.

Definition 6.0.5. A space with functions is a pair (X, F), where X is a topological
space and F is a sheaf of functions on X. A morphism of spaces with functions
v: (X, F)— (Y,G) is a continuous map ¢ : X — Y such that for any open U CY
and any function f € G(U), the composition f o (p|) lies in F(o~1(U).

In the language of sheaves, the composition with ¢ defines ¢# : G — p, F

Definition 6.0.6. A smooth manifold is a space with a sheaf of functions (X, C*(X))
such that X is a topological manifold and for every point x € X there is an open
neighborhood U such that (U,C*>(X)|y) =~ (R™,C*(R™)) as sheaves of functions.

Remark 6.0.7. The usual definition of manifolds adds an atlas to the structure

of X, that is an open cover X = |J U; with diffeomorphisms ¢; : U; — R™. We
il

also demand that ¢; o ¢;1 1s differentiable, so it seems like an additional demand
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with respect to the definition above. Alas, further rumination shows that a pair
of isomorphisms @; : (U;, C>*(U;)) — (R",C*°[R")) and ¢; : (U;,C>=(U;)) —

(R™, C>(R™)) implies that the following composition is an isomorphism:
# n (e n — n oo n
vinvy)” s (R, CPR™)|g, winu,) — (pio@; "), R™, CPR™))|y, win,))-

In particular, by the next exercise we can deduce that @; o gaj’l
and 1is a diffeomorphism. Therefore Definition BILA(2) is equivalent to the usual

definition of a smooth manifold.

(i 005

U;nu; 18 smooth

Exercise 6.0.8.
(1) Show that C=(R™,R¥) = {f : R® — R* . f*(u) € C°(R")VYu € C=(R¥)}.
(2) Let M and N be smooth manifolds. Show that BZI@(1) is equivalent to the
usual definition of a morphism of smooth manifolds. That is, that a map
f:M — N is a smooth map of manifolds <= it is a morphism of ringed

spaces (where the sheaf is a sheaf of smooth functions).

Remark 6.0.9. Note that by a theorem of Whitney every n-dimensional manifold
can be embedded in R?"T1. Thus we can always think about smooth manifolds sitting

in RN for N large enough.

6.1. Tangent space of a manifold. There are several equivalent ways to define
the tangent space to a smooth manifold M at a point z € M. We first give a

categorical definition and then construct several objects which satisfy this definition.

Definition 6.1.1. We denote by ptMan the category of smooth pointed manifolds,
that is the objects are pairs consisting of a smooth manifold M and a point x € M
and the morphisms are smooth maps of manifolds which preserve the distinguished

points.

Definition 6.1.2. A tangent space is a functor Tan : ptMan — Vect from pointed
smooth manifolds to vector spaces which satisfies the following conditions:
(1) The restriction of Tan to the subcategory Vect C ptMan is the identity
functor.
(2) If f,9 : (R,0) — (C,0) satisfy f(0) = ¢’(0) then Tan(f) = Tan(g).
(3) If ¢ : U — M is an open embedding, then Tan(p) is an isomorphism.

There are several structures that satisfy the above conditions:

(1) The space of all smooth paths T, (M) := {v: ((—1,1),0) — (M, z)} modulo
the relation 7; ~ v <= there exists a neighborhood U of x and an
isomorphism ¢ : U — R" s.t. (¢poy1) (x) = (o) (). It is easy to check
that this definition does not depend on the choice of (¢, U).

(2) The space of derivations

T,(M)={0:C®(M) — R:9is linear,d(f - g) = 0f - g(x) + f(z) - Og}.
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(3) Define m, := {f € C>(M) : f(x) = 0}, and take T,,(M) := (m,/m2)*.

Exercise 6.1.3. Show the constructions of the tangent space given above are equiv-

alent.

Definition 6.1.4. Let ¢ : M — N be a smooth map. The differential of ¢ at
x € M is the map dpd : To(M) — Ty)(N) defined by d.(¢)(7y) := ¢ o~y for an
equivalence class of paths [y] € T,(M) .

Exercise 6.1.5.

(1) Show the differential is well defined, i.e. it does not depend on the repre-
sentative v € [7].

(2) Show that given manifolds M, N, and K and maps ¢ : M — N and ¥ :
N — K, the differentials satisfy d.(1 o ¢) = dg(z) () 0 de(0).

6.2. Types of maps between smooth manifolds.

Definition 6.2.1. Let ¢ : M — N be a smooth map between smooth manifolds.

(1) ¢ is an immersion if d, ¢ is injective.

(2) ¢ is a submersion if d, ¢ is surjective.

(8) ¢ is a local isomorphism or étale if d,¢ is an isomorphism.

(4) ¢ is an embedding if it is an immersion and defines a homeomorphism
M = ¢(M).

(5) ¢ is a proper map if for every compact K C N, the preimage ¢~ *(K) is
compact. In particular, in that case all the fibers of ¢ are compact in M.

(6) ¢ is a covering map if for every x € N there exists a neighborhood U C N,
such that ¢| -1y : ¢~ (U) — U is locally a diffeomorphism, and ¢~ (U) =
U x D for some discrete set D.

Example 6.2.2.

(1) Let ¢ : [—1,1] — R? be a smooth path that slows to a stop at ¢(0) = (0,0),
but spends no time at (0,0). That is, ¢'(0) = (0,0), but ¢(x) # 0 for all
x # 0 in some neighborhood [—e,e] of 0. Such a ¢ is locally injective at 0,
but since do¢ = 0 it is not an immersion at 0.

(2) An immersion is not necessarily one-to-one. As an example, consider a
self-intersecting path ¢ : R — R? with constant speed.

(8) Let L and D be finite dimensional linear spaces. The differential of a linear
map ¢ : L — V is ¢ itself. Thus, a one-to-one ¢ will be an immersion, an
onto ¢ will be a submersion, and an isomorphism of linear space will be an

étale map.

Exercise 6.2.3. Let M and N be smooth manifolds.

(1) Find a map ¢ : M — N which is an injective immersion, but is not an
embedding.
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(2) Show that every proper map which is an injective immersion is a closed
embedding.
(8) Show that a proper map which is étale is a covering map, and that a covering

map with finite fibers is proper and étale.

Definition 6.2.4. Let X and Y be topological spaces. A fiber bundle is a map
p: X—=Y, such that for every y € Y there exists a neighborhood U C'Y such that
p Y (U)~U x Z for U CY for some topological space Z.

Exercise 6.2.5. Show that a proper submersion is a fiber bundle.

6.3. Analytic manifolds and vector bundles. We would like to be able to talk
about manifolds for a general local field. In order to do so, for a non-archimedean
local field F' we introduce the notion of an analytic F-manifold.

Definition 6.3.1. Let F' be a non-archimedean local field. An analytic F-manifold
is a topological space M which is locally isomorphic to O% together with the sheaf

of functions

An(U) ={f:U—=F:¥z €U, 3r>0st fipw@) =Y az(z—y"}
Fen

where B, (x) is the ball of radius v around x, k is a multi-index, and (z — y)* =

[T (2 — i)™

i=0

Remark 6.3.2. By Ezercise 68 there is no need to use partition of unity for
F-analytic manifolds.

Example 6.3.3. There exist singular analytic manifolds, and any singular affine

algebraic variety is an example for such a manifold.

Definition 6.3.4. Let M be a smooth manifold or a p-adic analytic manifold.
A real vector bundle over M is a tuple (E,p) where E is a topological space and

p: E — M is a continuous surjection such that:

(1) For every © € M we have a structure of a finite dimensional real vector
space on p~1(x) =V,.
(2) For every x € M there exists an open x € U and a local trivialization
oy : Ve x U — p~Y(U) where oy is a homeomorphism (or diffeomorphism
if M is a real smooth manifold) and p o py(v,z) = x for allv € V,,.
(8) The maps v — py(v,z) are linear isomorphisms.
If E~V x M we say (E,p) is a trivial bundle over M.
IfdimV, =1 for all x € M we say (E,p) is a line bundle over M.

Exercise 6.3.5. It is known that the Mobius strip M is not homeomorphic to the
(finite) cylinder I x S*. By extending each segment I of M to R, we can define a
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vector bundle E over the manifold S'. This way, points of E are such that the fiber
over § € S is a line in R? which intersects the z-axis with angle 0.5 - 0. Define the

vector bundle above rigorously and show it is not diffeomorphic to the trivial bundle
St x R.

Example 6.3.6. The tangent bundle of M = St is TS' ~ S! x R. The tangent
space at any point is one-dimensional, and changes smoothly as we move along the
circle. However, on M = S? the tangent bundle is not isomorphic to S% x R?. This

happens since every vector field on S? vanishes at some point. (Hairy ball theorem,).

Definition 6.3.7. Let (M, E) be a k-dimensional real vector bundle and m be its
projection. Given trivializing neighborhoods U and V', and trivializations oy : U x
RF = 771 (U) and py : V x RF = 77 Y(V), one can consider ¢y, o oy (U N
V) x RF — (UNV) x R¥. We can then write ¢y, o py(z,v) = (2, g0.v (v)) where
gu.v € GL(R¥). The maps gy are called transition functions.

Notice that the set of transition functions gy, satisfy the cocycle conditions

gu,u(z) = Id and gy,v(z)gv,w (z) = gu,w ().

Conversely, given a fiber bundle (E, X, 7) of degree k with a transition map in
GL(RF) abiding the cocycle condition which acts in the standard way on the fiber
R*, there is an associated a vector bundle. This is sometimes taken as the definition

of a vector bundle.

Proposition 6.3.8. Given a manifold M, vector bundles {(E;,p;)}7—, each of
which with fiber of constant dimension m; over it, and a functor F' : Vect™ — Vect,

we can construct a vector bundle (F(En,...,E,),q) over M.

Proof. First, take a cover {Uy}aer of M which is a local trivialization of E (that
is, p~1(U,) ~ V x U,). Define the total space F(E) over each U, by F(V) x Uy,
where the surjection ¢ will be projecting to M, and glue every two pieces ¢~ (Uy)
and ¢~ '(Ug) by setting (v,z) ~ (ga,3(v),z) for every x € U, N Uz and v € V,
where g, 3 = F(@&;@UQ). Finally, note that for any two elements of the cover
g;’lﬁ = ¢3,a, and that in order for our construction to be well defined we need to
show the cocycle condition, namely that gs ~ga,3 = ga,y When restricted to triple

intersections. This holds since

987905 = Floy ous ) Fleu,pu.) = Floy eu.) = gan-

Note that if we want F(E) to have a smooth structure we need to demand that F'

preserves smooth maps. O

Example 6.3.9. Let F1 and Es be two vector bundles over M. The direct sum
Fy ® Es is defined by applying our construction above to the direct sum functor
@ : Vect? — Vect.
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Exercise 6.3.10. Find two non-isomorphic bundles E and E’, such that E® F =
E'® F for a bundle F (Hint: use vector bundles over S2).

Definition 6.3.11. Let M be a manifold.

(1) The tangent bundle of M is the disjoint union of its tangent spaces TM =

U {z} x T, M.
xeM
(2) Given a submanifold N C M, and an embedding i : N — M, we define

the normal bundle to N in M to be N = i*(TM)/TN, where i* is the
pullback of the bundle TM to N. Similarly, the conormal bundle to N in
M is CNY = (NAM)*.

Example 6.3.12. For the sphere N = S? C R® = M, the normal bundle at a
point is the normal line to it (i.e. the line passing at the point and at zero). It is
diffeomorphic to the trivial bundle on N.

Definition 6.3.13. For vector bundles Ey, Eo over a manifold (smooth or F-
analytic), we define the following:

(1) EY.

(2) E1 ® Es.

(3) E1 ® Es.

(4) For an embedding ¢ : By — Es, we define Es/E;.

(5) N\"(Er), Sym*(Er).

(6) We define the density bundle of E1 by Dens(E}).

Definition 6.3.14. Let M be either a smooth manifold or an F-analytic manifold,
we define its density bundle by Dens(M) = |QP(TM)|, that is the density bundle
of its tangent bundle.

6.4. Sections of a bundle. A set theoretic section of a function f: X — Y is a

function g : Y — X s.t. go f =idx.

Example 6.4.1. Let f : R? — R be the projection f(x,y) = x. One exzample of a

section is g(z) := (z, sinx).

In many case sections of bundles give rise to important concepts:

e A section of the tangent bundle of a manifold is a vector field.

e A section of the k-th exterior power of the cotangent bundle of a manifold
is a differential form of degree k.

e A section of the density bundle is a density on the manifold.

e A section of the orientation bundle is a choice of an orientation on the

manifold.

Exercise 6.4.2.
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(1) Show the every manifold has a Riemannian metric, i.e , an inner product

on tangent spaces
(,)p : TpM xT,M — R

which varies smoothly.

(2) Let M be a smooth n-dimensional Riemannian manifold, that is a smooth
real manifold with a Riemannian metric. Construct explicitly a density over
M, that is a smooth section of the density bundle over M. The density
should respect coordinate changes, and be the standard density when M is

a linear space with the standard inner product.

Remark 6.4.3. We do not always have non-zero top differential forms on a man-
ifold M, and the Mobius strip is an example of a manifold with no non-zero top
differential form. However, we can always find a non-zero density on M. Since
with a density we can define a measure on the manifold, we can define integration
over manifolds.

6.5. Another description of vector bundles.

Definition 6.5.1. Let V be a finite dimensional vector space and X a topological

space.

(1) We define the constant sheaf V y to be the sheafification of the constant
presheaf, which assigns to every open set in X the vector space V.

(2) We say that a sheaf F over X is locally constant if for every x € X there
exists an open x € U, and a finite dimensional vector space V,, such that
‘7:|Um = EU,T :

Exercise 6.5.2. Let V' be a finite dimensional vector space and X a topological

space.

(1) Show that V. (U) consists of the locally constant functions from U to V.
(2) Show that if X is a o-compact {-space then every locally constant sheaf F
such that Fo ~ F, for all x,y € X is isomorphic to the constant sheaf.

Up to now we have used the Grothendieck definition of a sheaf. In some situations

the following definition is more useful.

Definition 6.5.3. A Leray sheaf on X is a pair (E,p) such that E is a topological
space and p : E — X is a homeomorphism locally in E, i.e. every point in E has
an open neighborhood U such that p(U) is open and p|y defines a homeomorphism
U ~pU).

Theorem 6.5.4. The category of Leray sheaves is equivalent to the category of

Grothendieck sheaves.
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Proof. Given a Leray sheaf (E,p) we define a Grothendieck sheaf by
FU):={s:U —p *(U): f is continuous and po s = Idy}

with the obvious restriction maps.

For the other direction, given a Grothendieck sheaf F, we define £ = | | v Fu
with the natural projection map p : £ — X. The basis of the topology of E is
given by U,y = {(z,(s)z) : * € V} where V C X is open and s € F(V). O

Exercise 6.5.5. Complete the proof by showing that this is indeed an equivalence

of categories.

Exercise 6.5.6.

(1) Show that covering spaces correspond to locally constant sheaves, and that
a covering space is trivial when it corresponds to a constant sheaf.
(2) Give an example of a locally constant sheaf arising from a covering space

which is not constant.

7. DISTRIBUTIONS ON ANALYTIC MANIFOLDS AND ON SMOOTH MANIFOLDS

Definition 7.0.1. Let E be an F-analytic line bundle over an F-analytic manifold
X. Define a real vector bundle |E| as follows. As a set define |E| := {(x,v) :
x € X,v € |E.|} and define a topology by giving C the discrete topology, so locally
Ely U X F and |E||ly ~ U x |F| ~ U x C. Hence, a base for the topology is
Viva = @i(U x {a}) where ¢; : U x C — |E||y and o € C.

Remark 7.0.2. Note that p: |E| — X is a local homeomorphism as Vi y o >~ U as
a topological space. Hence p is a Leray sheaf. Its corresponding Grothendieck sheaf
is F(U) = {continuous sections U — p~1(U)}. This is a locally constant sheaf
Cyover X.

Definition 7.0.3. We can now define the density bundle over an F-analytic man-
ifold X in two ways:

Def 1 (Leray): Dens(X) := |QP(X)|.

Def 2 (Grothendieck):

Dens(X)(U) := {u € Measures(U)|Vp € OF — U, there exists f € C°(O%) such that p = . (f-Haar)}.

Lemma 7.0.4. Let ¢ : F™ — F"™ be an analytic diffeomorphism, let f € C.(F™)
and let p be a choice of a Haar measure on F™. Then

o f) = / fde = / (f 0 9) ldet(Dy )| da.

Exercise 7.0.5. Show that the above definitions are equivalent.
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7.1. Smooth sections of a vector bundle. In this subsection we assume that

F =R and we are dealing with smooth manifolds.

Definition 7.1.1. We define smooth functions on a manifold M with compact

support and values in a vector bundle (E,m) by:
CX(M,E):={f: M — E :wof = Idy and IK compact such that f|xc(m) = (m,0)}.
Recall that C2°(R", R¥) = limC%® (R", R¥) where K, is an increasing sequence of

2 K

compact sets such that |J K,, = R™. We define a topology on C*(M, E) using
n=1

the topology on C2°(R", R¥):

Case 1- The trivial case: M ~ R™ and E ~ R” x R* with the projection to
the first component. Note that continuous sections from R™ to R™ x RF are just
functions in C°(R", R¥). Hence we give C°(M, E) the topology of C2°(R", R¥).

Exercise 7.1.2. Show that the above definition is well defined, i.e. it does not
depend on the isomorphism M ~ R™ and E ~ R™ x RF — R™. In other words,
show that:
(1) Given a diffeomorphism ¢ : R™ — R™ it induces a homeomorphism ¢* :
C®(R™,R™ x RF) — C(R™,R" x R¥) wia precomposition.
(2) Given a smooth map ¢ € C°(R"™, GL;(R)) we have that ¢, : C°(R™,R™ x
R¥) — O (R™,R™ x RF) by .(f) = o f is a homeomorphism.
Case 2- General case: We can choose trivializing {U;};c; such that M = |J U;
=
where @; : U; = R” and ¢ : E|y, = R™ x R¥. We have a surjective map
o @ CE U Elu,) — C=(M, B)
i€l
by summation where surjectivity follows from partition of unity. We define the quo-
tient topology on C2°(M, E) according to the map ¢, that is, aset U C C°(M, E)
is open if ¢~ 1(U) is open in @ C°(U;, E|v,), where the latter is endowed with the
i€l

direct sum topology.

Proposition 7.1.3. The topology on C°(M, E) is well defined. That is, the defi-
nition does not depend on the choice of the cover {U;}icr of M.

Proof. We need to show that given a different cover {Vj}ges of M which locally
trivializes M and E, we get the same topology.

Consider the cover {W, g} for W, 3 = U, N V3 which refines both covers. We need
to show that for the addition map,

+
DD C=Was By, ) = PO Ua, By,
a€l geJ acl
a set in the range is open if and only if its preimage is open, where W, 3 C U, ~ R"

and Ej,, , By, =~ RF. In order to show the above, it is enough to handle each
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case @ CZ(W, 5, RF) X C®(U,, RF) ~ C°(R™,R¥) separately, since in the
BseJ
direct sum topology a set is open if all the injections D; — @ D; are continuous

(we furthermore assume our open sets are convex).

Given a basic open set Uz, c...B,.) C(Uq, R¥) where L,, are mixed differen-

o0
tiations, €, € Rs¢ and B,, are compact sets such that |J B, = R", it is of the

m=1
fOI'Hl U(Lmvfm,7Bm) = Z VLm,Em,me’ Where
meN
Vi oos {fec°°<R” B - supp(1) € B, sup [1Ln ()] <em}-
me n

!
Now, take a finite sum Y f3 € + ' (Ugp,, .. By) for > fz = f = Z fm, and

fmi € Vi em, B, Let fg = prg(f) be the projection of f into C"X’( 0.0, RF),

and define N = #{3 : prg(f) # 0} and €, = Em”_sup”]\L,m* Umll and set €, = S

if m #£ my; for all 0 < ¢ < [. For B;n”@, C Wy g, compact sets which exhaust

We 3 and such that B/, 5 C By, the sets Uy, o B/, ;) are basic open sets in each

m€m s

CP(Wa g, R¥), and thelr direct sum is open in the dlrect sum. Now, we claim that,

fe @ to+ ULt B ) © (UL e B))-
B:fp#0

lﬁ
Given g = ) gp where gg € ULy e, B B then gs = > gp,i, where gg i,
B: F5#0 i5=1

VL";g nLﬁ 7B':L1B 8’

Thus if n;, = m; for some i, we have sup ||Ly,, (95,m,)|| < €, = N

TELm;
implying that,
w [| 3 Lot gam]| < s || 3 Lonilfmeal][+ 3 sup [ (gl
CEBmi T B fas£0 v€Bms = i fart0 Bifs#0"

= L, ,
< sup HLml ) ‘+ <emz sup\]l[mz(fml)l)
#EBm B:fa70
= €m,;-

Otherwise, if n;, # m; for all i, set n’ = n;,, and using the requirement sup ||Ln(gs,n)|| <

r€EB,,,
% we note that:
€,/
sup || 32 Lulgow)|| € D2 sup [|Lw(gam)ll < N3m = o
TP i 0 Bif 570 "€ P!
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! lg
This allows us to conclude that f+g = > > fm, s+ > > gp, liein
B:f57£0i=1 B:fa#0is=1
U emBm) = 2o Vim.em,B,, for all such functions g, implying that the ad-
meN
dition is continuous. For a less cumbersome approach, note that the embed-

dings @ CX(W,. 5, RF) — C(R",R¥) are continuous (a cookie for the person
geJ
who finds a quick proof for this), so it is enough to show that the addition map

k
@ C=(R",RF) 5 ¢ (R",RF) ~ @ C>(R") is continuous. Since the domain
BeJ i=k
has the direct sum topology, it is enough to check this for a finite direct sum, which

follows by the continuity of addition in a topological vector space.
. . . +
To show the map is open, it is enough to consider ,6’69 CE . (Wa,p, RF) = CP(R™, RF) ~
€J
k
P CP(R™), for every compact K, and since the domain has the direct sum topol-
j=1

ogy and the basic open sets are finite sums of open sets in each coordinate, it is
m k
enough to show it for a finite direct sum @ C7 . (W;, R) L @ O (R") where
i=1 j=1
m
K c |J W;. Now, use partition of unity f;, with C; = supp(f;) € W; where
i=1

1=
m

> fi\x = 1 to get an onto map via the composition,
i=1

m m
P o, (Wi RY) — P CF (Wi, RY) = CF(R™).
i=1 i=1
Since this is a continuous surjective map of Fréchet spaces, it must be open, implying

that the addition is open since the embedding is continuous. O

We now give a different description of the topology of C°(R™). First observe that
f € C(R™) is compactly supported if and only if fg is bounded for any g € C(R"™).
Now let D € Diff(R™) be a differential operator on CS°(R™). Define a seminorm

Ifllp by sup [D(f) ()|
TER"
Exercise 7.1.4. The topology on C°(R™) can be defined by the seminorms ||| .

Definition 7.1.5. Let M be a manifold and D : C*° (M) — C*°(M) be a map. We

say that D is a differential operator on M if for any trivializing cover |J U; = M
i€l

and @; : U; = R™ we have tpi_l oD o y; € Diff(R™). We denote the space of all

differential operators on M by Diff(M).

We would like to define differential operators from C*° (M, E) to C*°(M, E’), which
we denote by Diff (C° (M, E),C>(M, E")). As before we divide the definition into

cases:
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Case 1- the trivial case: Assume that £ ~ M x R¥ and E' ~ M x R¥'. Then
Diff (C*°(M, E),C>°(M, E')) ~ Diff(C>°(M)*,C>°(M)*") and the latter space is

isomorphic as a vector space to the space of kxk’ matrices with values in Diff (C*°(M)).

Exercise 7.1.6. Show that the definition of the space of differential operators
Diff (O (M, E),C>=(M, E")) does not depend on the isomorphisms E ~ M x R¥
and E' ~ M x R¥
Case 2- the general case: Let A € Hom(C*(M, E),C*(M, E’)). Then we say
that A € Diff (C>*°(M, E),C>(M,E")) if:

(1) For any fi, fo € C°°(M, E) such that fi|y = fa|u, we have Afi|v = Afalu.

(2) If E'|y is a trivialization then A|y € Diff(U, E|y, E'|v).
Definition 7.1.7 (Second definition to the topology on C(M, E)). For D €
Diff(C* (M, E),C* (M, E)) define ||f||, = sup |D(f)(z)|. Define the topology on

reM
C* (M, E) via
Cgo(]\f7 E) = EI%(CCOO(M, E)H.”D).

Exercise 7.1.8. Given a manifold M and a vector bundle E over it show that the
two definitions of the topology on C°(M, E) are equivalent (one defined via taking
a cover of M and trivialization of E and the other through differential operators).

7.2. Distributions on manifolds.

Definition 7.2.1. Let M be a smooth or F-analytic manifold, and let E be a
smooth vector bundle over it (in the case of an analytic manifold it has the discrete
topology).
(1) The space of distributional E-sections is defined to be Dist(M, E) := C° (M, E)*.
(2) The space of generalized E-sections is defined to be C~>°(M, E) = Dist(M, E*®
Dens(M)).

Although we do not have a natural injection from CZ°(M, E) to C°(M, E)*, we

have a natural injection
i:CX(M,E)— C~>°(M,E)
as follows: let € C°(M, E* ® Dens(M)) and f € C*°(M, E). Note that
foueCr(M,E*®F ®Dens(M)),
that is, f @ u(m) = f(m) @ u(m). Note that we have a natural map
q:CX(M,E*® FE ®Dens(M)) — C°(M,Dens(M))
by pairing £ with £* and a natural map

/ : C°(M,Dens(M)) — C
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by integrating over M according to the measure defined by the section of the density
bundle. We define

(), ) = /M a(f © p).

Therefore, the definition of generalized sections indeed generalizes smooth sections.

Proposition 7.2.2. Let X be either a smooth or an F-analytic manifold. Then
Cx(X)" = ™ (X).

Proof. Recall that C~>°(X) = pS°(X)*. Given a topological vector space V, for
W C V* the space W is dense with respect to the weak topology if and only if
Wt ={veV:(wv)=0vVwe W} = {0}. To see the relevant direction, if
W+ = {0}, we will show that for every ¢ € V*, finite set S C V and € > 0
we can find w € W such that §, = w),. Given such {£ € V*, § = {vy,...,v,}
and € > 0, assume S is a linearly independent set, and consider p : V* — R”
by p(n) = ({(n,v1),...,(n,vn)). The map py,, is onto, since otherwise there exist

n
¢; € R such that > ¢;{w,v;) = 0 for all w € W (it must lie in some hyperplane,
i=1

n
and all hyperplanes are of this form), but this means that (w, > ¢;v;) = 0 implying
i=1

Zn: civ; € W+ = {0}. The surjectivity of p,, allows us to find the desired w € W.
’Zl:ﬁus it is enough to show that given n € u*(X), if (f,n) =0 for all f € CX(X)
then n = 0.

Assume X is a smooth manifold. Given a non-zero measure 7, there exists some
R™ ~ U C X such that )y # 0, to see this either use the fact that distributions
form a sheaf, or view it as a positive function on Borel sets. Now, since U ~ R™
we must have that 7, = g ggaar Wwhere g € C* (R™). Taking some cutoff function
¥ € C°(R™) such that Vlp, 0 = 1 and ¢ > 0 implies the desired result as (g9,m) =
(g, g - piHaar) = (920, ftHaar) > 0 as this is an integral of a positive function.

For an F-analytic manifold we do the same procedure only this time  is the

indicator function of the open unit ball in F™. O

Exercise 7.2.3. Let M, N be either smooth or F-analytic manifolds and let E and

I be complex vector bundles over M and N respectively.

(i) Show that the natural map C°(M,E)QC(N,I) — C*(M x N,EXRI) is an
embedding with dense image, and is an isomorphism if M, N are F-analytic
manifolds.

(i) Show that the natural map

® : Dist(M, E) ® Dist(N,I) — Dist(M x N, EXI)
given by

(@(E@n), F):=(n,f), where f is given by f(y) := (&, Flrnx{y})
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is an embedding with dense image.
(ii) Show that the natural map

Dist(M x N, ER I) — L(C°(M, E), Dist(N, I))

is an embedding with dense image, and is an isomorphism if M, N are F-

analytic manifolds.

Definition 7.2.4. Let X be an {-space and F a sheaf over X. Define F.(X) to
be the space of compactly supported global sections of F, that is all s € F(X)
such that s|gc = 0 outside some compact K. Define C°(X,F) := F.(X) and
Dist(X, F) = C°(X, F)*.

Theorem 7.2.5. Leti: Z — X be {-spaces where Z is closed. Then:
(1) Dist(X, F)|z ~ Dist(Z, Flz) = i*(F).
(2) We have the following short exact sequence:
0 — Dist(Z, F|z) — Dist(X, F) — Dist(U, Fly) — 0.
We now want to prove the following important theorem:

Theorem 7.2.6. Let N C M be a closed submanifold of a real manifold M, and
let E a bundle over M. Then there is a canonical filtration F; C Dist(M, E) such
that:

(1) Every & € F; is supported on N.

(2) F; is locally exhaustive, i.e. |J F; is locally Disty (M, E).
i=1

(3) Fi/F;_1 ~ Dist(N, E|y ® Sym*‘(CN%)).

In order to prove the theorem, we would like to define the notion of derivatives of
smooth sections f € C°(M, E). Alas, the value of the derivative depends on the
chart defined on M, so it is not well defined. Fortunately, the notion of vanishing

of derivatives of certain order is well defined as the following exercise shows:

Exercise 7.2.7. Let f € C®°(R") such that f(*)(0) = 0 for every multi-index o
with |a| < k, and ¢ : R™ — R™ a diffeornorphism such that ¢(0) = 0. Furthermore

let g € C°(R™) be a nowhere vanishing function, and set f(z) = g(x)(fop~1(x)).

(1) Show that f@)(0) =0 for every multi-index o with la] < k.
(2) Show that:

oF 2 ok
(avlaka) 0) = <8((d<p)v1) .0 ((d@)vk)f) (0)9(0).
(8) Find a counter example for part (1) if f@(0) # 0 for some |i| < k.

Remark 7.2.8. As a consequence of this exercise, given any f € C°(M, E) whose
first k—1 derivatives vanish we can define the k-th differential symbol of f denoted
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d’;f:TxMx...xTxMeEx by
k , N " -1
dyf(&iiy- oo &rii) = (MUO% )> (0),

where @; is a local chart and &; = (@; © 'yl)/ (0) are tangent vectors. If we choose

a different chart p; we get that

EF (g -)—(ak(fo *)) (0)—<8k(fo >> 0)
e \SLs o Ska) = ey og, ) O ¥ “\oe, . 06, 07 °F

where @ := p; 0 gaj_l. By the discussion above, we get that

ak —1 o ak ° —1
<a§1,j---8£k,j (fow; )> 0= (6<d¢>sl,j---8(d¢)£k,j(f v )> (@

but as

dpp(61,5) = datp - (piom) (0) = (¢ o piom)'(0) = &u,s
we have that d¥ f(&14,. .., €k ;) = dEf(E1iy ... Eki) so this is well defined.

Proof of Theorem IZZ4. Note that we can identify d*f € Sym” (TrM) ® E,. Let
N C M be a submanifold. Define:

Fi(C*(M,E)) = {f € C*(M,E) : Vo € N, the first k — 1 derivatives of f vanish}.

Choose trivializations M|y ~ R™ and N|ynn ~ R*. We showed that Fjy, ' (V) /Fiy, (V) =
C>®(W,Sym" (W) ® E,) using the map f — d¥f. Hence we get that:

F/Fi " ~ C2(N,E|y ®c Sym'(CNy/)).
This gives a canonical filtration F; C Dist (M, E) such that

Fi/Fioy ~ (Fi/Fi ") ~ CX(N, E|y@cSym' (CNY))* = Dist(N, E|y®cSym’ (CNY)).

O

Corollary 7.2.9. We have

Gri(C™°(M, E)x) = C~°(N, E|xy ® Dens(M)*|y @ Sym‘(N¥) ® Dens(N)).
Proof. We have
Gr;(C™°(M, E)n) = Gr;(Disty (M, E* ® Dens(M)))
~ Dist(N, E*|xy ® Dens(M)|y ® Sym'(CNY)) =
= C~ (N, E|y ® Dens(M)*|y ® Sym' (N} ) ® Dens(N)).

O

8. OPERATIONS ON GENERALIZED FUNCTIONS

In this section we assume X and Y are either ¢-spaces, analytic F-manifolds (with

or without complex bundles over them), or smooth manifolds.
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Definition 8.0.1. Let ¢ : X — Y be a map. We define the pullback ¢* :
C™(Y) — C®(X) by p*(f) = fo. Itis easy to see that if ¢ is proper then
©* 1 CX(Y) — C*(X). By dualizing, we get an operation ¢, : Dist(X) — Dist(Y)

on distributions, which we call pushforward, by

0« (§)(f) == &0 (f)) = E(f o ).

Note that if ¢ is not proper then we can define ¢, : Dist(X)prop — Dist(Y') where
Dist(X)prop := {§ € Dist(X)| ¢|supp(e) is proper}. We would like to set (¢.&, f) =
(&, fop), but foe might not be compactly supported. Therefore we choose a cutoff
function p such that plsuppe) = 1 and p|yc = 0 where U is a small neighborhood
of supp(§) and | is proper (it is a hard task to find such a function). Hence we
can define

(b, 1) =& p- (fop)).
Note that

supp(p - (f 0 %)) € supp(p) N~ (supp(f)) C @l 00 () (BUPP(S))-

Since ¢|supp(p) is proper, and f is compactly supported, this is well defined. The
definition clearly does not depend on the choice of p.

Recall that for vector spaces we had that Dens(V) ~ Haar(V') canonically. Hence
we can identify the space of smooth measures pS°(X) with the space of smooth
sections of the density bundle C2°(X,Dens(X)). Note that we can define ¢, :

C2°(X, Dens(X)) — Dist(X) by (p«(n), f) = [x fdp.

Exercise 8.0.2. Let X and Y be either smooth or F-analytic manifolds and ¢ :
X —Y a map. Show that the pushforward of a compactly supported distribution is
compactly supported, that is p.(Dist.(X)) C Dist.(Y).

Proposition 8.0.3. Let X and Y be either smooth or F-analytic manifolds and
w: X =Y be a submersion. Then:

(1) u(p(X)) € p (V).

(2) o.(f-|lwx]|) =g |wy|, where |wx| and |wy| are non-vanishing densities on

X and'Y respectively and

wx
sy = [ g
o-1(y) P wy|

where ‘J;fjj“fl ® |wy| is the image of |wx| under the natural isomorphism
Dens(X ), =~ Dens(¢ ™" () ® Dens(Y )2
Proof.
(1) We prove the first statement in two steps. Case 1: X = F")Y = F™
where n > m and ¢ : F" — F™ is the natural projection p(z1,...,2z,) =

Z1,...,ZTm. Recall that Haar(X) ~ Haar(Y) ® Haar(X/Y) or equivalently
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that

Dens(X) ~ Dens(Y) ® Dens(X/Y).
Let ¢ € C°(X,Dens(X)) and note that ¢ = f - dux where f € C°(X)
and py is a normalized Haar measure (taking the value 1 on the unit ball

of X = F"), so we can write ux = py ® px/y. By definition, for any
g € CX(Y) we have:

<s0*(¢)7g>=<¢,goso>=/Xf~(gos0)dux=/Y [T ey @y

It is compactly supported, and since g o p(z1,...,2,) = g(T1,...,Tm)
depends only on Y we have

(p«(0),9) :[/ (/X/Yf-dux/y> ~gduy:/yf~gduy

where f € C(Y). Hence ¢.(¢) is a smooth measure.

Case 2 - general case: Let ¢ : X — Y be a submersion. Take trivializing
covers Y = |J V; and X = |J U; such that ¢(U;) C V;. For any 4, j such
that o(U;) QJEX;J we can choosfilsomorphisms 7 Ui~ Frand ) : V; >~ F™
(if X and Y are F-analytic we choose isomorphisms to some powers of Op
) such that ¢; o p o 7, ! is the natural projection F™ — F™ (respectively
O} — O for F-analytic). Hence (¢jo0¢o Ti_l)* (U (F™)) C (s (F™)
and ¢, (C2°(U;, Dens(U;))) € C(V;, Dens(V;)).

Now, let ¢ € C°(X,Dens(X)). Using partition of unity, we can write
¢ = fin; where fiu; € C°(U;,Dens(U;)). Note that this is a finite sum
sincel EQSI is compactly supported and observe that:

Px(d) = pu (Z fz'ui> = eulfam) = > gint
iel iel iel
where g; € C°(V;,Dens(V})). Each g;u; is a smooth compactly sup-
ported measure, so the sum Y g;u; is a smooth section of the density
bundle and we are done. e
(2) Since ¢ is a submersion for any p(z) = y € Y the fiber ¢ ~!(y) is a sub-

manifold of X and the following sequence is exact:
0— Tzwil(y) - Tm(X) - Tw(z) (Y) — 0.

Since this is an exact sequence of vector spaces it splits so T,.(X) = T~ ! (y)®
T,z (Y) and by dualizing we get that

Ty (X)=Tio ' (y) @ T (Y)-

This implies that Dens(X), = Dens(¢ ' (y))s ® (Dens(Y)) (-
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We now reduce the problem to a small neighborhood. As before take

trivializing covers Y = (J V; and X = |J U; such that ¢(U;) C V;, and
jeJ iel
choose appropriate isomorphisms 7; and v, for ¢(U;) C V; such that v, o

po Ti_l is the natural projection F™ — F™ (resp. O% — OF).
We need to prove that for every h € C°(Y) we have

(0 (f lwx]), h) = (f lwx],ho @) = (g |wy],h),

where g is as in the statement of the proposition. Construct a partition of

unity f = > f; with respect to {U;};c;. Then it is enough to prove the
icl
claim for f; |wx| as then:

pu(f lox )(B) = 0D _ filwx|)(h) = Z/ng jwy |

where ¢;(y) = fw‘l(y) fin since supp(f;n) C U;. As g = > g; we would
iel
have that g(y) = [,

In (1) we showed the case where ¢ is a projection. Using the fact that

) fn as required.

for diffeomorphisms pushforward and pullback are inverse to one another
and using part (1) we get that:

vjopu(filwx]) =y 000 (i H)((r ) (filwx]))
=vjopo(r u(fior - |(r7 ) wx]) = G [(v; 1) wy |

~ —1 (Tiil)*
where g;(z) = fnwflow;l(x) fioT; Wﬁ

Ji = gi © 1/);1. Hence . (f; |wx]|) = g: |wy| where,

(Ti_l)*WX

(po Ti_l)*wy

‘. Set g; := g; o 1;, then

w
-/ fi‘ 2
e=l(y) P WY

Definition 8.0.4. By the proposition, the map ¢, : C° (X, Dens(X)) — C°(Y, Dens(Y))
gives rise to a pullback ¢* : C~°(Y) —» C~°(X).

5 =G = [ for!

Tioe ™ (y)

O

Exercise 8.0.5. Let ¢ : X — Y be a submersion. We can define a pullback
©* 1 C®°(Y) — C°°(X) both by ©*(f) = f o and by the restriction of the map
©*: C7°(Y) — C~°°(X) to the subspace C*(Y) C C~>°(Y"). Show that these two

definitions coincide.

We can generalize the pushforward and pullback operations on functions and on
distributions to functions and distributions with values in a vector bundle:

Definition 8.0.6. Let p: X — Y and let be m: E —Y a bundle.
(1) Define the pullback of the bundle (E, ) to X by

¢"(E) = {(z.¢) € X x E : p(z) = w(e)}
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with the natural projection to X.
(2) Using (1) define the the pullback of sections

@ CF(Y, E) — CF(X, " (E))
and by dualizing the pushforward of distributions
@« = Dist(X, 9" (E))prop — Dist(Y, E).
(3) Define ¢'(E) := ¢*(F) @ ¢*(Dens(Y)*) ® Dens(X).
Proposition 8.0.7. Let ¢ : X — Y be a submersion. Then
0. (CZ°(X, 9" (E) ® Dens(X))) € C(Y, E ® Dens(Y)).
In particular, this implies that ¢, (C°(X,¢'(E))) € C=(Y,E).

Proof. As in the proof of the last proposition, we may reduce to the case where
¢ : X — Y is the natural projection, and X = F", Y = F™, and E ~ F™ x FF
is trivial (resp O%,0% and OF x Ok for F-analytic manifolds). As a consequence,
©*(E) = F" x F¥ (resp. O% x O%). Note reducing is possible since the notion of
smoothness of a distribution (that is, it is a smooth measure) is local.

Let ¢ = fu € CX(X, p*(E) @ Dens(X)). Then we have for any g € C*(Y, E),

<s0*(¢)79>=<¢,gw>=/xf-(gos0)ux=/y </X/Yf~u)¢/y> gy
:/ Fgny = (fuy, ),
Y

where f = fX/Y [ - px/y which is smooth, so . (¢) is smooth. ([

9. FOURIER TRANSFORM

Definition 9.0.1. Let G be a locally compact Hausdorff abelian group. Define its
Pontryagin dual by,

GV ={x:G —Uy(C) = S" CC|x(g192) = x(91)x(g2), X is cts}.

The topology on GV is the compact open topology, i.e. a sub-basis of the topology is
comprised of sets M(K,V)={x € GV : x(K) CV} where K C G is compact and
V C St is open.

Theorem 9.0.2. Let G be a locally compact, Hausdorff abelian group, then GV is

a locally compact Hausdorff abelian group.

Proof. We see that characters form an abelian group. Since S! is a topological
group, the compact open topology on GV is equivalent to the topology of uniform
convergence on compact sets. Thus, in order to show that the multiplication and
inverse operations are continuous, it is enough to show that if f, — f and g, — ¢
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1

uniformly on compact sets then f, - g, — f-g~! uniformly on compact sets. Now,

if K C G is compact, note that this follows from the following bound (Vz € K):

fugn = o7 < U falgn = gD+ 1 = g = lgn — gl + 1 fn = fI.

Now to show it is locally compact, consider the space (S')¢ of all functions f :
G — S ~ R/Z with the product topology (i.e. a basis is given by open sets in only
finitely many components). It is a compact space by Tychonoff’s theorem, and it

has the space

G= [ {x:G—S":x(9192) = x(g1)(92)},
91,92€G
as a closed subspace, implying that G is compact. Furthermore, for every S C G
and € > 0 the set A(S,€) = {x € (S1)¢ : x(S) C [—¢,¢]} is also closed and compact
in (S1)¢ as the complement is a union of sets of the form

{x:G— S":3s€ 9 st. x(s) € [~¢ €}

which are open.

In particular, taking an open neighborhood e € U C G, the sets V (U, ¢) = A(U,€)N
G are closed and compact in (S1). Take 0 < € < 1
V(U,e) € GV. Start with an open e € Uy = U C G, and choose a sequence of
neighborhoods (U,,)22; in G such that Up4q - Upy1 C U, for all n € N and set
€n = 3=. Taking x € V(Upn,€n), we see that since for z € U,41 we have that
X(7) € [—emen] and 22 € Uy we get x(2?) = x(2)? € [-2,€] C [-%, %],
implying that V (U, €,) C V(Unt1,€nt1)-

Now, take y € V(U,¢) and a basic open set (—6,8) C S! for 6 > 0. We have
that [—€,,€,] € (—6,8) for n big enough, implying that e € U, C x~1((—4,9))
which means that x is continuous at e. Since y is a homomorphism, we can show

we show that we have that

it is continuous everywhere; if y(g) € W C S and W is open, we have that
(—6,6) € x(g~1)W for some § > 0 and that,

X Tx(gIW)={yeG:x(w) ex " (@W}={yeG:xl(gy) e W}
=g gy e G:x(gy) e W} =g "x "W).

Now, for some m € Ny big enough, the following implies that g € gU,, € x~*(W):

Un Cx x(gHW) =g "X (W).

We know that V(U,¢€) is compact in the product topology, and want to show it is
compact with respect to the compact open topology. For this, it is enough to show
that any net in V(U,¢€) has a converging subnet in the compact open topology.
Assume we are given some net (zo) € V(U,¢), then it has a subnet (fg) — f
converging in the product topology with fs, f € V(U,€¢). Now, note that V(U,€)
is uniformly equicontinuous, that is if ¢g1,¢92 € G and g1g5 ! ¢ U, then for any
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x € V(U,e),

IX(g1) — x(92)] = Ix(91)x " (92) — 1] = [x(9195 ") — 1| < €n.

Given a basic open neighborhood of the identity character 1¢ € M (K, B (0)),
where K is compact, for every g € K we have that g € U,g (for n big enough).
Now, taking any ¢’ € U,g, we get that ¢’¢~' € U, implying that for some big
enough § we have that |f(g) — f3(g)| < €, and that,

11(9") = f8(g") < 1£(g") = F(@) + | fs(d') = fa()| + £ (9) — fa(g)] < 3en.

Taking n > n4 such that €, < %, we see that fz — f uniformly on U,g, but since

K is compact we can cover it with finitely many sets of the form U, g, and take
= , d iate 3.

n orgigxk{ngi} and appropriate

To finish off the argument, note that by local compactness every g € G has a

neighborhood g € U with compact closure U C K, and we have that M (K, B.(0)) C

V (U, €) for an appropriate % >e€> 0. (I

Exercise 9.0.3. Let G be a locally compact, Hausdorff abelian group. Show that if

G is compact then GV is discrete, and that if G is discrete then GV is compact.

Theorem 9.0.4. For a locally compact abelian group G, we have that the natural
map ¢ : G — GV defined by g — @g, where ©4(x) = x(g), is an isomorphism
GVY ~@.

Proof. This is complicated. Need a reference. O

Exercise 9.0.5. Let G be a locally compact, Hausdorff abelian group, and H < G
a closed subgroup. Show that:
(1) Pontryagin duality is a contravariant endofunctor in the category of locally
compact abelian groups.
(2) HY ~ GY/H* where H- = {x € GV : x(h) = 1 VYh € H}, and that if
H and G are vector spaces then this is a homeomorphism (Hint: use an

appropriate version of the Hahn-Banach theorem,).

Example 9.0.6.

(1) For any finite abelian group G we have that G ~ GV .
(2) The dual of U;(C) = S* is Z.
(3) We have that RV ~ R.

Exercise 9.0.7. Let V' be a topological vector space over a local field F. Then
V*Qp FY ~VV,

Definition 9.0.8. Let G be a locally compact Hausdorff abelian group. The map
F 1 pue(G) — C(GY) defined by F(p)(x) = [ xdp is called the Fourier transform.

Exercise 9.0.9. Show the following:
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(1) F is continuous.
(2) Let G be a locally compact abelian group. For a character T : G — S* define
shy(1)(x) = T7(x + h). Show that for n € u*(G) and g € G:
(a) F(shg(m)(x) = x(9)F(n)(x) for all x € G.
(b) F(xn) = shy—1(F(n)) for all x € GV.

Definition 9.0.10. Let X7 and X5 be locally compact topological vector spaces and
let 1 € p(X1) and po € u(Xs). We define the external tensor product of such
measures p1 X ps € p® (X1 x Xa). In addition, If X; = X5 = G, then we define
the convolution of these measures by py * g := my (1 R pg) where m : G x G — G

is the multiplication map.
Fact 9.0.11. For two measures o, 3 € u>°(G) we have that F(a* () = F(a)-F(5).

Definition 9.0.12. Let V be a finite dimensional vector space over a local field F.
Define the space of Schwartz functions S(V) on V' by:

(1) If F is non-archimedean, then S(V) = C°(V), i.e. locally constant func-
tions on V.

(2) If F is archimedean, then
S(V)={feC®(V)Vie N pe F[V], sup |8if p(m)’ < 00}
In other words it is the space of rapidly decreasing smooth functions on V.

Proposition 9.0.13. The Fourier transform F : S(V,Haar(V)) — S(VV) is con-
tinuous for an Archimedean V' and its image is indeed contained in S(V) in both

Cases.

Proof. Assume V is a real vector space of dimension n, and recall that the topology

o
on S(V) is determined by the semi-norms || f||a,g = sup |<I>a(m)aaj;£f)| where «, § €
eV

Ni and @,(x) = ] I?J It is enough to show that for every f € C°(V,Haar(V))
=1

and semi-norm || - |, on S(VV) there exists a semi-norm || - |" on S(V, Haar(V))
and a positive constant C' such that [|F(f)|a.3 < C|f]|’- Now, recall that,

n

where one can differentiate directly using the definition to verify the above proce-

dure. The other side of the coin is given by integration by parts,

&) = [t @it = ety @)] 7, - [ oo,
J

—i&; Oz
Rn - :

—i0(f)

E)xj

x = F(

).

Note that since the functions e~ %% converge weakly to zero as distributions as

|¢] — oo we get that Schwartz measures are mapped into S(VV). We can now
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bound F(f) properly using the above relations:

(i) F ()|
A(zV)P

vaa(%(—x)f)‘
or™

1F(Hllas = sup_|@a(a)

zvVevy

|
zvVevy
|4

where C' = [ Wdu(x). Since the last expression is a linear combination of
v

sup
zvVeVvV

T

§< Csup ((1 T )+
zeV

ol D |

norms of the form || f||o g for |&/| <|a|+n+1 and |8'| < |F], this implies that F

is continuous. Note that we can also use this to show that F(f) is Schwartz, since
9% f(x)

if all the norms || - [|o,5 are bounded then the value of |®,(x) =5 | decays to 0 as
|x] — oo for every o and f3.
The proof for vector spaces over non-Archimedean fields is analogous. O

Definition 9.0.14. Let S(V') be the space of Schwartz functions on V.
(1) We call & € S*(V) the space of tempered distributions and G(V) :=
S*(V,Haar(V')) the space of tempered generalized functions.
(2) Finally, we define the Fourier transform on tempered distributions via du-
ality:
F* . 8*(VY) — G(V) := S*(V,Haar(V)).
Taking V := VY we get F*: S*(V) — G(VV).
Theorem 9.0.15. The definition of Fourier transform of distributions is consistent

with the definition given for functions. In other words F*|sv Haar(v)) = F-

Proof. Let f(z)-dx € S(V,Haar(V)) and g(x) - dx € S(VV,Haar(V")). Then by
definition,

(F(F(@) - dz), g(x) - dx) = (F(z) - dz, F(g(x)dx)) / fla ax)()da

where F(g(x) - d = [,v x(2)g(x)dx. Therefore we have:

| H@)F 00 - s - / e /V @i = ([ x@swie) st

= | F000)stdx = Fr@) - da).s() - av.
([

Remark 9.0.16. We will usually omit the * from the F* notations, this should

cause no confusion.

In the following argument we would like to show the Fourier transform is a unitary
operator. For this we will first need to define a pairing between Haar(V) and
Haar(VV). Given o € Haar(V) and 8 € Haar(V") we can define such a pairing
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as follows. We choose f € C°(VV) such that f(0) = 1 and then define (o, 8) :=
(Fla), f-B).
Exercise 9.0.17.
(1) Show this is well defined. That is, given a different g € C°(VY) such that
9(0) = 1, show that (F(a),(f —g)-5) =0.
(2) Show that Haar(V") ~¢,, Haar(V)*.

Exercise 9.0.18. Show that F(d4)(t) = exp(at).

Definition 9.0.19. We define a map F,, : S*(V, Haar(V)®") — S*(VV, Haar(VV)®1-7))
such that Fo is the Fourier transform. We use the following isomorphisms:

(1) The pairing Haar(V') ~cay, Haar(V)*.

(2) The identification S*(V,Haar(V)®") ~ S*(V) ® Haar(V)®~ ™.

(8) The identification S*(V, Haar(VV)®(1=)) ~ §*(VV Haar(V"V))®@Haar(VV)®".
The first item was shown in the previous exercise. The second identification is as
follows. Given £ @ 3 € S*(V) ® Haar(VV)®" and f -« € S(V,Haar(V)®") we have
that (€ ® B, fa) = (&, /){B,a). The third identification is similar.

Finally, we define the map by applying the Fourier transform on the first coordinate
of the right hand side of (2) and by applying the canonical map (1) on the second

coordinate.
Proposition 9.0.20. We have that FyoFy = flip where (flip(€), f(x)p) = (&, f(—z)u).

Proof. Note that span{d,}.cv is a dense subspace of S*(V) with respect to the
weak topology. Hence it is enough to show that Fy o Fy(d,) = d_, for all a € V.
Note that (Fo(do), f3) := (b0, Fo(fB)) = [i,v fdf, this implies Fo(d) = 1.

As before, Fy : S*(VV,Haar(VV)) — S*(V) is defined by identifying : S*(V, Haar(V"))
with S*(VV) ® Haar(V'). Under this identification, 1-u for a choice of a Haar mea-
sure  on V'V is identified with 1 ® n where n € Haar(V') and (u,n) = 1.

Given f € S(V), we have that (note we are using Theorem O TH):

(Fr(l-p), [y =(F (W) @n, f-n@u =(FQ),f -n)num = (0o, f n- 1= f0),

SO .7:1 Ofo((S()) = 50.
Using Exercise B0, we now see that (here x(a) is the function which substitutes

the value a in a given character x):
.7:1 e} fo(éa) = .7:1 o fo(Sha(é())) = .7:1()((@)]:0(50)) = Sh,a]'-l o .7:0((50> = 67a-
By continuity of Fy and F; this implies that F; o Fo = flip. O

Definition 9.0.21. Let F' and K be local fields and x : F* — K* a character.

For a 1-dimensional space V' over F we define a functor by:

X(V):={p: V"= K :plav) = x(a)p(v)Va € F* v e V*}
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Example 9.0.22. Let x : F* — F* be the character x — x% and let V be a one

dimensional vector space of F. Then

X(V) = {p: V" = K : p(af) = a®o(f)}.
Note that x(V) ~ean VOV by v @ w — @y, - pu. Indeed, given b € V*, we have
o pu(¥) = 9(v) - P(w) and @, - pular)) = a(v) - a(w) = a’py - o ().
Definition 9.0.23. Let V be a 1-dimensional vector space over R.

(1) A positive structure on V' is a non trivial subset P C V' such that R>¢- P =
P.
(2) If V has a positive structure, we define

VE = VT ={p: V" > R:p(Bf) = 181" - o(f)}-
Exercise 9.0.24. Let V be a real 1-dimensional vector space with a positive struc-

ture.
(1) Show that:
(a) V ~can |V].
(b) VorP ~ .. VO @ VB where o, 3 € QX.
(2) Deduce that Haar(V)* ® Haar(V)? ~ Haar(V)*+5,
Definition 9.0.25. For a € Q we define similarly to the procedure defined above,

Fo: 8*(V,Haar(V)) — S*(VV,Haar(VV)1~9).

In particular, choosing a = % we have:

F1 : 8*(V,Haar(V)?) — S*(V", Haar(V")?).

Theorem 9.0.26 (Functoriality of Fourier transform). Let W C V' be vector spaces
over a local field, denote the inclusion of W in'V by i, and set p : V¥V — WV for

the induced linear map on the duals, then the following diagrams commute:

S(V) S(W) S*(V) 5% (W)
F ]-" ]—ﬂ 4
S(VY, Haar(VY)) —2— S(WY, Haar(WV)) sy <2 g,

Note that this is possible since p is a submersion (linear and surjective) so pushing

Schwartz measures along it yields Schwartz measures.

Proof. We start by showing the right hand side diagram commutes. Since i, the
Fourier transform and p* are continuous with respect to the weak topology, it is
enough to prove commutativity for a dense set in S*(W).

First take the delta function dg € S*(W), it is a compactly supported measure, and
it holds that i.(dg) = dp. Furthermore, since F : S*(V) — G(VV) is defined via
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duality we have that F(dp) = 1:

(F(60). £1) = (0o, F (7)) = F(F0Ov) = [ = (1, fu
Vv
where the third equality is sensible since F(fu) € S(VVY) and Oyvv(x) = 1 for
all x € VV. We can also show that p*(1) = 1. Consider G(W") as a subspace of
C~°(WV), there the generalized Schwartz function 1 is a smooth function, and
note that the following diagram, where the horizontal arrows are the inclusions is

commutative:

G(VY) ——— C72(VY) —— C=(VY)

|

GWY) —— C™°(WV) «—— C®(WV).

*

p

Now, note that every measure fu € u2°(VV) can be treated either as a functional
on smooth functions (since it has compact support as a distribution), or as the
parameter a generalized function takes values on. This is utilized in the second

equality bellow to yield the required result:
(PE—oo (1), fr) = (L, 0 (f10)) = (P (f11), 1) = (f 11, pCoe (1)) = (fre, 1) = (1, fu).

Note that since p, is a submersion pushing forward a compactly supported smooth
measure along it yields a smooth measure.

Since 6, for any w € W is just a translation of dy by w, its Fourier transform is
F(dw)(x) = x(w), and 4, and p* are invariant to translations, the diagram is com-
mutative for delta distributions. The space of delta distributions spanc{dy }wew
is dense w.r.t the weak topology since for every function f with f(z¢) # 0 we can
take suitable ¢ € C such that |({¢ — ¢dz, f)] is small as desired.

To see this implies the commutativity of the left diagram, it is enough to show
that if A* = 0 for A* : V5 — V¥ where A* is the dual map to the linear map
A: Vi — Vs, then A =0, and use this for Fi, — p*F.

If A* =0, we have for every & € V5" and v1 € V; that 0 = (A* &, v1) = (&a, Avy). If
there exists v; € V; such that Av; # 0, then we can define a non-zero linear func-
tional £ : spanc{Av;} — C via (£, Av;) = 1, and extend it to a non-zero continuous

functional & € V5* by the Hahn-Banach theorem. This yields a contradiction as

1= <§2,A1}1> = <A*§2,U1> = <O,’U1> =0.
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10. WAVE-FRONT SET

The wave-front set of a generalized function & is the collection of all points and
codirections in which £ is not smooth. It is a very important invariant of the
generalized function. For example, there are some operations on functions, like
product or pull-back, that do not extend to arbitrary generalized functions but
do extend to generalized functions under some conditions on the wave-front set.
The term comes from physics. Every differential equation satisfied by a generalized

function will give a restriction on its wave-front set.

Example 10.0.1. Let € be the 6-function of the x-axis on R2, i.e. the generalized
function given by (£, fdxdy) := [ f(x)dz), let L C R? denote the x-axis and L+ C
(R?)* denote the subspace of functionals vanishing on L. Then WF(¢) = L x L*.

We will now define the wave-front set by characterizing properties.

Definition 10.0.2. The wave-front set is an assignment of a closed subset WF (§) C
T*M for any & € C~°°(M, E) such that

(1) For any isomorphism v : (M, E) ~ (M', E'),
P(WF(€)) = WF(v4 (€).
(2) WE(€) is conical in the cotangent directions, i.e.
(x,v € WF(§) = (z, \v) € WF({) VA€eF.

(3) par(WE(€)) = WF(£) 1 (M x {0}) = supp(¢),
where par : T*M — M denotes the natural projection.

(1) € € C=(M, E) & WF(€) € M x {0}

(5) WE(f€ + gn) © WF() UWF ()

(6) For another bundle E' over M, let n € C~°°(M, E) and consider £ & n €
C~°(M,E®E’). Then WF(§ @ n) = WF(&) UWF(n).

(7) For any open subset U C M, WF(£|y) = WF(€) Npyf (U).

(8) Let v: N — M be a submersion. Then WF(v*¢) = v*(WF(E)), where the
operation v* on subsets of cotangent bundles will be defined below.

(9) Let v : M — N be a smooth map such that v|gppe) s proper. Then
WF (v, (§)) C v (WF(E)), where the operation v, on subsets of cotangent
bundles will be defined below.

Definition 10.0.3. (i) For sets A, B, and subsets X C A,)Y C B,S C Ax B
define subsets S.(X) C B and S*(Y) C A by

S(X)={yeB|Ire Xst(x,y) €S} S(Y)={xreA|TyeYsdi(x,y) €S}
(i) For a morphism smooth map v: M — N, define A, CT*M x T*N by

A, = {((m,v),(n,w) € T*M x T*N |v(m) = n, d;, v(w) = v}.
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For a subset X C T*M define v4(X) := (A,)«(X) CT*N and
for a subset Y C T*N define v*(Y) := (A,)*(Y) C T*M.

Exercise 10.0.4 (*). Check whether the wave-front set is uniquely defined by the

above properties.

Hint. By (@), WF is local and thus it is enough to prove for £ € C~°(F"™). Let
(0,v) ¢ WF(&), and let p € C°(F™) be constant 1 in a neighborhood of zero.
Consider v, (p€) € C~°(F). From (8) and (@), v.(p€) € C°(F). Thus, if v.(p) ¢
C*°(F) for some p as above then (0,v) € WF(¢).

Let us now find a necessary condition for (0,v) € WF(§). We will use the Radon
transform, which maps f € C°(V) to the integrals of f on all affine hyperplanes,
i.e. hyperplanes not necessarily passing through the origin. For a vector space
W, denote W := P(W @ F). Note that this is a compact manifold and that the
manifold of all affine hyperplanes in V is V*, and the manifold of all affine lines in
Vis V. Define R:= {(I, H) ¢ VxV*|l € H},and let p; : R — Vand py : R — V*
be the projections. Then the Radon transform is (p2). o pi. It is known that this
transform is invertible, and thus any distribution is the Radon transform of another
one. Thus, the conditions (H) and (B) give an upper bound on WF. Hopefully, the
two bounds together determine WF. (I

10.1. Definition of the wave-front set. Let us now give a constructive definition
of WF, following Hérmander, and then prove the above properties. It will take

several steps.

Definition 10.1.1. For any local field F', let V be an F-vector space, v € V and
f € C®(V). We say that f vanishes asymptotically along v if there exists an
open neighborhood U of v and p € C(U) such that p*(p)m*f € S(U x F), where
m:V x F —V is given by m(v,\) := v and p:V x F — F is the projection.
Exercise 10.1.2. TFAE:

(i) f vanishes asymptotically along v for any v #0 €V

(i) feSV).

Exercise 10.1.3. Show that f vanishes asymptotically along 0 if and only if f = 0.

Exercise 10.1.4. For any Lie group G, we have F(Dist.(G)) C C*(G).

Definition 10.1.5. Let V' be a vector space, and & € Dist(V).
(i) We say that & is smooth at (z,w) € V x V* if there exists p € C°(V) such
that p(x) = 1 and F(p) vanishes asymptotically along w.
(i) WF(§) = {(z,w) € V x V*|£ is not smooth at (x,w)}.
(iii) For x € V, let WF,(§) := WF(&) N {z} x V*

Theorem 10.1.6 (The proof is complicated). Let v :V — V be a diffeomorphism
s.t. v(0) =0 and dov = Id. Then WFq(v*(§)) = WFy(§) for any £ € Dist(V).
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Exercise 10.1.7 (*). A distribution & on V is smooth at (x,w) € V x V* if and
only if for any p € CX(V) with p(x) = 1, the Fourier transform F(p€) vanishes

asymptotically along w.
Corollary 10.1.8. Letv:V — V be a diffeomorphism. Then
WE(@*(£)) = v"(WF((£)))-

Corollary 10.1.9. The definition of WF extends to generalized sections of vector

bundles on manifolds.

Exercise 10.1.10. Let L C V be linear spaces of dimensions 1 and 2. Fix a Haar
measure (1 on L and define 61, € Dist(V') by (0r, f) := [, fu. Compute WF(4r).

Exercise 10.1.11. Properties (I)-(@) of WF hold.

Exercise 10.1.12. For any epimorphism of Lie groups p : G — H, and any
¢ € Dist.(G), we have F(p.(€)) = F(&)| -

Exercise 10.1.13. Property (B) holds.
Exercise 10.1.14. Property (8) holds.

Hint. Any map v : M — N decomposes as a composition of the closed embedding
graph(v) : M — M x N and the projection M x N — N. Thus it is enough
to prove for a closed embedding and for a projection. By the locality of WF and
invariance to isomorphisms it is enough to prove for a linear embedding and a linear

epimorphism. ([
10.2. Advanced properties of the wave-front set.
Definition 10.2.1. Let I' C T*M be a closed subset. Define
Cr(M) :={{ € CT(M)[WF(£) C T'}.
Definition 10.2.2. (i) For a non-archimedean F, an F-analytic manifold M
and an F-vector space W define

SV(M) :={f € C®(M x W) | P70 |supp(s) @5 proper }.

(i) For a smooth manifold M and an R-vector space W define

SY(M):={f € C°(M x W) |V compact K C M, ¥Ym,n € N&mW

VD e Dif f(M). sup |[Df{w™|| < oo}
(z,w)eK xW

Definition 10.2.3. Define topology on Cr>°(V) by: & — & if £ = € in C~(V)
and for any v € Vthere exists € > 0 and p € C°(Bc(v)) such that for any l € V*
we have

m*F(p&i)

B.(yxr — M " F(p&i)|B.1)xF

in SF(B.(1) x F).
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Definition 10.2.4. For a smooth map v : M — N, define
S, = {((),w) € TN | dy* (w) = 0}.
Note that S, = v, (M x {0}).
Theorem 10.2.5. Letv: M — N and let I' C T*N be a closed subset such that
I'ns, c N x{0}.
Then v* : C®°(N) — C*(M) can be continuously extended to
v Cp™(N) — C;‘?%)(M)

Proof. For a submersion, one can pullback any distribution, Cp*°(N) = C*(N).
Also, the statement is local. Thus, enough to prove it for v : V — W. Any such v
decomposes to i : V — V x W given by i(v) := (v,0), v/ : V. x W — V x W given
by (v,w) — (v,v(v) +w) and the projection on W. Thus, it is enough to prove for
i. For ¢ we have

Si=CN(V)=VxW*C (VaW)x (V' aW) =TV aW).

Also, enough to prove for the case dim W = 1. This we do by twisting pushforward
by F.

More precisely, we use Theorem on functoriality of Fourier transform. By this
theorem, for f € S(V@W) we have F(i* f) = p.(F(f)), where p : V*@W* — V* is
the projection. This formula extends to £ € Oy, 5y« (V @ W), since F(p€) vanishes
asymptotically along W* for any p € C2°(V @ W). More precisely, we can choose a

sequence p, € C°(V @& W) that on every compact becomes the constant 1 starting

from some index, and define v*¢ to be the limit of F~1(p.(F(pn&))). O
Corollary 10.2.6. Let &,n € C~°°(M) such that WF(&) N WF(n) C M x {0}.
Then we can define the product £ -n € C\?V%O(g)JrWF(n) (N).

Proof. Define A: M — M x M by A(m) := (m,m). Then £ -n=A*(E®n). O

Theorem 10.2.7. Let £ € C~°°(V) and let Z C V* be a closed conical set such
that suppF(§) C Z. Then WF(§) CV x Z.

Intuitively, this theorem makes sense since the cotangent directions in the wave-
front set form the asymptotic support of the Fourier transform. Let us now give the

proof in the p-adic case, since the proof in the real case is similar, though longer.

Proof. Enough to show that for any p € C2°*(V'), F(p€) is asymptotically supported
in Z. Note that F(p&) = F(p) * F(€) and thus suppF(p€) C suppF(p) + Z. Since
suppF(p) is a compact set, F(p€) is eventually zero in any direction not in Z.
Since Z is closed, this implies that F(p) is asymptotically supported in Z and
thus WF() C V x Z. O
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Theorem 10.2.8. Let M be a smooth manifold, D be a differential operator on
M, and & € C~°(M) such that D§ = 0. Then Symb(D)(WF(zi)) = {0}.

Sketch of proof. Since the question is local, we can assume that M is a vector space
V. Fix x € V and let p be the polynomial on V* given by p(l) := Symb(D)(v, ).
Let [ € V* be a cotangent direction such that p(l) # 0. We want to show that
p & WF, (). Define

v(&l):= sup lim In [ F(©)(w)l
wel+B.(0) A~ Al
This is the order of asymptotics as A — oo of F(§) near the direction . It is not
+oo since F(§) is a tempered distribution. We want to show that v(&,1) = —oo for
¢ small enough. Denote 1(a) := exp(2micr), and define fy € C®°(V) by fa(v) :=
Y(Al(v)). We have
0= (pDg, fx) = (& D(pfr))-

Using the Leibnitz rule we get

degD degD
D(pf)(v) = D(p(v)b(N(v)) = > A" (N(v))pm = Z A" o
m=0

for some collection p,, € C(V). Thus

0=(&D(pf) =D A& fpm) = D A" Flom&)N) =D A" (F(E)*F (pm)) (M)
Thus

F (&) * Fpacgn) (M) = =A7H(F(€) * F(paegp—1)) (M) +
and thus v(£,1) = v(&,1) — 1. Thus v(&,1) = —cc. O

10.3. Sketch of proof of the invariance to isomorphisms in the p-adic case.
Let V := F™. Let ¢ : FF — U(1) C C* be a non-trivial unitary additive character
with 1 (B1(0)) = {1}. Identify V with V* using 1.

Notation 10.3.1. Letl € V* and r,e > 0 € R. Denote

G (V) = {€ € C7(V)[supp(€) C B,(0) and m*(F(€))|p.ayxr € ST (Be(1)xF)}
Clre.aV)={€ C"=(V)|supp(§) C B(0) and supp(m”(F(£)))|p.()xr C BexBa(F)}
Note that C; (V) := UaerC) o (V).

Exercise 10.3.2. (i) If{ € C) % (V) with||l]| = 1 then 15,)€ € C’l
(i) If £ € C 2 (V) and p € C(V) then p§ € C) Z(V).

re,a+d—1 (V)

Notation 10.3.3. For a diffeomorphism v : V — V and © € V denote by Af fyv

the affine approzimation to v at x. Namely

Af fav(y) == v(z) + dov(y — ).
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Exercise 10.3.4. Let v:V — V be a diffeomorphism s.t. v(0) =0 and dov = Id.
Let r > 0. Show that 3C'V§ > 0Vx € B,.(0) we have

sup ||lv — Af fov|| < CS2.
Bs(z)

Hint. Use Taylor series (Il

Exercise 10.3.5. Let £ € S}(V). Let v1,v2: V — V and let € > 0 be s.t.
sup |lv1 — o] <e.
supp¢

Then

}-(Vfﬁ)\Ba,l(o) = f(”§§)|B571(0)-

Exercise 10.3.6. Let r,e,a0 > 0 with e < 1 and let | € V* s.t. ||l|| = 1. Let
A:V =V be an affine transformation s.t. ||dgA—Id|| < 1 and A(B,(0)) C B,(0).
Then

A* (Cl_'re V) C Cd_goj(l),r,s,a(v)'

This exercise follows from the rules for conjugation of linear transformations by
Fourier transform.

The theorem follows now from the following specialization.

Theorem 10.3.7. Let r,e,a > 0 with e < 1 and let | € V* s.t. ||l|]| = 1. Let
v:V =V be a diffeomorphism such that
(1) v(0) =
(2) ||d,v — Id]| < e
(3) for any x € B,(0) and any r’ < r we have v(B,(x)) = B, (v(x)).
Let £ € C) % (V). Then
vige G (V).

Proof. Let C be as in Exercise [I34. Fix A € F with [\| > a+C + /C(C + 2a).
Let 0 = 1/(v/2AC). Thus a4 61 < |A\| < C~1§2. Tt is enough to show that for
any I’ € B.(I) we have F(v*€)(N’) = 0. Present B,.(0) as a disjoint union of balls
U; = Bs(x;) of radius §. We have

Fwre)(\) Z}‘ (1y,))(A').

Since |A\| < C~1572, Exercises 34 and MZ33 imply

F (1o, )(N) = F((Af fa,v)" (Lo, &) (N).

By Exercise MIZ3A (1) and by the assumptions 1y,€ € C

ﬁf a+6-1 (V) By Exercise
[034 this implies

(AL £20)" (10,€) € Ci%0) a1 (V).
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Since [A| > a4 67" and I’ € B.(d} v(1)) we have
F((Af far) (1, £)(N) =0 Vi

Summarizing, we have
FW )\ Zf (10.6)( Zf (Af fov)" (1,€))(A) = 0.
0

Remark 10.3.8. (1) The method in the proof is called the stationary phase
method, which is a central method in microlocal analysis.

(2) In order to use the affine approzimation we decomposed & =3, 1y,&. The

multiplication of & by 1y, “damaged” & but this “damage” can be controlled

using LT A®M), and is apparently moderate since the affine approzimation

s good to the second order.

11. THE WEIL REPRESENTATION, THE OSCILLATOR REPRESENTATION AND AN
APPLICATION

In this section we show that the Fourier transform is not alone - it is part of an
infinite group of operators. This group is a representation of a double cover of
SLo(F'). Thus this section requires some knowledge of representation theory. To
motivate the existence of this representation we first describe the Heisenberg group
and its representations.

Definition 11.0.1. Let V := F" and let w be the standard symplectic form on
W, =V @& V*. The Heisenberg group H, 1is the algebraic group with underlying
algebraic variety W,, x F with the group law given by

(w1, 21)(wa, 22) = (w1 + we, 21 + 22 + 1/2w(wy, w2)).
Define a unitary character x of R by x(2) := exp(27iz).
Definition 11.0.2. The oscillator representation of H, is given on the space L*(V)
by
3) (0(z,0,2)f)(y) == x(e(y) + 2)) f(z +y).
Note that the center of H, is 0 X F', and it acts on o by the character x, which can
be trivially extended to a character of V* x F.

It is easy to see that o is the unitary induction of (the extension of) the character
X from V* xR to H, = (Ve V*) x F.

Lemma 11.0.3. The space of smooth vectors in o is S(V'), and the Lie algebra of
H,, acts on it by

(4) o()f:=0uf, o(p)f :=¢f, o(2)f := 2mizf.
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Proof. Formula (B) is obtained from (B) by derivation. Now, it is known that the
space of smooth vectors in a unitary induction consists of the smooth L2 functions
whose derivatives also lie in L2. (]

Theorem 11.0.4 (Stone-von-Neumann). The oscillator representation o is the

only irreducible unitary representation of H, with central character x.

Idea of the proof. Let me ignore all the analytic difficulties. Consider the normal
commutative subgroup A := V x F. Conjugation in H,, defines an action of V' on the
dual group of A. This action has only two orbits. The closed orbit is the singalton
{1} and the open orbit O is the complement to the closed one. The restriction o|4
decomposes to a direct integral of characters in O, each “with multiplicity one".
The restriction of any non-zero subrepresentation p C o to A will also include ¥,
and thus the whole orbit O of x. Thus p = ¢ and o is irreducible.

Now let 7 be any irreducible unitary representation of H,, with central character
xX. Then the restriction of 7 to A will again include all the characters in O with
multiplicity one. Thus 7 is the induction of an irreducible representation of the

stabilizer of x in H,. However, this stabilizer is A and thus 7 ~ o. (]

Note that the symplectic group Sp(V @ V*) acts on H,, by automorphisms, pre-

serving the center. Thus the theorem implies the following corollary.

Corollary 11.0.5. For every g € Sp(V @ V*) there exists a (unique up to a
scalar multiple) linear automorphism T of S(V') such that For any h € H, we
have o(h9) = To(h)T~!.

The uniqueness part of Corollary I3 follows from Schur’s lemmas. Corollary
T3 defines a projective representation of Sp(V & V*) on §(V), i.e. a map 7 :
Sp(V & V*) — GL(S(V)) such that 7(gh) = Mg ,7(g)7(h). It is not possible to
coordinate the scalars in order to obtain an honest representation of Sp(V @ V*),
but it is possible to obtain a representation of a double cover éB(V @®V™*), called the
metaplectic group. This was shown by A. Weil. We will not give the formulas for
the full Weil representation, but rather for its restriction to the subgroup STJQ(F )
embedded by

By — Idy, Eyg — T, By +— T™ !, By — Idy-,

where by Idy we mean the operator that is Id on V' and zero on V* and by T the
operator that is zero on V* and on V is given by w.

Suppose that F' is non-archimedean, and identify V' with V* using a non-degenerate
quadratic form ¢. Also, identify o with S(V). Let n := dim V. Then the Weil

representation is given by
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o) w<< - ) F(0) = "b(ug(0) )

(6) 7T(( é t91 )ﬁ)f(v) = &"[t]"(q)¥(tq) " f(tv)

g w(( o > ) =MD F )

Here, v(q) is a certain eights root of unity that depends on the quadratic form, and
1 is the non-trivial unitary additive character that we use to identify V with V*.
Note that this representation defines a representation of SLo(F) if and only if n is
even. The existence of the Weil representation and the formulas above imply the

following corollary.

Corollary 11.0.6 (Rallis - Schiffmann). Let £ € S(V') and let ¢ be a non-degenerate
quadratic form on V. Let Z denote the zeros of q in V. Let & € 8*(V) such that
suppé C V and suppF (&) C V. Then & = v(q)F(§) and

(& Ft0)) = [t]7"7(a) A (tg) €, f(0))-

Moreover, if € # 0 then n is even.

1
Proof. Since suppé C Z, we have ¥(uq(v))§ = £ and thus 7( 0 1; ,E)E =
1 1 1 1
e™¢. Since < f)l 0 ) ( 0 ? ) ( i)l 0 ) = ( i)l 0 ) , and suppF (&) C Z,
. 10 ) 1 %
(@) and (B) imply 7( ) ,e)6 = "¢, Since the subgroups 0 1 and
u

1 0 —
( ) ) generate SLo(F'), we get that (g,e)¢ = "¢ for any (g,¢) € SLo(F'). We
*
can assume £ # 0. Then we get that n is even, and gi/g(F) acts trivially on £. The

lemma, follows now from (B) and (@). O

In the case FF = R, one can prove a slightly weaker lemma. The problem in
generalizing the argument above to the archimedean case is that in this case the
condition suppF(§) C V does not imply ¢ (uq(v))€ = 0, but rather that there exists
k such that ¥ (ug(v))*¢ = 0. On the other hand, in this case one can use the Lie
algebra sls.

For the Archimedean version of the corollary we will need the following definition.

Definition 11.0.7. For any t € F* denote by p(t) the homotheties action on
Sc*(V). Denote also 6(t) := v(q)/v(tq).
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We say that a distribution £ € 8*(V') is adapted to q if for any t € F* we have
cither (i) p()§ = SO V12 or (i) plt)é = S(E)EJS™ V2,

Theorem 11.0.8. Let L C S§,(Z(q)) be a non-zero subspace such that for all € € L
we have Fy(§) € L and q- & € L (here B is viewed as a quadratic function,).

Then there exists a non-zero distribution & € L which is adapted to q.
Using it one obtains the following result.

Proposition 11.0.9. Let V' be a real vector space and let q be a non-degenerate
quadratic form on V. Let Z denote the zeros of q in V. Let £ € S*(V') such that
suppé C V' and suppF(§) C V. Then there exists a unitary character x of R* and
m € {0,1} either such that for any t € R* we have

(€, F(tv)) = [E|7"27™x()(E, F(v)).

12. SCHWARTZ FUNCTIONS ON NASH MANIFOLDS

12.1. Semi-algebraic sets and the Seidenberg-Tarski theorem. In this sec-

tion we follow [BCRI.

Definition 12.1.1. A subset A C R™ is called a semi-algebraic set if it can
be presented as a finite union of sets defined by a finite number of polynomial
equalities and inequalities. In other words, if there exist finitely many polynomials
fij» 9ik € Rlz1, ..., ] such that

A= U{:B € R™|fir(z) > 0,..., fis; () > 0,g9:1(x) =0, ..., gir,(x) = 0}.
i=1
Lemma 12.1.2. The collection of semi-algebraic sets is closed with respect to finite

unions, finite intersections and complements.

Example 12.1.3. The semi-algebraic subsets of R are unions of finite number of

(finite or infinite) intervals.

In fact, a semi-algebraic subset is the same as a union of connected components of

an affine real algebraic variety.

Definition 12.1.4. Let A C R™ and B C R™ be semi-algebraic sets. A mapping

v : A — B is called semi-algebraic iff its graph is a semi-algebraic subset of
R™*n

Proposition 12.1.5. Let v be a bijective semi-algebraic mapping. Then the inverse

1

mapping v~ is also semi-algebraic.

Proof. The graph of v is obtained from the graph of v~! by switching the coordi-
nates. ]
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One of the main tools in the theory of semi-algebraic spaces is the Tarski-Seidenberg
principle of quantifier elimination. Here we will formulate and use a special case of

it. We start from the geometric formulation.

Theorem 12.1.6. Let A C R" be a semi-algebraic subset and p : R® — R"™1 be

the standard projection. Then the image p(A) is a semi-algebraic subset of R™™L.
By induction and a standard graph argument we get the following corollary.

Corollary 12.1.7. An image of a semi-algebraic subset of R™ wunder a semi-

algebraic map is semi-algebraic.

Sometimes it is more convenient to use the logical formulation of the Tarski-
Seidenberg principle. Informally it says that any set that can be described in
semi-algebraic language is semi-algebraic. We will now give the logical formulation
and immediately after that define the logical notion used in it.

Theorem 12.1.8 (Tarski-Seidenberg principle, see e.g.[BCR], Proposition 2.2.4| ).
Let @ be a formula of the language L(R) of ordered fields with parameters in R.
Then there exists a quantifier - free formula ¥ of L(R) with the same free variables
T1,...,Zpn as © such that Vo € R™, &(x) & ¥(x).

Definition 12.1.9. A formula of the language of ordered fields with pa-
rameters in R is a formula written with a finite number of conjunctions, disjunc-
tions, negations and universal and existential quantifiers (¥ and 3) on variables,
starting from atomic formulas which are formulas of the kind f(x1,...,2,) = 0
or g(x1,...,2n) > 0, where f and g are polynomials with coefficients in R. The
free variables of a formula are those variables of the polynomials which are not
quantified. We denote the language of such formulas by L(R).

Notation 12.1.10. Let ® be a formula of L(R) with free variables x1,...,x,. It
defines the set of all points (x1,...,2,) in R™ that satisfy . We denote this set by
Sa. In short,

Se = {z € R"|®(x)}.

Corollary 12.1.11. Let ® be a formula of L(R). Then Sg is a semi-algebraic set.

Proof. Let ¥ be a quantifier-free formula equivalent to ®. The set Sy is semi-
algebraic since it is a finite union of sets defined by polynomial equalities and

inequalities. Hence Sg is also semi-algebraic since S = Sy . O

Proposition 12.1.12. The logical formulation of the Seidenberg-Tarski principle
implies the geometric one.

Proof. Let A C R™ be a semi-algebraic subset, and pr : R® — R”~! the standard
projection. Then there exists a formula ® € L(R) such that A = Sg. Then
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pr(A) = Sy where
U(y) =“Jz € R" (pr(z) =y A d(x))”.
Since ¥ € L(R), the proposition follows now from the previous corollary. O

In fact, it is not difficult to deduce the logical formulation from the geometric one.
Let us now demonstrate how to use the logical formulation of the Seidenberg-Tarski

theorem.
Corollary 12.1.13. The closure of a semi-algebraic set is semi-algebraic.

Proof. Let A C R™ be a semi-algebraic subset, and let A be its closure. Then
A = Sy where

U(r) =“Ve >0y € Alr—y|* <e.
Clearly, ¥ € L(R) and hence A is semi-algebraic. O

Corollary 12.1.14. The derivative f' of any differentiable semi-algebraic function
f R — R is semi-algebraic.

Proof. The graph of f’ equals Sy, where

U(z,y) =“Ve > 035 > 0, s.t. VO #£ ' € (—6,5) we have
(fl+0") = fz) —yd')? <ed")?.
Clearly, ¥ € L(R) and hence f’ is semi-algebraic. O

Corollary 12.1.15.

(i) The composition of semi-algebraic mappings is semi-algebraic.

(i) The R-valued semi-algebraic functions on a semi-algebraic set A form a ring,
and any nowhere vanishing semi-algebraic function is invertible in this ring.

(iii) Images and preimages of semi-algebraic sets under semi-algebraic mappings

are semi-algebraic.

Proposition 12.1.16. [BCR, Proposition 2.4.5] Any semi-algebraic set in R™ has

a finite number of connected components.

Remark 12.1.17. Over a non-archimedean local field F' (e.g. F = Q,) one con-
siders sets that are finite unions of finite intersections of sets of the form

{z € F" s.t. p(x) is a k-th power}, or {x € F" s.t. p(x) = 0.
An analog of the Seidenberg - Tarski theorem holds for such sets.
12.2. Nash manifolds. Let us now define the category of Nash manifolds, i.e.
smooth semi-algebraic manifolds. I like this category since the Nash manifolds

behave as tamely as algebraic varieties (e.g. posses some finiteness properties, and

admit an analog of Hironaka’s desingularization theorem), and in addition their
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local structure is almost as easy as that of differentiable manifolds. In particular,
they are locally trivial, and analogs of the implicit function theorem and the tubular
neighborhood hold for them. The only thing we “loose" is the partition of unity.
Nash has shown that any compact smooth manifold has a unique structure of
an affine Nash manifold. It was later shown that it also has uncountably many
structures of non-affine Nash manifold. It is Artin-Mazur who first used the term
of Nash manifold. They gave a fundamental theorem which states that an affine
Nash manifold can be imbedded in a Euclidean space so that the image contains
no singular points of its Zariski closure.

In this section we follow [BCRI, Shi].

Definition 12.2.1. A Nash map from an open semi-algebraic subset U of R™ to
an open semi-algebraic subset V. C R™ is a smooth (i.e. infinitely differentiable)
semi-algebraic function. The ring of R-valued Nash functions on U is denoted by
N(U). A Nash diffeomorphism is a Nash bijection whose inverse map is also
Nash.

As we are going to do semi-algebraic differential geometry, we will need a semi-

algebraic version of implicit function theorem.

Theorem 12.2.2 (Implicit Function Theorem for Nash manifolds, see e.g. [BCRI,
Corollary 2.9.8]). Let (2°,4°) € R"*P, and let fi,..., f, be semi-algebraic smooth
functions on an open neighborhood of (z°,y°), such that f;(z°,y°) =0 forj =1,.,p
and the matriz [g—ii(xo,yo)] is invertible. Then there exist open semi-algebraic
neighborhoods U (resp. V) of 2° (resp. y°) in R™ (resp. RP) and a Nash mapping
¢, such that ¢p(x°) = y° and fi(z,y) = ... = fo(z,y) = 0 & y = ¢(x) for every
(x,y) e U x V.

Definition 12.2.3. A Nash submanifold of R" is a semi-algebraic subset of R™

which is a smooth submanifold.

By the implicit function theorem it is easy to see that this definition is equivalent
to the following one, given in [BCRI:

Definition 12.2.4. A semi-algebraic subset M of R™ is said to be a Nash sub-
manifold of R"™ of dimension d if, for every point x of M, there exists a Nash
diffeomorphism ¢ from an open semi-algebraic neighborhood 2 of the origin in R™

onto an open semi-algebraic neighborhood Q' of x in R™ such that ¢(0) = = and
PR x {0} NQ) =M N,

Definition 12.2.5. A Nash map from a Nash submanifold M of R™ to a Nash
submanifold N of R™ is a semi-algebraic smooth map.

Any open semi-algebraic subset of a Nash submanifold of R™ is also a Nash sub-
manifold of R™.
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Theorem 12.2.6 ([BCR|, §2]). Let M C R™ be a Nash submanifold. Then it has

the same dimension as its Zarisky closure.

Unfortunately, open semi-algebraic sets in R™ do not form a topology, but only a
restricted topology. That is, the collection of open semi-algebraic sets is closed only
under finite intersections and unions but not under infinite unions. For this reason
we will consider only finite covers.

We will use this restricted topology to “glue” affine Nash manifolds and define
Nash manifolds exactly in the same way as algebraic varieties are glued from affine

algebraic varieties.

Definition 12.2.7. A R-space is a pair (M,Opr) where M is a restricted topo-
logical space and Opy a sheaf of R-algebras over M which is a subsheaf of the sheaf
R[M] of real-valued functions on M.

A morphism between R-spaces (M,Oy;) and (N,On) is a continuous map f :
M — N, such that the induced morphism of sheaves f* : f*(R[N]) — R[M]| maps
On to Oy

Example 12.2.8. Take for M a Nash submanifold of R™, and for é(M) the family
of all open subsets of M which are semi-algebraic in R™. For any open (semi-
algebraic) subset U of M we take as O (U) the algebra N'(U) of Nash functions
U—R.

Definition 12.2.9. An affine Nash manifold is an R-space which is isomorphic
to an R-space of a closed Nash submanifold of R™. A morphism between two affine

Nash manifolds is a morphism of R-spaces between them.

Example 12.2.10. Any real nonsingular affine algebraic variety has a natural

structure of an affine Nash manifold.

Remark 12.2.11. Let M C R™ and N C R™ be Nash submanifolds. Then a Nash
map between them is the same as a morphism of affine Nash manifolds between
them.

Let f: M — N be a Nash map. Since an inverse of a semi-algebraic map is semi-
algebraic, f is a diffeomorphism if and only if it is an isomorphism of affine Nash

manifolds. Therefore we will call such f a Nash diffeomorphism.
In [Shi| there is another but equivalent definition of affine Nash manifold.

Definition 12.2.12. An affine C*° Nash manifold is an R-space which is iso-
morphic to an R-space of a Nash submanifold of R™.

The equivalence of the definitions follows from the following theorem, which imme-
diately follows from [BCR|, Theorem 8.4.6] and Proposition [2TT4.
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Theorem 12.2.13. Any affine C*° Nash manifold is Nash diffeomorphic to a union
of finite number of connected components of a real nonsingular affine algebraic

variety.

The book [Shi] usually uses the notion of affine C* Nash manifold instead of affine

C> Nash manifold, that we called here just Nash manifold. The two notions are

hence equivalent to what we call just affine Nash manifold. In other words, any
Nash manifold has a natural structure of a real analytic manifold and any Nash
map between Nash manifolds is analytic.

One also considers C"-Nash manifolds for any 0 < r < oo. These satisfy all the

properties listed here, and in addition partition of unity.

Definition 12.2.14. A Nash manifold is an R-space (M, Nyr) which has a finite
cover (M;) by open sets M; such that the R-spaces (M;, Nys|n,) are isomorphic to
R-spaces of affine Nash manifolds.

A morphism between Nash manifolds is a morphism of R-spaces between them.
Such morphisms are called Nash maps, and isomorphisms are called Nash diffeo-

morphisms.

By Proposition ZZTTd, any Nash manifold is a union of a finite number of connected
components. Any semi-algebraic set can be stratified by Nash manifolds.

Any Nash manifold has a natural structure of a smooth manifold. Any real non-
singular algebraic variety has a natural structure of a Nash manifold.

It is well-known that the real projective space RP™ is affine, see e.g. [BCH), Theorem
3.4.4]. Since any number of polynomial equations over R have the same set of
solutions as a single equation (which is the sum of squares of the left hand sides),

we get that any quasi-projective Nash manifold is affine.

Remark 12.2.15. Note that the additive group of real numbers and and the mul-
tiplicative group of positive real numbers are isomorphic as Lie groups and as Nash
manifolds, but are not isomorphic as Nash groups. Recently, the structure theory

of (almost) linear Nash groups was developed in [Sut].
The following theorem is a version of Hironaka’s theorem for Nash manifolds.

Theorem 12.2.16 ([Shi, Corollary 1.5.11]). Let M be an affine Nash manifold.
Then there exists a compact affine nonsingular algebraic variety N and a closed
algebraic subvariety Z of N, which is empty if M is compact, such that Z has
only normal crossings in N and M is Nash diffeomorphic to a union of connected

components of N — Z.
It implies that Nash manifolds are locally trivial.

Theorem 12.2.17 ([Shi, Theorem 1.5.12]). Any Nash manifold has a finite cover
by open submanifolds Nash diffeomorphic to R™.
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v:M — N be a surjective submersive Nash map. Then locally (in the restricted

k
topology) it has a Nash section, i.e. there exists a finite open cover N = |J U; such
i=1
that v has a Nash section on each Uj;.
This implies that any etale Nash map is a local diffeomorphism.

In our work on Schwartz functions we frequently use the following

Theorem 12.2.19. (Nash Tubular Neighborhood). Let Z C M C R™ be closed
affine Nash submanifolds. Equip M with the Riemannian metric induced from R™.
Then Z has a Nash tubular neighborhood, i.e. there exists a strictly positive Nash
function p € N(Z) and a Nash diffeomorphism between between an open Nash
neighborhood of Z in M and the open Nash neighborhood of the zero section of the
normal bundle given by

{(z0) € N} sit. [[o]l < p¥(2).

12.3. Schwartz functions on Nash manifolds. The Fréchet space S(R™) of
Schwartz functions on R™ was defined by Laurant Schwartz to be the space of all
smooth functions such that they and all their derivatives decay faster than 1/|x|™
for all n. In other words, S(R™) is the space of all f € C* such that |df| is bounded
for every differential operator d with polynomial coefficients. This definition makes

sense verbatim on any smooth affine algebraic variety and was extended in [dCI| to

Casselman) to arbitrary Nash manifolds. One can also define Schwartz sections of
Nash bundles.

Definition 12.3.1. Let M be a Nash manifold, and let E be a Nash bundle over
k

it. Let M = |J U; be an affine Nash trivialization of E. Then we have a map
i=1

. =
o: P SU)" — C®(M,FE). We define the space S(M, E) of global Schwartz
i=1
sections of E by S(M, E) := Im¢. We define the topology on this space using the
k
isomorphism S(M, E) =2 @ S(U;)"/Kerd.
i=1

As Schwartz functions cannot be restricted to open subsets, but can be continued
by 0 from open subsets, they form a cosheaf rather than a sheaf.

Let M be a Nash manifold, £ be a Nash bundle over M and let S(M, E) denote
the space of Schwartz sections of F.

The following two theorems summarize some results from [ACI, AGO8, AGT0, AGT3].

Theorem 12.3.2. Let U C M be an open (Nash) submanifold and N C M be a
closed (Nash) submanifold. Then

(1) S(R™) = Classical Schwartz functions on R™.


http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
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(2) C(M,E) C S(M,E).
(8) The restriction maps S(M, E) onto S(Z,E|z).
(4) S(Uv E) = S(UaE|U) =

{€ € S(M, E)|€ vanishes with all its derivatives on M — U}.

(5) Partition of unity: Let (U;)?_, be a finite cover by open Nash submani-
folds. Then there exist smooth functions ay, ..., au, such that supp(ce;) C Us,

S a; =1 and for any g € S(M, E), ;g € S(U;, E).
i=1

(6) S(M,E) =S(M)S(M, E).
(7) S(M, E) is a nuclear Fréchet space.
(8) For any Nash manifold M’ we have S(M x M') = S(M)&S(M").

Let us now sketch the proof of some parts of this theorem.

For part (0) we remark that Nash functions have polynomial growth.

Part (B) is obvious for affine M. For general M let f € C°(M,E) and let M =
Ui, U; be an open affine cover of M. Choose a partition of unity 1 = Y, o,
corresponding to this cover. Then «,;f € C>*(U;, E) C S(U;, E) and thus f =
Zaif S S(M,E)

Part (B) follows from the Nash tubular neighborhood theorem (Theorem T2Z2TY).
Part (@) we will show later.

Part (H) is proven similarly to the classical partition of unity for smooth functions.
We first prove “tempered" partition of unity, i.e. the existence of functions a;
supported in U; and with polynomial growth, and then use this partition for a
refined cover V; C U;. Then the temperedness of «; guarantees o;g € S(M) and
suppa; C V; guarantees the vanishing of «; near the boundary of U;, which in turn
implies o f C S(U;).

Part (B) we will not prove here due to lack of time.

For part (@) we note that a quotient of a nuclear Fréchet space by a closed subspace
is nuclear Fréchet, and thus it is enough to show that S(R™) is nuclear Fréchet. This
follows from its definition. For this we should say a couple of words on what nuclear
means. [t means that for any other Fréchet space, the projective and the injective
topologies on their tensor product coincide. These are two natural topologies, and
most other topologies are stronger than injective and weaker than projective. An
inverse limit of spaces with inclusion maps that are Hilbert-Schmidt are nuclear,
and that is why S(R") is nuclear.

Part (B) we discussed already for compactly supported functions, and this discussion
implies that S(M)®S(M') naturally embeds into S(M x M") with dense image. We
cannot prove the full statement at this point, since we have not discussed nuclear
spaces and completed tensor products.

We denote by S*(M) the dual space to S(M) and call it the space of tempered

distributions. From property () we obtain



GENERALIZED FUNCTIONS LECTURES 88
Corollary 12.3.3. Let M be a Nash manifold and U C M be an open Nash subset.
Let E be a Nash bundle over M. Then we have a short exact sequence

0= Siny(M) — (M) - S*(U) — 0.
Theorem 12.3.4. Let N C M be a closed submanifold. Denote
Sn(M)":={¢p € S(M) s.t. ¢ is 0 on N with first i — 1 derivatives}.

Let CN3 denote the conormal bundle to N in M. Then
(8) S(M)'/S(M)™ = S(N, Sym™(CNyy))
(9) S(M\ N) =1limS(M)'/S(M)"*!.
Corollary 12.3.5. Let M be a Nash manifold, and N C M be a closed Nash

submanifold. Then the space Sy (M) has a natural filtration F; by the order of
transversal derivatives. This filtration satisfies Sy (M) =J F; and

Fi/F;—1 = 8*(N, Sym™ (CNy)).

We frequently use this corollary when we have a natural stratification of M since it

allows to reduce the analysis of equivariant distributions from M to single strata.

Theorem 12.3.6 ([AGO0Y], Theorem B.2.4). Let ¢ : M — N be a Nash submersion
of Nash manifolds. Fiz Nash measures p on M and v on N. Then

(i) there exists a unique continuous linear map ¢, : S(M) — S(N) such that for
any f € S(N) and g € S(M) we have

/ f(x)@g(x)dl/:/ (f(o(2)))g(x)dp.
zeEN xeEM

In particular, we mean that both integrals converge.

(ii) If ¢ is surjective then ¢, is surjective.

In fact
Pg(x) = / 9(z)dp
z€¢~ 1 (x)
for an appropriate measure p.
For the proof of part (H) we will need several lemmas.

Lemma 12.3.7. Let U C R"™ be an open semi-algebraic subset. For any ¢ : U — R
denote by qz : M — R its extension by 0 outside U. Let ¢ € S(U). Then (E 18
diﬁerentiabﬁ\c}i least once and for any Nash differential operator D of order 1 on
R™, D¢ = D|y¢.

Proof. We have to show that for any z € R\ U, $ is differentiable at least once at
z and its derivative at z in any direction is 0. Denote F,(z) := ||z — z||. Clearly,
1/F2 € N(U). Hence ¢/F2 is bounded in U and therefore ¢/F2 is bounded on
R™ \ {z}, which finishes the proof. O


http://arxiv.org/abs/0812.5063
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Lemma 12.3.8 ([BCR|, Proposition 2.6.4] ). Let F : A — R be a semi-algebraic
function on a locally closed semi-algebraic set. Let Z(F) := {x € A|F(x) = 0} be
the set of zeros of F' and let Ap == A\ Z(F) be its complement. Let G : Ap — R
be a semi-algebraic function. Suppose that F' and G are continuous. Then there
exists an integer N > 0 such that the function FNG, extended by 0 to Z(F), is

continuous on A.
The following two lemmas are straightforward.

Lemma 12.3.9. Let U C R™ be open (semi-algebraic) subset. Then any Nash
differential operator D on U can be written as Zle 1i(D;ly) where f; are Nash

functions on U and D; are Nash differential operators on R™.

Lemma 12.3.10. Suppose a € C*®°(R) vanishes at 0 with all its derivatives. Then
for any natural number n, a(t) = (n))~t"a™M () for some 6 € [0,1].

Proof of part (A). Denote Z := X \ U and
Wy = {¢ € S(M, E)|¢ vanishes with all its derivatives on M — U}.

We have to show that the extension by zero defines a continuous isomorphism
between S(U) and W.

Case 1 M =RY.
Lemma [2237 implies by induction that the extension by zero continuously
maps S(U) into Wz. Let us show that this map is onto.
Let ¢ € Wy. For any point € RY define r(x) := dist(x, 7). Let
S :=5(0,1) € RN be the unit sphere. Consider the function 1) on S x Z x R
defined by (s, z,t) := ¢(z + ts). From Lemma I2Z3T0 we see that

13

n O
'(/)(S,Z,t) =1 (8t)n

for some 6 € [0,t]. As ¢ is Schwartz, it is easy to see that %w(x, s, t) is
bounded on Z x S x R. Therefore [¢(s, z,t)| < C|t|™ for some constant C
and hence ¢/r" is bounded on R¥ for any n.

Let h be a Nash function on U. By Lemma [Z38, rh extends by 0

to a continuous semi-algebraic function on RY for n big enough. It can be
majorated by f € N(RY). Therefore

|[oh] = |(¢/r")r"h] < |of|/r".

¢f € W, thus |¢f|/r™ is bounded and hence |$h| is bounded.
For any Nash differential operator D on RY, D¢ € W. Hence hD¢ is
bounded. By Lemma X3, every Nash differential operator on U is a sum

1#(957 S, t)lt:@

of differential operators of the form hD|y, where D is a Nash differential
operator on RY and h a Nash function on U. Hence ¢y € S(U).
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Case 2 M is affine.
Follows from the previous case and property (B) (extension from a closed
Nash submanifold).

Case 3 General case.
Choose an affine cover of M. The theorem now follows from the previous

case and partition of unity.

O

Recall that this property implies, by the Hahn-Banach theorem, that the restriction
S*(M) — 8*(U) is onto (Corollary TZZ33). Let us demonstrate a classical corollary
of this fact.

Corollary 12.3.11. Any tempered generalized function on R™ has the form
k .
6‘(]7|
e fdr,
; (Ox)ei
where «; are multi-indezes, dx is a Lebesgue measure and f is a continuous function

on R™, with | f| bounded by a polynomial.

For example, dg € S*(R) is the second derivative of |x|.

Proof. Embed R into S!. This defines an embedding of R™ into 7™ = (S)". Let
¢ € S*(R™). By Corollary TZ733, ¢ extends to  on T™. Let us use Fourier series.
Distributions correspond under these to sequences indexed by n numbers that are
bounded by some polynomial. Absolutely summable sequences define continuous
functions. Partial derivatives of functions correspond to multiplications of sequences
by polynomials in the indices. Thus, £ corresponds to a sequence «, ... ;, bounded
by the product ' ---iir. Let q(i1,...,in) = ©'*?---i7»2 and let D be the
corresponding differential operator with constant coefficients. Arguing by induction
on n we can assume that if one of the numbers i1, ..., 1, vanishes then so does the
corresponding coefficient o, ;.. Let §:= a/q and let h € C(T™) be the function
with the Fourier series 5. Then n = D(hdt), where dt is the Haar probability
measure on T™. Thus £ = D|gn (h|gn). Now, h is bounded as a function on 7™ and
thus h|g» is also bounded. When we take the stereographic projection into account
we get that D|g» does not have constant coefficients. However, its coefficients are

rational functions with nowhere vanishing denominator. Similarly, dt

Rn — pdx,
where p is a rational function with nowhere vanishing denominator. Altogether,
we get that there exists a differential operator A with constant coefficients and a

continuous function f bounded by a polynomial such that

£ = Dlr» (h|pndt|rn) = Afda.
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Corollary 12.3.12. Let M be an affine Nash manifold and let £ be a tempered
generalized function on M. Then there exists a Nash differential operator D on M
and a bounded continuous function f € C(M) such that £ = Df.

Proof. For the affine case embed M in R™ and extend £ to R™. There find f and
D from the previous corollary and restrict them to M. The general case follows by

partition of unity. O

Let us demonstrate how to use 77 on a simple example.

Lemma 12.3.13. For any homogeneity degree c, the space of a-homogeneous even

distributions on F' is one-dimensional.

Proof. By applying Fourier transform, we can assume a > 1. To prove the non-
vanishing, let ¢ be |z|*~du.

To prove that any distribution in this space has to be a multiple of |z|*~ldz,
it is enough to prove that the restriction to F'* is an embedding. Indeed, any
distribution supported at 0 is a combination of derivatives of the §y and thus has

negative homogeneity degree. (I

The same statement with the same proof holds for odd distributions. Here, even
distribution means invariant under the coordinate change = — —x, and odd means
anti-invariant.

Finally, we would like to remark on a different, extrinsic, approach to Schwartz
functions, applied in [CHM| and [KS]. We can compactify our manifold and de-
fine Schwartz functions on it as smooth functions on the (smooth) compactification
that vanish to infinite order on the complement to M. If both M and the com-
pactification are Nash manifolds then this definition will be equivalent, by Theorem
[232(B.8). This allows to define Schwartz functions on non-Nash (say, subanalytic)
manifolds, but this space will depend on the compactification.

Schwartz functions on non-smooth algebraic varieties and more generally on Nash
varieties (i.e. varieties that can be locally described as zeros of Nash functions) can
be locally defined by restriction from a smooth ambient space, see [[ESH, EIa|.
Another realm in which one can define Schwartz functions is the category of tem-
pered manifolds. Indeed, our only use of (semi-)algebraicity was to have a scale of
infinitesimals. Such a scale exists in the wider generality of tempered manifolds -
manifolds that can be covered by open subsets that are identified with open subsets
in R™, and coordinate changes between these subsets are tempered functions. A
tempered manifold is said to be of finite type if this cover is finite. Many properties
of Schwartz functions listed above continue to hold for tempered manifolds of finite

type, see [Shal.
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13. INVARIANT DISTRIBUTIONS

Let gl,,(F) denote the vector space of all square matrices of order n with coefficients
in F and GL,,(F) C gl,(F) denote the group of all invertible matrices of order n.
g 0

0 1)
For a distribution £ € $*(GL,,41(F)) denote by £! the distribution given by (&%, f) :
(&, f1), where f{(X) = f(X?) and X' denotes the transposed matrix. We let
GL,(F) act on GL,1(F) by conjugation via the embedding above. This action

Consider also the embedding of GL,,(F') into GL,11(F) by g —

defines an action on Schwartz functions and thus also on tempered distributions.
Denote by S*(GL,.1(F))S (") the subspace of distributions invariant under this

action. In this section we sketch the proof of the following theorem
Theorem 13.0.1. For any & € 8*(GLy,11(F))* () we have € = £*.

13.1. Proof for n = 1. Note that GL;(F) = F* and denote by G := F* x {£1},
where —1 acts on F'* by A — A7, Extend the action of F* on GLy(F) to the
action of G by letting (1, —1) act by transposition. Let x be the character of G
given by projection on the second coordinate. Let S*(GLo(F))% X denote the space
of tempered distributions that change under the action of G by the character y.
Then the theorem is equivalent to the statement S*(GLgy(F))X = 0.

Proposition 13.1.1. If S*(gl,)¥X = 0 then S*(GLg)%X = 0.

Proof. Let ¢ € §*(GLy(F))%X. We have to prove ¢ = 0. Assume the contrary.
Take p € Supp(§). Let t = det(p). Let f € S(F) be such that f vanishes in a
neighborhood of zero and f(t) # 0. Consider the determinant map det : GLy(F) —
F. Consider & := (f odet) - £ Tt is easy to check that & € S*(GLy(F))“X and
p € Supp(¢’). However, we can extend &' by zero to £’ € S*(gly(F))¢"X, which is
zero by the assumption. Hence &’ is also zero. Contradiction. (]

Now, note that the action of G on gl,(F) is isomorphic to the action on F? x F?2,

where on the first copy the action is trivial and on the second copy it is given by

(>" 1) ’ (Ji,y) = ()‘xa)‘_ly)> and (17 _1) ’ (sc,y) = (y,x)

We can thus consider the second copy only, and prove S*(F?)%X = 0.

Let U := {(z,y) € F?|zy # 0}. Then U is locally isomorphic as a G-manifold to
F* x F*, where the action on the first F'* is trivial, and the action on the second one
is given by (\,€)-z = (A22)¢. Clearly, with this action we have S*(F* x F*)&X =0
and thus we obtain

(10) S*(U)Ex = 0.

Now, denote by p the action of F'* on F? given by \(z,y) = (Az, \y). It defines
an action on S(F?) and S*(F?).
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Lemma 13.1.2. Let ¢ € S*(F?)%X and let 0 : F* — C be a character. Suppose
that for any A\ € F* and f € S(F?) we have (£, p(A"1)f) = a(A\){&, f). Then
lo(A)| = |A|7", where n > 0.

Proof. Assume first that F' is p-adic and consider the restriction of £ to F'* x F.
This restriction is supported on F* x {0} and thus is defined on F* x {0}. Since
it is F'*-invariant, it is a multiple of the Haar measure. If it is a non-zero multiple,
then n = 0. Now suppose that this restriction is 0. Similarly we get that either
n =0 or ¢ is supported at the origin. In the latter case we again get n = 0.

Now, let F' be R or C and consider the restriction of £ to F'* x F', again supported
on F* x {0}. By ?7 the space S*(F* x F)px {0y has a filtration by the order of
transversal derivatives. The elements in the 0-th filtra are homogeneous as before.
Since the derivation operators have negative homogeneity degrees, for other filtras

we can have only negative degrees. O

Now, note that the Fourier transform preserves the space S*(F?)%X. By (@), for
any S*(F?)9X C 83 (F?), where Z is the zero set of the quadratic form q(z,y) = zy.
Thus, by Corollary I8, Proposition IT1I4 and [31T2 we have S*(F?)%X = 0.

13.2. Luna slice theorem, Frobenius reciprocity and Harish-Chandra de-
scent. 77

13.3. Sketch of Proof for all n. 77
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