<u>Generalized functions - Exercise 5</u>

Solve the following exercises. Questions marked with (*) are optional.

1. Show that for any $x \in \mathbb{Q}$,

$$|x|_{\infty} \cdot \prod_{p \text{ prime}} |x|_p = 1.$$

- 2. Let $B_{\epsilon}(a) = \{x \in \mathbb{Q}_p : |x a|_p < \epsilon\}$ be the open *p*-adic ball of radius epsilon around $a \in \mathbb{Q}_p$.
 - (a) $B_{\epsilon}(a)$ is open by definition, Show that it is also closed.
 - (b) Show that every point in $B_{\epsilon}(a)$ is its center.
 - (c) Show that there are countable many open balls which contain 0 in \mathbb{Q}_p .
- 3. Let $|\cdot|$ and $|\cdot|'$ be two absolute values on a field F. Show that the following are equivalent:
 - (a) $|\cdot|$ and $|\cdot|'$ are equivalent.
 - (b) There exists $\alpha \in \mathbb{R}_{>0}$ such that $|\cdot| = (|\cdot|')^{\alpha}$.
 - (c) Every sequence which is Cauchy with respect to $|\cdot|$ is Cauchy with respect to $|\cdot|'.$
- 4. Let C be the Cantor set.
 - (a) Show $\mathbb{Z}_p \cong C$.
 - (b) Show $\mathbb{Q}_p \cong C \setminus \{*\}.$
 - (c) What are the cardinalities of \mathbb{Z}_p and \mathbb{Q}_p ? What are the connected components?
 - (d) Prove that \mathbb{Q}_p^n and \mathbb{Q}_p are homeomorphic.
 - (e) Let $U \subset \mathbb{Q}_p^n$ be an open set. Show that either U is homeomorphic to the Cantor set, or to Cantor set minus a point.
- 5. (a) Prove Haar's theorem for $(\mathbb{Q}_p, +)$.
 - (b) Given a Haar measure μ , we can define another invariant measure $\mu_a(B) = \mu(aB)$ for any $a \in \mathbb{Q}_p$. Show that $\mu_a = |a| \cdot \mu$.