## Generalized functions - Exercise 6

Solve the following exercises. Questions marked with (\*) are optional. Fix  $W \subseteq V$  and E to be finite dimensional topological vector spaces.

- 1. Show that  $C^{-\infty}(V) \otimes E \simeq (C_c^{\infty}(V, E^* \otimes \text{Haar}(V)))^*$ .
- 2. Define an embedding  $C_c^{\infty}(V,E) \hookrightarrow C^{-\infty}(V,E)$ .
- 3. Show the following,
  - (a)  $\operatorname{Haar}(V)$  is in canonical isomorphism with  $\operatorname{Haar}(W) \otimes \operatorname{Haar}(V/W)$ .
  - (b)  $*\Omega^{\text{top}}(V) \simeq \Omega^{\text{top}}(W) \otimes \Omega^{\text{top}}(V/W)$ .
  - (c)  $*Ori(V) \simeq Ori(W) \otimes Ori(V/W)$ .
  - (d)  $\operatorname{Haar}(V)^* = \operatorname{Haar}(V^*)$ .
- 4. Find a space which is Hausdorff, locally isomorphic to  $\mathbb{R}^n$  but is not paracompact.
- 5. Show that  $C^{\infty}(\mathbb{R}^n, \mathbb{R}^k) = \{ f : \mathbb{R}^n \to \mathbb{R}^k : \mu \circ f \in C^{\infty}(\mathbb{R}^n) \forall \mu \in C^{\infty}(\mathbb{R}^k) \}.$