INTRODUCTION TO GENERALIZED FUNCTIONS

Motivation.

Example 1. δ_t - the Dirac delta function on \mathbb{R} at point t. Can be intuitively described by

$$\delta_t(x) := \begin{cases} \infty & x = t \\ 0 & x \neq t \end{cases}, and \int_{-\infty}^{\infty} \delta_t(x) dx = 1.$$

Note that it also satisfies:

$$\int_{-\infty}^{\infty} \delta_t(x) f(x) dx = f(t) \int_{-\infty}^{\infty} \delta_t(x) dx = f(t).$$

for any continuous function f(t).

Thus, while it is not well-defined as a function, it is well-defined as a functional on the space of continuous functions.

Definition 2. A generalized function or a distribution is a continuous functional on the space $C_c^{\infty}(\mathbb{R})$ of smooth compactly supported functions.

Continuous w.r.t. the topology of uniform convergence on compacta with all derivatives.

Motivations for generalized functions:

- Every real function $f : \mathbb{R} \to \mathbb{R}$ can be constructed as an (illdefined) sum of continuum indicator functions $f := \sum_{t \in \mathbb{R}} f(t)\delta_t$.
- In general, solutions to differential equations, and even just derivatives of functions are not functions, but rather generalized

Date: October 26, 2020.

function. Using the language of generalized functions allows one to rigorize such notions.

• Generalized functions are extremely useful in physics. For example, the density of a point mass can be described by the Dirac delta function.

Example 3. Every locally integrable function f defines a generalized function by

$$\langle f,g\rangle := \int_{\mathbb{R}} f(t)g(t)dt$$

Definition 4. A sequence $\phi_n \in C_c(\mathbb{R})$ of continuous, non-negative, compactly supported functions is said to be a δ -sequence if:

- (i) $\phi_n \text{ satisfy } \int_{-\infty}^{\infty} \phi_n(x) \cdot dx = 1$ (that is have total mass 1), and (ii) for any fixed $\varepsilon > 0$, the functions ϕ_n are supported on $[-\varepsilon, \varepsilon]$ for
- n sufficiently large.

The reason for the name is that any such sequence converges to δ_0 in the space of generalized functions.

Such sequences can be generated, for example, by starting with a nonnegative, continuous, compactly supported function ϕ_1 of total mass 1, and by then setting $\phi_n(x) = n\phi_1(nx)$.

Denote $C^{-\infty}(\mathbb{R})$:= the space of all generalized functions.

For any open $U \subset \mathbb{R}$ define $C^{-\infty}(\mathbb{R})$ in the same way.

We have $C_c^{\infty}(U) \subset C_c^{\infty}(\mathbb{R})$ - continuation by zero. The dual map is restriction $C^{-\infty}(\mathbb{R}) \to C^{-\infty}(U)$.

A third way to define δ_0 is to derive a step function.

Derivatives of generalized functions.

Let $f \in C_c^{\infty}(\mathbb{R})$. Since

$$\xi_{f'}(\phi) = \int_{-\infty}^{\infty} f'(x) \cdot \phi(x) dx,$$

integration by parts implies

$$\xi_{f'}(\phi) = f(x) \cdot \phi(x)|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x) \cdot \phi'(x) dx = \int_{-\infty}^{\infty} f(x) \cdot \phi'(x) dx$$

Thus, we *define*

$$\langle \xi', \phi \rangle := -\langle \xi, \phi' \rangle.$$

Example 5. $\langle \delta'_0, f \rangle = f'(0).$

The support of generalized functions.

For a function f, $\operatorname{supp}(f) = \overline{\{x \in \mathbb{R} | f(x) \neq 0\}}$.

Not defined for generalized functions, since we cannot evaluate them at points.

Instead, we take supp ξ to be the minimal closed subset $X \subset \mathbb{R}$ such that the restriction of ξ to the complement X^c of X is 0.

Example 6. The support of δ_0 is $\{0\}$.

Remark 7. Warning! While the support of δ'_0 is also $\{0\}$, given some $f \in C^{\infty}(\mathbb{R})$ for which f(0) = 0 but $f'(0) \neq 0$, we get that $\delta'_0(f) = -\delta_0(f') = -f'(0) \neq 0$. In other words, having f(0) = 0 is not enough to get $\langle \delta'_0, f \rangle = 0$, we need f'(0) to vanish.

Exercise 8. Let $\xi_1, \xi_2 \in C^{-\infty}(\mathbb{R})$ and $a, b \in \mathbb{R}$. Show that:

- (1) $\operatorname{supp}(a\xi_1 + b\xi_2) \subseteq \operatorname{supp}(\xi_1) \cup \operatorname{supp}(\xi_2).$
- (2) $\operatorname{supp}(\xi) \operatorname{supp}(\xi)^{\circ} \subseteq \operatorname{supp}(\xi') \subseteq \operatorname{supp}(\xi).$

Remark 9. All the generalized functions $\xi \in C_c^{-\infty}(\mathbb{R})$ which are supported on $\{0\}$ are of the form $\sum_{i=0}^n c_i \delta^{(i)}$ for some $n \in \mathbb{N}_0$ and $c_i \in \mathbb{R}$.

Products and convolutions of generalized functions. For $\phi \in C_c^{\infty}(\mathbb{R})$ and $f, g \in C(\mathbb{R})$ we have

$$\langle f \cdot g, \phi \rangle = \int_{-\infty}^{\infty} \xi(x) \cdot f(x) \cdot \phi(x) dx = \langle g, f \cdot \phi \rangle$$

Definition 10. Let $f \in C(\mathbb{R})$ and $\xi \in C_c^{-\infty}(\mathbb{R})$. Define $f \cdot \xi$ by

$$\langle f \cdot \xi \rangle(\phi) := \langle \xi, f \cdot \phi \rangle$$

The product of two generalized functions is not always defined.

Given two functions f, g, their *convolution* is defined by

$$(f * g)(x) := \int_{-\infty}^{\infty} f(t) \cdot g(x - t) dt.$$

The convolution of two smooth functions is always smooth, if it exists. In addition, if f and g have compact support, then so does f * g:

Exercise 11. Show that $\operatorname{supp}(f * g) \subseteq \overline{\operatorname{supp}(f) + \operatorname{supp}(g)}$, where $\operatorname{supp}(f) + \operatorname{supp}(g)$ is the Minkowski sum of $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$.

Given $f, g \in C_c^{\infty}(\mathbb{R})$ we can write $(f * g)(x) = \langle \xi_f, \tilde{g}_x \rangle$, where $\tilde{g}_x(t) := g(x - t)$.

This motivates us to define the convolution $\xi * g$ as the function

$$(\xi * g)(x) = \xi(\tilde{g}_x).$$

Exercise 12. Show that for $\phi \in C_c^{\infty}(\mathbb{R})$ and $\xi \in C^{-\infty}(\mathbb{R})$ we get that $\xi * \phi$ is a smooth function.

One can also define the convolution of two generalized functions if one of them is compactly supported.

Exercise 13. Let $\xi \in C^{-\infty}(\mathbb{R})$. In an exercise above we showed: if $\phi \in C_c^{\infty}(\mathbb{R})$ then the convolution $\xi * \phi$ is smooth. Show that if $\operatorname{supp}(\xi)$ is compact, then $\xi * \phi$ is still smooth.

To summarize, the convolution of two compactly supported distributions is well defined and compactly supported, while the convolution of a compactly supported distribution with an arbitrary distribution is well defined, but usually not compactly supported.

Exercise 14. Show the following identities for any

 $\phi, \psi \in C_c^{\infty} \text{ and } \xi \in C^{-\infty}(\mathbb{R}).$

(i) $\delta_0 * \phi = \phi$. (ii) $\delta'_0 * \phi = \phi'$. (iii) $\phi * \psi = \phi * \psi$. (iv) $\phi * (\psi * \xi) = (\phi * \psi) * \xi$. (v) $(\phi * \xi)' = \phi * \xi' = \phi' * \xi$.

Generalized functions on \mathbb{R}^n . All the notions above make sense for functions and generalized functions in several variables. The definitions and the statements literally generalize to this case.

Generalized functions and differential operators.

Let A be a differential operator with constant coefficients, e.g. Af := f'' + 5f' + 6f.

We want to solve the differential equation $Af = f_0$, where f_0 is some fixed function. Green's idea:

First solve the equation $AG = \delta_0$. Then, $f := G * f_0$ is the solution to $Af = f_0$. Indeed, $f' = G' * f_0$, thus

$$Af = AG * f_0 = \delta_0 * f_0 = f_0.$$

Hence, we can find a general solution f for Af = g by solving a single simpler equation $AG = \delta_0$.

The solution G is called *Green's function of the operator*.

Exercise 15. Solve the equation $\Delta G = \delta_0$ (where $\Delta = \frac{\partial^2}{\partial x^2}$ is the 1-Laplacian).

Regularization of generalized functions.

Definition 16. Let $\{\xi_{\lambda}\}_{\lambda \in \mathbb{C}}$ be a family of generalized functions. We say the family is analytic if $\langle \xi_{\lambda}, f \rangle$ is analytic as a function of $\lambda \in \mathbb{C}$ for every $f \in C_c^{\infty}(\mathbb{R})$.

Example 17. We denote

$$x_{+}^{\lambda} := \begin{cases} x^{\lambda} & x > 0\\ 0 & x \le 0 \end{cases}$$

and define the family by $\xi_{\lambda} := x_{+}^{\lambda} Re(\lambda) > -1$. The behavior of the function changes as λ changes: When $Re(\lambda) > 0$ we have a continuous function; if $Re(\lambda) = 0$ we get a step function and for $Re(\lambda) \in (-1,0)$, x_{+}^{λ} will not be bounded. We would like to extend the definition analytically to $Re(\lambda) < -1$.

Deriving x^{λ}_{+} (both as a complex function or as we defined for generalized function) gives $\xi'_{\lambda} = \lambda \cdot \xi_{\lambda-1}$. This is a functional equation which enables us to **define** $\xi_{\lambda-1} := \frac{\xi'_{\lambda}}{\lambda}$, and thus extend ξ_{λ} to every $\lambda \in \mathbb{C}$ such that $Re(\lambda) > -2$, and for every λ by reiterating this process. This extension is not analytic, but it is meromorphic: it has a pole in $\lambda = 0$, and by the extension formula, in $\lambda = -1, -2, \ldots$

This is an example of a meromorphic family of generalized functions. We now give a formal definition. The family $\{\xi_{\lambda}\}_{\lambda \in \mathbb{C}}$ has a set of poles $\{\lambda_n\}$ (poles are always discrete), whose respective orders are denoted $\{d_n\}$. A family of generalized functions is called *meromorphic* if every pole λ_i has a neighborhood U_i , such that $\langle \xi_{\lambda}, f \rangle$ is analytic for every $f \in C_c^{\infty}(\mathbb{R})$ and $\lambda_i \neq \lambda \in U_i$.

Exercise 18. Find the order and the leading coefficient of every pole of $\xi_{\lambda} := x_{+}^{\lambda}$.

Example 19. For a given $p \in \mathbb{C}[x_1, \ldots x_n]$, similarly to before set,

$$p_+(x_1, \dots, x_n)^{\lambda} := \begin{cases} p(x_1, \dots, x_n)^{\lambda} & x > 0\\ 0 & x \le 0 \end{cases}.$$

The problem of finding the meromorphic continuation of a general polynomial was open for some time. It was solved by J. Bernstein by proving that there exists a differential operator $Dp_{+}^{\lambda} := b(\lambda) \cdot p_{+}^{\lambda-1}$, where $b(\lambda)$ is a polynomial pointing on the location of the poles.

Exercise 20. Solve the problem of finding an analytic continuation for $p_+(x_1, \ldots x_n)^{\lambda}$ in the following cases:

(1) $p(x, y, z) := x^2 + y^2 + z^2 - a \text{ and } a \in \mathbb{R}.$ (2) $p(x, y, z) := x^2 + y^2 - z^2.$