INTRODUCTION TO GENERALIZED FUNCTIONS

Motivation.

Example 1. δ_{t} - the Dirac delta function on \mathbb{R} at point t.
Can be intuitively described by

$$
\delta_{t}(x):=\left\{\begin{array}{ll}
\infty & x=t \\
0 & x \neq t
\end{array}, \text { and } \int_{-\infty}^{\infty} \delta_{t}(x) d x=1 .\right.
$$

Note that it also satisfies:

$$
\int_{-\infty}^{\infty} \delta_{t}(x) f(x) d x=f(t) \int_{-\infty}^{\infty} \delta_{t}(x) d x=f(t)
$$

for any continuous function $f(t)$.

Thus, while it is not well-defined as a function, it is well-defined as a functional on the space of continuous functions.

Definition 2. A generalized function or a distribution is a continuous functional on the space $C_{c}^{\infty}(\mathbb{R})$ of smooth compactly supported functions.

Continuous w.r.t. the topology of uniform convergence on compacta with all derivatives.

Motivations for generalized functions:

- Every real function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be constructed as an (illdefined) sum of continuum indicator functions $f:=\sum_{t \in \mathbb{R}} f(t) \delta_{t}$.
- In general, solutions to differential equations, and even just derivatives of functions are not functions, but rather generalized

[^0]function. Using the language of generalized functions allows one to rigorize such notions.

- Generalized functions are extremely useful in physics. For example, the density of a point mass can be described by the Dirac delta function.

Example 3. Every locally integrable function f defines a generalized function by

$$
\langle f, g\rangle:=\int_{\mathbb{R}} f(t) g(t) d t
$$

Definition 4. A sequence $\phi_{n} \in C_{c}(\mathbb{R})$ of continuous, non-negative, compactly supported functions is said to be a δ-sequence if:
(i) ϕ_{n} satisfy $\int_{-\infty}^{\infty} \phi_{n}(x) \cdot d x=1$ (that is have total mass 1), and
(ii) for any fixed $\varepsilon>0$, the functions ϕ_{n} are supported on $[-\varepsilon, \varepsilon]$ for n sufficiently large.

The reason for the name is that any such sequence converges to δ_{0} in the space of generalized functions.
Such sequences can be generated, for example, by starting with a nonnegative, continuous, compactly supported function ϕ_{1} of total mass 1 , and by then setting $\phi_{n}(x)=n \phi_{1}(n x)$.

Denote $C^{-\infty}(\mathbb{R}):=$ the space of all generalized functions.

For any open $U \subset \mathbb{R}$ define $C^{-\infty}(\mathbb{R})$ in the same way.

We have $C_{c}^{\infty}(U) \subset C_{c}^{\infty}(\mathbb{R})$ - continuation by zero. The dual map is restriction $C^{-\infty}(\mathbb{R}) \rightarrow C^{-\infty}(U)$.

A third way to define δ_{0} is to derive a step function.

Derivatives of generalized functions.

Let $f \in C_{c}^{\infty}(\mathbb{R})$. Since

$$
\xi_{f^{\prime}}(\phi)=\int_{-\infty}^{\infty} f^{\prime}(x) \cdot \phi(x) d x
$$

integration by parts implies

$$
\xi_{f^{\prime}}(\phi)=\left.f(x) \cdot \phi(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} f(x) \cdot \phi^{\prime}(x) d x=\int_{-\infty}^{\infty} f(x) \cdot \phi^{\prime}(x) d x
$$

Thus, we define

$$
\left\langle\xi^{\prime}, \phi\right\rangle:=-\left\langle\xi, \phi^{\prime}\right\rangle .
$$

Example 5. $\left\langle\delta_{0}^{\prime}, f\right\rangle=f^{\prime}(0)$.

The support of generalized functions.

For a function $f, \operatorname{supp}(f)=\overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$.
Not defined for generalized functions, since we cannot evaluate them at points.
Instead, we take $\operatorname{supp} \xi$ to be the minimal closed subset $X \subset \mathbb{R}$ such that the restriction of ξ to the complement X^{c} of X is 0 .

Example 6. The support of δ_{0} is $\{0\}$.
Remark 7. Warning! While the support of δ_{0}^{\prime} is also $\{0\}$, given some $f \in C^{\infty}(\mathbb{R})$ for which $f(0)=0$ but $f^{\prime}(0) \neq 0$, we get that $\delta_{0}^{\prime}(f)=$ $-\delta_{0}\left(f^{\prime}\right)=-f^{\prime}(0) \neq 0$. In other words, having $f(0)=0$ is not enough to get $\left\langle\delta_{0}^{\prime}, f\right\rangle=0$, we need $f^{\prime}(0)$ to vanish.

Exercise 8. Let $\xi_{1}, \xi_{2} \in C^{-\infty}(\mathbb{R})$ and $a, b \in \mathbb{R}$. Show that:
(1) $\operatorname{supp}\left(a \xi_{1}+b \xi_{2}\right) \subseteq \operatorname{supp}\left(\xi_{1}\right) \cup \operatorname{supp}\left(\xi_{2}\right)$.
(2) $\operatorname{supp}(\xi)-\operatorname{supp}(\xi)^{\circ} \subseteq \operatorname{supp}\left(\xi^{\prime}\right) \subseteq \operatorname{supp}(\xi)$.

Remark 9. All the generalized functions $\xi \in C_{c}^{-\infty}(\mathbb{R})$ which are supported on $\{0\}$ are of the form $\sum_{i=0}^{n} c_{i} \delta^{(i)}$ for some $n \in \mathbb{N}_{0}$ and $c_{i} \in \mathbb{R}$.

Products and convolutions of generalized functions. For $\phi \in$ $C_{c}^{\infty}(\mathbb{R})$ and $f, g \in C(\mathbb{R})$ we have

$$
\langle f \cdot g, \phi\rangle=\int_{-\infty}^{\infty} \xi(x) \cdot f(x) \cdot \phi(x) d x=\langle g, f \cdot \phi\rangle
$$

Definition 10. Let $f \in C(\mathbb{R})$ and $\xi \in C_{c}^{-\infty}(\mathbb{R})$. Define $f \cdot \xi$ by

$$
\langle f \cdot \xi)(\phi\rangle:=\langle\xi, f \cdot \phi\rangle
$$

The product of two generalized functions is not always defined.

Given two functions f, g, their convolution is defined by

$$
(f * g)(x):=\int_{-\infty}^{\infty} f(t) \cdot g(x-t) d t
$$

The convolution of two smooth functions is always smooth, if it exists. In addition, if f and g have compact support, then so does $f * g$:

Exercise 11. Show that $\operatorname{supp}(f * g) \subseteq \overline{\operatorname{supp}(f)+\operatorname{supp}(g)}$, where $\operatorname{supp}(f)+\operatorname{supp}(g)$ is the Minkowski sum of $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$.

Given $f, g \in C_{c}^{\infty}(\mathbb{R})$ we can write $\left.(f * g)(x)=\left\langle\xi_{f}, \tilde{g}_{x}\right)\right\rangle$, where $\tilde{g}_{x}(t):=g(x-t)$.
This motivates us to define the convolution $\xi * g$ as the function

$$
(\xi * g)(x)=\xi\left(\tilde{g_{x}}\right)
$$

Exercise 12. Show that for $\phi \in C_{c}^{\infty}(\mathbb{R})$ and $\xi \in C^{-\infty}(\mathbb{R})$ we get that $\xi * \phi$ is a smooth function.

One can also define the convolution of two generalized functions if one of them is compactly supported.

Exercise 13. Let $\xi \in C^{-\infty}(\mathbb{R})$. In an exercise above we showed: if $\phi \in C_{c}^{\infty}(\mathbb{R})$ then the convolution $\xi * \phi$ is smooth. Show that if $\operatorname{supp}(\xi)$ is compact, then $\xi * \phi$ is still smooth.

To summarize, the convolution of two compactly supported distributions is well defined and compactly supported, while the convolution of a compactly supported distribution with an arbitrary distribution is well defined, but usually not compactly supported.

Exercise 14. Show the following identities for any

$$
\phi, \psi \in C_{c}^{\infty} \text { and } \xi \in C^{-\infty}(\mathbb{R})
$$

(i) $\delta_{0} * \phi=\phi$.
(ii) $\delta_{0}^{\prime} * \phi=\phi^{\prime}$.
(iii) $\phi * \psi=\phi * \psi$.
(iv) $\phi *(\psi * \xi)=(\phi * \psi) * \xi$.
(v) $(\phi * \xi)^{\prime}=\phi * \xi^{\prime}=\phi^{\prime} * \xi$.

Generalized functions on \mathbb{R}^{n}. All the notions above make sense for functions and generalized functions in several variables. The definitions and the statements literally generalize to this case.

Generalized functions and differential operators.

Let A be a differential operator with constant coefficients, e.g. $A f:=f^{\prime \prime}+5 f^{\prime}+6 f$.

We want to solve the differential equation $A f=f_{0}$, where f_{0} is some fixed function. Green's idea:

First solve the equation $A G=\delta_{0}$.
Then, $f:=G * f_{0}$ is the solution to $A f=f_{0}$.
Indeed, $f^{\prime}=G^{\prime} * f_{0}$, thus

$$
A f=A G * f_{0}=\delta_{0} * f_{0}=f_{0} .
$$

Hence, we can find a general solution f for $A f=g$ by solving a single simpler equation $A G=\delta_{0}$.
The solution G is called Green's function of the operator.
Exercise 15. Solve the equation $\Delta G=\delta_{0}$ (where $\Delta=\frac{\partial^{2}}{\partial x^{2}}$ is the 1-Laplacian).

Regularization of generalized functions.

Definition 16. Let $\left\{\xi_{\lambda}\right\}_{\lambda \in \mathbb{C}}$ be a family of generalized functions. We say the family is analytic if $\left\langle\xi_{\lambda}, f\right\rangle$ is analytic as a function of $\lambda \in \mathbb{C}$ for every $f \in C_{c}^{\infty}(\mathbb{R})$.

Example 17. We denote

$$
x_{+}^{\lambda}:= \begin{cases}x^{\lambda} & x>0 \\ 0 & x \leq 0\end{cases}
$$

and define the family by $\xi_{\lambda}:=x_{+}^{\lambda} \operatorname{Re}(\lambda)>-1$. The behavior of the function changes as λ changes: When $\operatorname{Re}(\lambda)>0$ we have a continuous function; if $\operatorname{Re}(\lambda)=0$ we get a step function and for $\operatorname{Re}(\lambda) \in(-1,0)$, x_{+}^{λ} will not be bounded. We would like to extend the definition analytically to $\operatorname{Re}(\lambda)<-1$.
Deriving x_{+}^{λ} (both as a complex function or as we defined for generalized function) gives $\xi_{\lambda}^{\prime}=\lambda \cdot \xi_{\lambda-1}$. This is a functional equation which enables us to define $\xi_{\lambda-1}:=\frac{\xi_{\lambda}^{\prime}}{\lambda}$, and thus extend ξ_{λ} to every $\lambda \in \mathbb{C}$ such that $\operatorname{Re}(\lambda)>-2$, and for every λ by reiterating this process. This extension is not analytic, but it is meromorphic: it has a pole in $\lambda=0$, and by the extension formula, in $\lambda=-1,-2, \ldots$.

This is an example of a meromorphic family of generalized functions. We now give a formal definition. The family $\left\{\xi_{\lambda}\right\}_{\lambda \in \mathbb{C}}$ has a set of poles $\left\{\lambda_{n}\right\}$ (poles are always discrete), whose respective orders are denoted $\left\{d_{n}\right\}$. A family of generalized functions is called meromorphic if every pole λ_{i} has a neighborhood U_{i}, such that $\left\langle\xi_{\lambda}, f\right\rangle$ is analytic for every $f \in C_{c}^{\infty}(\mathbb{R})$ and $\lambda_{i} \neq \lambda \in U_{i}$.

Exercise 18. Find the order and the leading coefficient of every pole of $\xi_{\lambda}:=x_{+}^{\lambda}$.

Example 19. For a given $p \in \mathbb{C}\left[x_{1}, \ldots x_{n}\right]$, similarly to before set,

$$
p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda}:= \begin{cases}p\left(x_{1}, \ldots x_{n}\right)^{\lambda} & x>0 \\ 0 & x \leq 0\end{cases}
$$

The problem of finding the meromorphic continuation of a general polynomial was open for some time. It was solved by J. Bernstein by proving that there exists a differential operator $D p_{+}^{\lambda}:=b(\lambda) \cdot p_{+}^{\lambda-1}$, where $b(\lambda)$ is a polynomial pointing on the location of the poles.

Exercise 20. Solve the problem of finding an analytic continuation for $p_{+}\left(x_{1}, \ldots x_{n}\right)^{\lambda}$ in the following cases:
(1) $p(x, y, z):=x^{2}+y^{2}+z^{2}-a$ and $a \in \mathbb{R}$.
(2) $p(x, y, z):=x^{2}+y^{2}-z^{2}$.

[^0]: Date: October 26, 2020.

