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Abstract. In this paper we establish a connection between the associated variety of a representation

and the existence of certain degenerate Whittaker functionals, for both smooth and K-finite vectors, for
all quasi-split real reductive groups, thereby generalizing results of Kostant, Matumoto and others.

1. Introduction

Let G be a real reductive group with Cartan involution θ and maximal compact subgroup K = Gθ. We
denote the Lie algebras of G,K by g0, k0 and their complexifications by g, k, and analogous notation will
be applied without comment to Lie algebras of other groups below. Let M =M(G) be the category of
smooth admissible Fréchet G-representations of moderate growth, and let HC = HC (G) = HC(g,K) be
the category of Harish-Chandra modules (finitely generated admissible (g,K)-modules). We will denote
a typical representation inM(G) by (π,W ) (or π or W ) and a representation in HC (G) by (σ,M) (or σ
or M). By [Wall92, Chapter 11] or [Cas89] or [BK] we have an equivalence of categories

(π,W ) 7→
(
πHC ,WHC

)
:M→HC

where
(
πHC ,WHC

)
denotes the Harish-Chandra module of K-finite vectors in (π,W ) .

We assume throughout this paper that G is quasisplit. We fix a Borel subgroup B with nilradical N
and θ-stable maximally split Cartan subgroup H = TA, and we define

(1) n′ = [n, n] , v = n/n
′
,Ψ = v∗ ⊂ n∗,Ψ0 = {ψ ∈ Ψ : ψ (x) ∈ iR for x ∈ n0} .

Thus Ψ is the space of Lie algebra characters of n or equivalently, via the exponential map, group
characters of N , while Ψ0 corresponds to unitary characters of N . Note that v is the direct sum of simple
root spaces, and thus HC has finitely many orbits on v and on Ψ = v∗ (see §2.3 for more details). We
say that ψ is non-degenerate if its HC-orbit is open in Ψ. We define Ψ× to be the set of non-degenerate
characters, and set Ψ×0 = Ψ× ∩Ψ0.

For ψ ∈ Ψ, π ∈M(G) and σ ∈ HC(G) we define the corresponding Whittaker spaces as follows

Wh∗ψ(π) := Homct
N (π, ψ),Ψ(π) := {ψ ∈ Ψ : Wh∗ψ(π) 6= 0},(2)

Wh′ψ (σ) := Homn(σ, ψ),Ψ(σ) := {ψ ∈ Ψ : Wh′ψ (σ) 6= 0},(3)

where Homct
N (·) denotes the space of continuous N -homomorphisms (functionals). We also define

Ψ× (π) = Ψ(π) ∩Ψ×,Ψ0 (π) = Ψ(π) ∩Ψ0,Ψ
×
0 (π) = Ψ(π) ∩Ψ×0

Ψ× (σ) = Ψ(σ) ∩Ψ×,Ψ0 (π) = Ψ(σ) ∩Ψ0,Ψ
×
0 (σ) = Ψ(σ) ∩Ψ×0

If (π,W ) ∈M(G) then WHC is dense in W and thus

Wh∗ψ(π) ⊂Wh′ψ
(
πHC

)
and Ψ(π) ⊂ Ψ(πHC).

We say that π (resp. σ) is generic if Ψ× (π) (resp. Ψ× (σ)) is not empty. By [CHM00, Theorem 8.2]
we have Ψ× (π) = Ψ×0 (π). In fact using the same argument one can show Ψ (π) = Ψ0 (π), but we will
not use this result.

Let N ⊂ g∗ denote the nilpotent cone, and define

Nθ = N ∩ k⊥,N0 = N ∩ g∗0.
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To a representation π or σ one can attach invariants such as the annihilator variety, associated variety
and wavefront set (see §2.2 below)

AnV (·) ⊂ N , AsV (·) ⊂ Nθ, WF (·) ⊂ iN0

The dimension of these invariants determines the size (Gelfand-Kirillov dimension) of the representation.
We say that π or σ is large if its annihilator variety is all of N . A key result of Kostant [Kos78] proves
that a representation is large if and only if it is generic. More precisely for π ∈M(G) one has

AnV (π) = AnV
(
πHC

)
= N ⇐⇒ AsV

(
πHC

)
is open in Nθ ⇐⇒ WF (π) is open in iN0

⇐⇒ Ψ×0 (π) 6= ∅ ⇐⇒ Ψ× (π) 6= ∅ ⇐⇒ Ψ×
(
πHC

)
6= ∅

A number of papers (e.g. [GW80, Mat87, Mat90, Mat88]) provide certain generalizations of [Kos78] to
non-generic representations; namely, they consider functionals equivariant with respect to non-degenerate
characters of nilradicals of other parabolic subgroups, often referred to as generalized Whittaker function-
als. In this paper we study a different type of analog: we consider functionals equivariant with respect
to possibly degenerate characters of the nilradical of the standard Borel subgroup. Following Zelevinsky
[Zel80, §8.3] we refer to these as degenerate Whittaker functionals.

1.1. Main results.

Theorem A. Let prn∗ : g∗ → n∗ denote the restriction to n, then for σ ∈ HC we have

Ψ(σ) = prn∗(AsV (σ)) ∩Ψ.

This is proved in section 3 below. We now describe the connection between Ψ0(π), Ψ0(πHC) and the
wavefront set WF(π). Let H = TA be the maximally split Cartan subgroup of G as above, and define

(4) F = FG :=
{
ad(x) | x ∈ exp ia0 and ad (x)

2
= 1
}
⊂ Int(gC)

It is easy to see that FG is a finite group of order 2r0 , where r0 is the real rank of G (see Lemma 4.2.2).
Moreover, it commutes with the Cartan involution and complex conjugation and therefore preserves g0

and k (see [KR71, §I.1]).

Theorem B. Let π ∈M and write σ = πHC ; then we have

(5) Ψ0(π) ⊂WF(π) ∩Ψ ⊂ FG ·Ψ0 (π) = Ψ0(σ).

Moreover if G = GLn (R) or if G is a complex group then we have

(6) Ψ0(π) = WF(π) ∩Ψ = Ψ0(σ) = AnV(σ) ∩Ψ0.

If π is generic, then Theorem B follows immediately from Theorem A and [Mat92, Theorem A]. We
prove the general result by reduction to the generic case using the Kostant-Sekiguchi correspondence, the
coinvariants functor Cu, where u is the nilradical of a suitable parabolic subalgebra, [SV00] and Theorem
A.

Theorem B implies AnV(σ) ∩ Ψ0 ⊃ Ψ0(σ) though the reverse inclusion can fail, as shown in section
4.4 for the group U (2, 2). We conjecture however that for all quasi-split groups one has the equality

(7) Ψ0(π) = WF(π) ∩Ψ,

although the proof probably requires additional arguments of an analytic nature.
We prove a stronger result if G = GLn (R) or if G is a complex classical group, i.e. one of the groups

(8) GLn (C) , SLn (C) , On (C) , SOn (C) , Spn (C) .

Theorem C. Let π ∈M (G) and suppose one of the following holds:

(a) G = GLn (R) , GLn (C) or SLn (C);
(b) G = On (C) , SOn (C), or Spn (C) and π is irreducible;

then Ψ0 (π) and WF (π) determine each other uniquely.
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Part (a) of Theorem C follows easily from Theorem B, since for the groups in this case, every nilpotent
orbit intersects Ψ0. This enables us to strengthen several results from [AGS]. We note that for unitarizable
π, a weaker version of this theorem follows from [GS13, Theorem A].

For the groups in part (b) of Theorem C not every nilpotent orbit intersects Ψ0, however if π is
irreducible then AnV (π) is the closure of a single nilpotent orbit (see [Jos85]), and this allows us to
deduce part (b) from the following result that may be of independent interest.

Theorem D. Every nilpotent orbit O for a complex classical group is uniquely determined by O ∩Ψ.

If π is not irreducible then WF(π) might be the union of several orbit closures, and as shown in (21)
such a union is not determined by its intersection with Ψ0. We also note that Theorem D does not hold
for any exceptional Lie group and we describe all the counterexamples in section 6.4. This shows that
Theorem C cannot be strengthened since if G is a complex semi-simple group then any coadjoint nilpotent
orbit in k⊥ is the associated variety of a Harish-Chandra module (see [CoMG93, Theorem 10.3.4]).

Let P = LU ⊂ G be a standard parabolic subgroup of G and πP denote the Jacquet restriction of π
to P . Then it is easy to see that Ψ(πP ) = Ψ(π) ∩ l∗. In §4.5 we use this fact and Theorems B and C to
show that under certain conditions

(9) WF (πP ) = WF (π) ∩ l∗.

It would be interesting to know whether this equality holds in general.

Remark. Over p-adic fields, the associated and annihilator varieties are not defined but the notion
of wave front set still makes sense (see [HCh78, How74, Rod75]). In [MW87], the authors give a very
general definition of degenerate Whittaker spaces and prove that the dimensions of “minimally degenerate”
Whittaker spaces equal the multiplicities of corresponding coadjoint nilpotent orbits in the wave front set.
The technique of [MW87] relies on approximation of unipotent subgroups by open compact subgroups and
thus is not applicable in the archimedean case.

1.2. Structure of the paper. In section 2 we give several necessary definitions and preliminary re-
sults on filtrations, associated/annihilator varieties, Whittaker functionals, and discuss a version of the
Casselman-Jacquet functor.

In section 3 we prove Theorem A. Let (σ,M) be a Harish-Chandra module for G, then every good g-
filtration on M is good as an n-filtration. This implies that AsVn(M) = prn∗ [AsVg(M)] where AsVn(M)
denotes the associated variety of M as an n-module (by restriction). We next pass to the commutative
Lie algebra v = n/n′ by considering the module of coinvariants

CM = C (M) = Cn′ (M) := M/n′M.

Since v is commutative, AsVv (CM) = AnVv (CM) and we denote both by Vv (CM). Then as shown in
Lemma 3.0.1,Vv (CM) = Supp (CM), which further coincides with Ψ(M) by the Nakayama Lemma (see
§2.1).

If M is any finitely generated n-module, Vv (CM) ⊂ AsVn(M) ∩Ψ, and our task is to prove that

Vv (CM) ⊃ AsVn(M) ∩Ψ.

This is not true for a general finitely-generated n-module V , indeed C(V ) could even vanish (see §3.3.1).
However, if M is a Harish-Chandra module it was proven by Casselman that even M/nM is non-zero,
indeed he proved that ∩niM = 0. This implies that M imbeds (densely) into its n-adic completion

M̂ := lim
←
M/niM . Following [ENV04] we let

JM = J (M) := M̂h-finite

denote the submodule of h-finite vectors. The functor J can be applied to both M and C(M) and we
prove that

Vv (CM) = Vv (J (CM)) = Vv (C (JM)) .

The first equality follows from the fact that CM and J (CM) are both dense in (CM)[n] and hence

have the same annihilator, while the second follows from the isomorphism J (CM) ' C (JM) proved
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in Lemma 3.0.2. Moreover JM is finitely generated over n and glued from lowest weight modules, and
hence we get (by Lemma 3.0.3)

Vv(C (JM)) = Vv(JM) ∩Ψ

This reduces the problem to showing

Vv(JM) ∩Ψ ⊃ AsVn(M) ∩Ψ,

which we prove in section 3.3, using the main result of [ENV04] that describes J(M) as a deformation
of M . The description is in the language of D-modules, using the Beilinson-Bernstein localization. In
this language, the above-mentioned deformation is a certain near-by cycle. While it is not true in general
that the operation of taking associated variety commutes with limits, but this was proven to be true
for holonomic D-modules with regular singularities in [Gin86]. This implies the above containment and
finishes the proof of Theorem A.

In section 4 we first prove Theorem B. The special case of large representations follows from [Mat88,
Mat92]. To reduce to this case, we note in §4.2 that any unitary character ψ of N defines a parabolic
subgroup P = LU such that ψ is trivial on N ∩ U and non-degenerate on N ∩ L. Thus we consider
the U -coinvariants of π, and we need to know when this space is large as a representation of the Levi
subgroup L. For that purpose we use Theorem A. We also use [SV00] that shows that the wave-front set
corresponds to the associated variety via the Kostant-Sekiguchi bijection. We next use Theorem B to
reduce the proof of Theorem C to Theorem D. In subsection 4.5 we deduce from Theorem B the formula
(9) for the wave front set of Jacquet restriction.

In section 5 we give several consequences of Theorem C(a), including applications to the theory of
derivatives of representations of GL(n). More precisely, we give a formula for the annihilator variety of
the derivative Bk(π), defined in [AGS], in terms of the annihilator variety of π. Over non-archimedean
fields, where derivatives were originally defined by Bernstein and Zelevinsky, an analogous formula is not
possible since cuspidal representations have full wave-front set, while all their derivatives except the last
one vanish.

In section 6 we prove Theorem D, using basic results on nilpotent orbits from [CoMG93, Car85].

1.3. Acknowledgements. We are grateful to Avraham Aizenbud, Dan Barbasch, Joseph Bernstein,
Victor Ginzburg, Anthony Joseph, Maxim Leyenson, Kari Vilonen, and David Vogan for fruitful discus-
sions. We thank the referee for useful remarks. Part of the work on this paper was done during the
program “Analysis on Lie Groups” at the Max Planck Institute for Mathematics (MPIM) in Bonn, and
we thank the organizers of the program - Bernhard Kroetz, Eitan Sayag and Henrik Schlichtkrull, and the
administration of the MPIM for their hospitality. The second-named author also thanks the Weizmann
Institute for its hospitality.

D.G. was partially supported by ERC grant 291612, ISF grant 756/12 and a Minerva foundation grant.

2. Preliminaries

2.1. The Nakayama lemma. The classical Nakayama lemma is a commutative analog of the problems
considered in this paper, and in this section we explain this point of view.

Let A be a commutative algebra, finitely generated over C. The characters of A are ring homomor-
phisms A→ C. Such a homomorphism is uniquely described by its kernel, which is a maximal ideal in A.
Conversely, by Hilbert’s Nullstellensatz, every maximal ideal m ∈ MaxA is the kernel of a (unique) ring
homomorphism φm : A → C. For an A-module M and m ∈ MaxA, we have HomA(M,φm) ∼= M/mM .
Thus, we can define

Ψ(M) := {m ∈ MaxA |M 6= mM}.
On the other hand, the support of M is defined to be

Supp(M) := Var(AnnM),

where AnnM = {a ∈ A | aM = 0} is the annihilator ideal of M and Var denotes the variety of zeroes.

Lemma 2.1.1 (Nakayama). If M is finitely generated over A then Supp(M) = Ψ(M).

For completeness, we deduce this result from the version in [AM69].
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Proof. The lemma follows from the following chain of equivalences which hold for any m ∈ MaxA:

mM = M ⇔ ∃x ∈ m that acts by 1 on M [AM69, Corollary 2.5]

⇔ 1 ∈ m + AnnM ⇔ AnnM * m

�

Let us now describe what we consider a commutative analog of Theorem A. Let B ⊂ A be a subalgebra.
Then we have a natural map φ : SpecA � SpecB, and the support of M considered as a B-module is
the image of the support of M in SpecA. Further, if I ⊂ B is a (radical) ideal then we have a natural
embedding Spec(B/I) ⊂ Spec(B) and ΨB(M/IM) = ΨB(M) ∩ Spec(B/I), where we consider M and
M/IM as B-modules. By Lemma 2.1.1 we get ΨB(M) = φ(Ψ(M)) and thus

(10) Ψ(M/IM) = φ(Ψ(M)) ∩ Spec(B/I).

2.2. Associated variety and annihilator variety. In this section we let q be an arbitrary finite
dimensional complex Lie algebra, and let U = U (q) be its universal enveloping algebra with the usual
increasing filtration U i, i ≥ 0. By the PBW theorem the associated graded algebra U is isomorphic to the
symmetric algebra S (q). For a q-module V , we define its annihilator and annihilator variety as follows

Ann (V ) = {u ∈ U : ∀x ∈ V ux = 0} , AnV(V ) := Var
(
AnnV

)
⊂ q∗

Here AnnV ⊂ S (q) denotes the associated graded space of AnnV under the filtration inherited from U .
For the rest of the section we assume that V is generated by a finite dimensional subspace V 0.
In this case we get a filtration V i = U iV 0. The associated graded space V is then an S (q) module

and we define the associated variety to be

AsV(V ) := Var(AnnV ) = Supp
(
V
)
⊂ q∗

It is standard that AsV(V ) does not depend on the choice of the generating subspace. More generally
a filtration on V is called a good filtration if the associated graded space is a finitely generated S (q)-
module, and any two good filtrations lead to the same associated variety. For a submodule W ⊂ V , a
good filtration on V induces good filtrations on W and on V/W by W i = W ∩V i and (V/W )i = V i/W i.

Lemma 2.2.1. [Ber72] AsV(V ) = Var
(

AnnV 0
)

where AnnV 0 =
{
u ∈ U : ∀x ∈ V 0 ux = 0

}
.

Corollary 2.2.2. We have AsV(V ) ⊆ AnV(V ), and equality holds if q is commutative.

If there is possibility of confusion we will write AsVq (V ) etc. to emphasise dependence on q.
If w is a subalgebra of q we define the coinvariant space to be the quotient

Cw (V ) = V/wV

If w is an ideal then CwV is a q-module and the action descends to the quotient Lie algebra r :=q/w.

Lemma 2.2.3. If V is a finitely generated q-module then AsVq(CwV ) = AsVr(CwV ) ⊂ AsVq(V ) ∩ r∗,
where r∗ ⊂ q∗ in the usual way.

Proof. Let Y 0 denote the image of the generating space V 0 under the quotient map V → Cw (V ). Then
Y 0 generates Cw (V ) and Annq Y

0 ⊃ Annq V
0+w. The result now follows from Lemma 2.2.1. �

As was discussed in the introduction, the converse inclusion is not true in general.
If G is a real reductive group and (π,W ) ∈M(G) then WHC is dense in W and we can choose a finite

dimensional K-invariant generating subspace of WHC . It follows that we have

AnV(π) = AnV(πHC) ⊂ N , AsV(πHC) ⊂ Nθ
and the two varieties are unions of GC-orbits and KC-orbits respectively. Moreover, one has the following
theorem.

Theorem 2.2.4 ([Vog91, Theorem 8.4]). Let σ ∈ HC(G) be irreducible and O be the dense nilpotent
coadjoint orbit in AnV(σ). Then

(a) AsV(σ) ⊂ AnV(σ) ∩ k⊥.
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(b) O ∩ k⊥ is the union of a finite number of KC-orbits O1, . . . ,Or, each of which has dimension equal
to half of the dimension of O.

(c) Some of the Oi are contained in AsV(σ); they are precisely the KC-orbits of maximal dimension in
AsV(σ).

2.3. Restricted roots and parabolic subgroups. The key results of this section are Proposition 2.3.5
and Lemma 2.3.6, which are rather straightforward for split groups. The main point of this section is to
prove these results for quasi-split groups.

Recall that H = TA denotes our fixed θ-stable maximally split Cartan subgroup. Let Σ and Σ0 denote

the root systems of h in g and a0 in g0 respectively, and let gα ⊂ g and gβ0 ⊂ g0 denote the root spaces
for α ∈ Σ and β ∈ Σ0. For α ∈ Σ let α̃ denote the restriction of α to a0 then either α̃ = 0 or else α̃ ∈ Σ0.
Moreover for any β ∈ Σ0 we have

dimR

(
gβ0

)
= |{α ∈ Σ : α̃ = β}|

Every α ∈ Σ is real-valued on a0 and imaginary-valued on t0. The involution θ acts naturally on Σ and
if α′ = −θα then we have

α′|a0
= α|a0

, α′|t0 = −α|t0
Lemma 2.3.1. Let G be a real reductive group then the following are equivalent:

(1) G is quasi-split.
(2) For all α ∈ Σ we have α̃ 6= 0.

(3) For all β ∈ Σ0, we have dimR

(
gβ0

)
≤ 2.

Proof. Since G is quasi-split iff g0 has a Borel subalgebra, the lemma depends only on the Lie algebra
g0. Moreover it suffices to prove the lemma for simple factors of g0. The result is obvious for split and
complex factors, and by [He08] the other possible simple quasi-split factors are of the form

g0 sul,l sul,l+1 sol,l+2 e6(2)

Label AIII (r = 2l − 1) AIII (r = 2l) DI (r = l + 1) EII

Now the lemma can be checked using Table VI of [He08], where (2) means that there are no black dots
in the Satake diagram, and (3) means that each of the multiplicities mλ and m2λ is at most 2. �

Since in this paper we suppose that G is quasi-split, we obtain

Corollary 2.3.2. If α ∈ Σ satisfies dimR
(
gα̃0
)

= 2, then α|t0 6= 0 and gα ∩ gα̃0 = {0}.

Proof. Suppose by way of contradiction that α|t0 = 0. Since dimR
(
gα̃0
)

= 2 there is a root α1 6= α such
that α|a0

= α1|a0
. Since α|t0 = 0, α1 must be nonzero on t0, and thus α, α1 and α2 = −θα1 are three

distinct roots with the same restriction α̃, contrary to assumption. Hence α|t0 6= 0.
Since α|t0 is imaginary valued we may choose X ∈ t0 such that α (X) = i. Now suppose v ∈ gα ∩ gα̃0 .

Then we have [X, v] ∈ [t0, g0] ⊂ g0 while on the other hand [X, v] = α (X) v = iv ∈ ig0. Thus we get
iv = 0, and since v was arbitrary we conclude that gα ∩ gα̃0 = {0} . �

Our choice of B determines simple roots Π ⊂ Σ and Π0 ⊂ Σ0, and the restriction α̃ is simple if α is
simple. Let v,Ψ,Ψ0 be as before and define v0 = n0/ [n0, n0] so that v = (v0)C and Ψ0 = iv∗0, where v∗0
denotes the space of R-linear functionals on v0. The natural projection n→ v restricts to isomorphisms⊕

α∈Π

(gα) ∼= v,
⊕
β∈Π0

(
gβ0

)
∼= v0

We write z ⊂ h for the center of g, and z ⊂ sψ ⊂ h for the stabilizer of ψ ∈ Ψ. We recall that ψ is said to
be non-degenerate if its HC-orbit is open.

Lemma 2.3.3. For ψ ∈ Ψ the following are equivalent

(1) ψ is non-degenerate.
(2) sψ = z.
(3) ψ|gα 6= 0 for all α ∈ Π.
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Proof. We note that dim (Ψ) = dim (h/z) = |Π| is the semisimple rank of G, while the dimension of the

HC-orbit of ψ is dim
(
h/sψ

)
; thus (1) is equivalent to (2). Also we have X ∈ z iff α (X) = 0 for all α ∈ Π,

while X ∈ sψ iff α (X) = 0 whenever ψ|gα 6= 0; thus (2) is equivalent to (3). �

We now prove an analogous characterization for ψ ∈ Ψ0, using the following elementary result.

Lemma 2.3.4. Let W0 be a two-dimensional real vector space with complexification W , and let ω be a
C-linear functional on W that is real valued on W0. Let W1 ⊂ W be a two dimensional real subspace
such that W0 ∩W1 = 0, then we have

ω|W0 = 0 ⇐⇒ ω = 0 ⇐⇒ ω|W1 = 0

Proof. The first equivalence holds since ω is C-linear. Also clearly ω = 0 =⇒ ω|W1
= 0. Conversely

suppose ω|W1 = 0. Since ω is real-valued on W0 and dimRW0 = 2 we have ker ω ∩ W0 6= 0. Since
W0 ∩W1 = 0, this forces ker ω )W1. Since dimCW = 2 we get ω = 0 as desired. �

Proposition 2.3.5. For ψ ∈ Ψ0 the following are equivalent

(1) ψ is non-degenerate.
(2) ψ|gβ0 6= 0 for all β ∈ Π0.

(3) The H orbit of ψ is open in Ψ0.
(4) sψ ∩ h0 = z ∩ g0.

Proof. The equivalence of (3) and (4) follows from a dimension argument similar to Lemma 2.3.3. It
suffices to show that (4) is equivalent to (2) of Lemma 2.3.3, which is obvious, and that (2) is equivalent
to (3) of Lemma 2.3.3. For the latter it is enough to show that if α ∈ Π and β = α̃ then

(11) ψ|gα = 0 ⇐⇒ ψ|gβ0 = 0

Now (11) is obvious if dim gβ0 = 1 for then gα is the complexification of gβ0 . Otherwise by Corollary

2.3.2 we have gβ0 ∩gα = 0, and (11) follows from the previous lemma with W0 = gβ0 ,W1 = gα, ω = iψ. �

The standard parabolic subgroups of G are those that contain B, and these correspond bijectively to
subsets of Π0. Indeed every P ⊃ B admits a Levi decomposition P = LU with θ-stable Levi component
L ⊃ H, the group B ∩L is a Borel subgroup of L and the corresponding simple roots for a0 in l0 give the
desired subset of Π0.

Lemma 2.3.6. For ψ ∈ Ψ0 there exists a standard parabolic subgroup P = LU such that ψ vanishes on
u and restricts to a non-degenerate character of l ∩ n.

Proof. Let P correspond to the set
{
β ∈ Π0 : ψ|gβ0 6= 0

}
, then the result follows from Proposition 2.3.5.

�

2.4. The Osborne lemma. Let S(g)i and U(g)i denote the usual filtrations of the symmetric and
enveloping algebras of g and let I (g) = S (g)

g
and Z(g) = U (g)

g
denote the subrings of g-invariants.

Lemma 2.4.1 ([Wall88, §3.7]). There exist finite dimensional subspaces E ⊂ S(g), F ⊂ U(g) such that

S(g)i ⊂ S(n)iEI (g)S(k), U(g)i ⊂ U(n)iFZ(g)U(k)

As before let N ⊂ g∗ be the null cone and let Nθ = N ∩ k⊥.

Corollary 2.4.2. The projection prn∗ : Nθ → n∗ is a finite morphism.

Proof. The maximal ideals S>0(k) ⊂ S(k) and I>0(g) ⊂ I(g) vanish on on k⊥ and N respectively, hence
both ideals vanish on Nθ. By Lemma 2.4.1 C[Nθ] is generated by E as a module over S(n) = C[n∗]. �

Corollary 2.4.3. If Z is any irreducible component of Nθ then prn∗ (Z) = n∗.

Proof. By Corollary 2.4.2, prn∗ is a finite map and thus its image is a closed subset of n∗ of the same
dimension as Z. By Theorem 2.2.4 dimZ = 1/2 dim (N ) = dim (n∗), thus prn∗ (Z) has full dimension, so
prn∗ (Z) = n∗. �
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Corollary 2.4.4 (Casselman-Osborne-Gabber). If σ ∈ HC(G) then σ is finitely generated as a U(n)-
module. Moreover, any good g-filtration on σ is good as an n-filtration, and every good b-filtration on σ
is good as an n-filtration. In particular, AsVn(σ) = prn∗(AsV(σ)).

For proof of the “moreover” part see [Jos81, §7.8.1] or [AGS, Appendix B].

2.5. The Casselman-Jacquet Functor. As before let b = h + n be the Borel subalgebra of g. For a
b-module V we define its n-adic completion and its Jacquet module as follows:

V̂ = V̂n := lim
←−

V/niV, JV = J (V ) = Jb (V ) :=
(
V̂n

)h-finite

We note that J (V ) is different from the Casselman-Jacquet module considered in [Wall88]. However it
is closely related to the geometric Jacquet functor considered in [ENV04] (see Theorem 2.5.6 below).

Let G (b) be the category of finitely generated b-modules for which every good b-filtration is also good
as an n-filtration. Note that G (b) is closed under subquotients. The following result is due to Gabber.

Theorem 2.5.1 ([Jos81, §7]). If V ∈ G(b) then we have
⋂
k≥0 n

kV = 0. Hence V embeds into V̂ with
dense image.

By the Artin-Rees theorem for nilpotent Lie algebras ([McC67, Theorem 4.2]) we deduce

Corollary 2.5.2. V 7→ V̂ is an exact faithful functor from G(b) to the category of b-modules.

An analogous statement for V ∈ HC(G) was first proven by Casselman (see [Cas80]). By Corollary
2.4.4, HC(G) naturally embeds into G(b) and thus Casselman’s theorem is a special case of Corollary
2.5.2.

Lemma 2.5.3 ([Jos85, §3.5]). If V ∈ G(b) then there exists a finite dimensional h-invariant subspace
S∞ ⊂ J (V ), which maps onto V/nV.

Since this result plays a key role in the subsequent discussion, we include a proof here.

Proof. Let Ωj be the set of (generalized) weights of h appearing in njV/nj+1V . Since the action of n
shifts the weights in the positive direction, there exists i such that Ωj ∩Ω0 = ∅ for all j ≥ i. Let us define

S =
⊕
µ∈Ω0

(V/niV )µ.

Then any (generalized) h -eigenvector of S can be lifted by successive approximation to a (generalized)

h -eigenvector of the same weight in V̂ . In this way we find an h-invariant finite dimensional subspace
S∞ ⊂ V̂ that maps bijectively to S and thus onto V/nV. �

Lemma 2.5.4. If V ∈ G(b) and W ⊂ J (V ) is a dense h-submodule of V̂ then W = J (V ) .

Proof. Note that for any i, the natural projection defines an isomorphism V̂ /niV̂ ∼= V/niV , with the

inverse given by the natural map V → V̂ . Note also that the density of W implies that W projects onto
V/niV for any i.

Now let J (V )
µ

=
(
V̂
)µ

be the generalized h-eigenspace for some fixed weight µ. Then for all suffi-

ciently large i we have J (V )
µ ∩ niV̂ = 0 and thus

(12) J (V )
µ ∼=

(
V̂ /niV̂

)µ ∼= (V/niV )µ ∼= Wµ

This implies J (V ) = W.
�

Lemma 2.5.5. J (V ) is dense in V̂ for any V ∈ G(b). Moreover V 7→ J (V ) is an exact faithful functor
from G(b) to G(b).
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Proof. Let S∞ be as in Lemma 2.5.3 and let V∞ ⊂ J (V ) be the n-submodule generated by S∞, then it
follows that V∞ ∈ G(b). Also arguing by induction on i we deduce that V∞ surjects onto each niV/ni+1V

and hence that V∞ is dense in V̂ . By Lemma 2.5.4 J (V ) = V∞ , and thus J (V ) is dense and belongs to
G(b).

Corollary 2.5.2 implies that J is left exact. For right exactness, we need to show that if φ : V → V ′ is

a surjection then so is Jφ; since the image of Jφ is dense in V̂ ′, this follows from Lemma 2.5.4. Now to
prove faithfulness it suffices to show V 6= 0 implies J (V ) 6= 0, but this follows from Corollary 2.5.2 and

the density of J (V ) in V̂ . �

If M ∈ HC (g,K) then M ∈ G (b) by Corollary 2.4.4 so the above results apply to M , indeed in this
case Corollary 2.5.2 is due to Casselman. However one can say more. Let B̄ = θ (B) be the opposite
Borel subgroup, and let C

(
g, b̄
)

be the category of finitely generated g-modules, which are b̄-finite.

Theorem 2.5.6. If M ∈ HC (g,K) then M̂ is a g-module and we have

(a) JM =
(
M̂n

)n̄-finite

.

(b) JM ∈ C
(
g, b̄
)
.

Proof. Part (a) follows from [ENV04, Proposition 2.4]. More precisely [ENV04] proves(
M̂n̄

)n-finite

=
(
M̂n̄

)h-finite

and we get part (a) upon replacing n by n̄.
For part (b), note that J(M) is locally h-finite by definition, locally n-finite by part (a) and finitely

generated over g by Lemma 2.5.5.
�

The theorem implies that AsVg(JM) = AsVn(JM) and thus from now on we will write just AsV(JM).

Remark 2.5.7. Theorem 2.5.6 implies that AsV(JM) is a union of B-orbits in AnV(JM)∩b⊥. Theorem

2.5.1 and Lemma 2.5.5 imply that AnV(JM) = AnV(M) = AnV(M̂) since both JM and M densely embed

into M̂ and the action of g on M̂ is continuous. It is also known that dimO ∩ b
⊥

= 1/2 dimO, for any
coadjoint orbit O ⊂ g∗, and that dim AsV(V ) ≥ 1/2 dim AnV(V ), for any finitely-generated module V
over any algebraic Lie algebra (see [Jos81, Proposition 6.1.4]).

Altogether we obtain that for an irreducible M , the associated variety AsV(JM) is a union of irreducible

components of maximal dimension in AnV(M) ∩ b
⊥

. Unfortunately, this does not determine AsV(JM)

since the variety AnV(M) ∩ b
⊥

has many irreducible components.

2.6. Whittaker Functionals. We recall that a representation in M or HC is said to be large if its
annihilator variety is the nilpotent cone N (g), and generic if it admits a Whittaker functional for some
non-degenerate ψ ∈ Ψ.

Theorem 2.6.1. For π ∈M the following are equivalent:

(13) π is generic⇔ π is large⇔ πHC is large⇔ πHC is generic.

Moreover if π is large and ψ ∈ Ψ is non-degenerate, then

(a) Wh′ψ
(
πHC

)
6= 0.

(b) If ψ ∈ Ψ0 then there exists a ∈ FG such that Wh∗a·ψ(π) 6= 0

(c) If ψ 6∈ Ψ0 then Wh∗ψ(π) = 0.

The equivalence π is large ⇔ πHC is large is obvious since πHC is dense in π and thus they have the
same annihilator. For π irreducible the other equivalences in (13) are in [Kos78, Theorems K and L]. Part
(a) follows from [Mat88, Corollary 2.2.2]. Part (b) is [Kos78, Theorem K] and Part (c) is in [CHM00,
Theorem 8.2]. The case of general π follows from this by exactness of the functors Wh∗ψ and Wh′ψ proved

in [CHM00, Theorem 8.2] and [Kos78, Theorem 4.3] respectively.
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3. Proof of Theorem A

Let n′ = [n, n] and v = n/n′ be as in (1), and for an n-module V , we denote the v-module of n′-
coinvariants by

CV = C (V ) = Cn′ (V ) := V/n′V

Since v is commutative AnVv(CV ) = AsVv(CV ) and we simply write Vv(CV ). We note that

V ∈ G(b) =⇒ C (V ) ∈ G(b).

For the rest of this section let M ∈ HC (G) denote a fixed Harish-Chandra module.

Lemma 3.0.1. We have

Ψ(M) = Suppv(CM) = Vv (CM) .

Proof. The Lie algebra h contains an element h that acts by 1 on v, and by the degree on S(v). Since the
ideal AnnS(v)(CM) is h-invariant, it is homogeneous and consequently Suppv(CM) = Vv(CM). Finally
Ψ(M) = Suppv(CM) by Nakayama’s lemma (see §2.1). �

For the proof of Theorem A we need three further results, which are stated below and proved in
sections 3.1, 3.2, 3.3.

Lemma 3.0.2. We have a b-module isomorphism C (JM) ≈ J(CM)

Lemma 3.0.3. Vv(C (JM)) = AsVn(JM) ∩Ψ.

Lemma 3.0.4. AsVn(JM) ⊃ AsVn(M) ∩Ψ.

We now prove Theorem A.

Proof of Theorem A. By Lemma 3.0.1 and Corollary 2.4.4 we have

Ψ(M) = Vv(CM),AsVn(M) = prn∗(AsVg(M))

By Lemma 2.2.3 we haveVv(CM) ⊂ AsVn(M) ∩Ψ, and it remains only to prove

(14) Vv(CM) ⊃ AsVn(M) ∩Ψ

By Corollary 2.4.4 M ∈ G(b) and hence CM ∈ G(b) as well. By Lemma 2.5.5 J (CM) is dense in ĈM ,

since CM is also dense in ĈM we get

Vv (CM) = AnVv
(
ĈM

)
= Vv (J (CM))

Now by Lemmas 3.0.2, 3.0.3 and 3.0.4 we get

Vv(J (CM)) = Vv (C (JM)) = AsVn(JM) ∩Ψ ⊃ AsVn(M) ∩Ψ

This proves (14) and finishes the proof of Theorem A. �

3.1. Proof of Lemma 3.0.2. For V ∈ G(b) we let V̂ denote its n-adic completion and let J(V ) =(
V̂
)h-finite

denote the associated Jacquet functor as before. In this section we prove Lemma 3.0.2 in a

more general setting. Let c ⊂ n be any h-invariant ideal, and define Cc(V ) =V/cV .

Lemma 3.1.1. For V ∈ G(b) we have CcJ(V ) ≈ J(CcV ).

Proof. By Lemma 2.5.5 J is exact hence it is enough to show that cJ(V ) = J(cV ) as submodules of

J(V ). Since V dense in V̂ , cV̂ is contained in the closure of cV in V̂ , which by the Artin-Rees theorem

([McC67, Theorem 4.2]) coincides with ĉV . Since cV̂ contains cV we see that cV̂ is dense ĉV , and since

J(V ) is dense in V̂ it follows that cJ(V ) is dense in ĉV . Evidently cJ(V ) ⊂
(
ĉV
)h-finite

= J(cV ), hence

cJ(V ) = J(cV ) by Lemma 2.5.4. �
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3.2. Proof of Lemma 3.0.3. We prove Lemma 3.0.3 for a more general class of modules. As before, let

b = h + n, n′ = [n, n] , v = n/n
′
,Ψ = v∗.

Let J (b) be the category of b-modules with a finite dimensional h-invariant generating subspace. Ev-
idently if M is a Harish-Chandra module, or even from category G (b), then JM ∈ J (b). Therefore
Lemma 3.0.3 follows from the next result.

Lemma 3.2.1. If V ∈ J (b) then we have Vv(Cn′V ) = AsVn(V ) ∩Ψ.

Proof. By Lemma 2.2.3, we have Vv(Cn′V ) = AsVn(Cn′V ) ⊂ AsVn(V )∩Ψ, and so it suffices to prove the
reverse containment. Let E be a finite dimensional h-invariant generating subspace of V , and let F be
its image in Cn′ (V ). By Lemma 2.2.1 we have

AsVn(Cn′V ) = Var
(
J
)
,

where J is the annihilator of F in U = U (n) and J ⊂ S (n) is its associated graded space under the usual
filtration U i of U . Therefore it is enough to prove that J vanishes on AsVn(V ) ∩ Ψ, i.e. that if u ∈ J
then u vanishes on AsVn(V ) ∩Ψ. To prove this we need some additional notation.

We fix ρ∨ ∈ h satisfying α (ρ∨) = 1 for every simple root α, and for an h-module X we consider
generalized ρ∨-weights, which we refer to simply as weights. We write Xµ for the µ-weight space for
µ ∈ C, and if x is a weight vector we write [x] for the real part of its weight; thus [x] = Re (µ) for x ∈ Xµ.
This notation will be applied to U, V and to the filtrands U i and V i = U iE. We also fix a weight basis
v1, . . . , vm of E, ordered so that [vi] ≥ [vj ] if i ≥ j.

If u ∈ J , then u ∈ J ∩ Ud for some d, and since J is ad (h)-stable we may assume u ∈ Udl for some
integer l. If l > d then u ∈ n′Ud−1 and u = 0 on all of Ψ, therefore we may assume that l ≤ d.
For 1 ≤ t ≤ m let Lt ⊂ V denote the submodule generated by v1, . . . , vt. Since V is glued from the
subquotients Lt/Lt−1 we have

AsVn(V ) =
⋃
t

AsVn(Lt/Lt−1).

Thus it suffices to show that u vanishes on AsVn(Lt/Lt−1) for each t, i.e. that

uvt ∈ Lt−1 + V d−1.

Now we may write uvt =
∑m
i=1

(∑
j Xijbijvi

)
, where Xij ∈ n′ and bij ∈ U are weight vectors satisfying

[uvt] = [Xij ] + [bij ] + [vi].

We have [Xij ] ≥ 2, [u] = l ≤ d, and [vt] ≤ [vi] for i ≥ t. Thus we get

[bij ] = [u]− [Xij ] + [vt]− [vi] ≤ d− 2 for i ≥ t.
It follows that for i ≥ t we have bij ∈ Ud−2 and Xijbij ∈ Ud−1. Hence we get

uvt =

t−1∑
i=1

∑
j

Xijbijvi +

m∑
i=t

∑
j

Xijbijvi ∈ Lt−1 + V d−1.

�

3.3. Proof of Lemma 3.0.4. We will use Beilinson-Bernstein localization [BB81], the paper [ENV04]
that describes the Casselman-Jacquet functor in geometric terms, and the paper [Gin86] that describes
the behavior of the singular support of D-modules under the nearby cycle functor. Let us describe the
setting in detail.

Let M be an admissible (g,K) module with infinitesimal character χλ, with parameter λ chosen to
be dominant. We note that the action of K can be complexified since it is locally finite. Then M is a
(Uλ,KC)-module, where Uλ is the quotient of U (g) by the two-sided ideal generated by z − χλ (z). Let
Dλ denote the λ-twisted sheaf of differential operators on the flag variety X, then Uλ = Γ (X,Dλ). By
a (Dλ,KC)-module we mean a coherent Dλ-module that is KC-equivariant. Such a module is necessarily
holonomic with regular singularities. By Beilinson-Bernstein ([BB81]) the global sections functor

Γ : {(Dλ,KC) -modules} → {(Uλ,KC) -modules}
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is exact and essentially surjective, a section of Γ is given by the localization functor Dλ⊗Uλ (·). Moreover
if λ is regular then Γ is an equivalence of categories. Let X1, . . . , Xn be the KC-orbits on X, and let
T ∗XiX denote the corresponding conormal bundles. If M is a (Dλ,KC)-module, then its characteristic
cycle (see [Gin86]) is of the form

SS (M) =

n∑
i=1

miT
∗
XiX.

for some nonnegative integers mi. The characteristic variety CV (M) is the union of T ∗XiX for which
mi > 0. Let us describe the connection between the characteristic cycle of a Dλ-module M and the
associated cycle of the Harish-Chandra module M := Γ(M). Any point x ∈ X defines a Borel subalgebra
bx ⊂ g. The tangent space TxX can be identified with g/bx and the cotangent space with (g/bx)∗ =
(bx)⊥ ⊂ g∗. This gives a natural embedding of the cotangent bundle T ∗X into the trivial bundle X × g∗.
The composition of this map with the projection on the second coordinate is called the moment map,
denoted by µ. By a result of Borho and Brylinski ([BB85]) we have

(15) µ(CV (M)) = AsVg(M)

By Corollary 2.4.4 we have

(16) AsVn(M) = prn∗(AsVg(M))

The paper [ENV04] gives a precise geometric description of J (M), which we now recall briefly. Actually
[ENV04] deals with Jn̄ (M), so the description below is a trivial modification of [ENV04]. Let H be the
maximally split torus of G and let ρ∨ : Gm → HC be the cocharacter such that α ◦ dρ∨ = −IdC for every
simple root α. By composing ρ∨ with the action of GC on X, we get an action map a : Gm ×X → X.
Consider now the following diagram

X
a←− Gm ×X

j−→ A1 ×X i←− {0} ×X ≈ X
For a (Dλ,KC) module M, let Φ (M) be the Dλ-module obtained by applying the nearby cycles functor
to j∗a

∗ (M) along {0} ×X ≈ X.

Theorem 3.3.1. [ENV04] Φ (M) is a
(
Dλ, N̄C

)
-module and one has

Γ (Φ (M)) = Jn (Γ (M)) .

In view of this theorem Φ (M) can be regarded as the geometric Casselman-Jacquet functor.
The paper [Gin86] describes the behavior of the characteristic cycle under the nearby cycle functor in

the following way. For an algebraic variety Z, and a regular function f : Z → C let U := f−1(C \ {0}).
Suppose we have an algebraic family St of subvarieties of Zt := f−1(t) parameterized by t ∈ C \ {0}. Let
S ⊂ U denote the total space of this family and let S denote the closure of S in Z. Denote by limt→0 St
the algebraic cycle corresponding to the scheme-theoretic intersection S ∩ f−1(0) (cf. [Gin86, 1.4]).

Theorem 3.3.2 ([Gin86], Theorem 5.5). Let M be a holonomic Dλ-module with over Z with regular
singularities. Let ΦfM denote the nearby cycle functor and let it denote the embedding of f−1(t) into
Z. Then

SS(Φf (M)) = lim
t→0

SS((it)∗(it)
∗M).

Proof of Lemma 3.0.4. From Theorem 3.3.2 we obtain

SS(Φf (M)) = lim
t→0

ρ∨(t)SS(M)

and passing to characteristic varieties we get

(17) CV (Φf (M)) = lim
t→0

ρ∨(t)CV (M)

Identify n∗ with the subspace of g∗ consisting of vectors having negative weights under the action of
dρ∨(1), [n, n]⊥ with vectors having weights at least −1 and Ψ with those having weight −1. Then by (15)
and (16), AsVn(M)∩Ψ is obtained by intersecting CV (M) with the constant bundleX×[n, n]⊥, projecting
to the second coordinate and then further projecting to Ψ. Denote this operation on subvarieties of T ∗X
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by pΨ. Since the characteristic variety is a conical set (in cotangent directions), pΨ(ρ∨(t)CV (M)) does
not depend on t. Since X is complete we get

pΨ(lim
t→0

ρ∨(t)CV (M)) ⊃ pΨ(CV (M))

Thus we get

pΨ(CV (Φf (M))) ⊃ pΨ(CV (M))

Lemma 3.0.4 follows now from Theorem 3.3.1. �

3.3.1. Counterexamples to stronger statements. First of all, Lemma 3.0.4 does not generalize to arbitrary
finitely-generated n-modules. Indeed, let G = GL(3,R) and consider the identification of n with the
Heisenberg Lie algebra

〈
x, ddx , 1

〉
acting on V = C [x]. Then C(V ) vanishes.

Next one might ask whether for a Harish-Chandra module M the inclusion in Lemma 3.0.4 holds
without the intersection with Ψ, i.e. AsVn(M) ⊂ AsV(JM). The answer is no, as shown by the following
example.

Let G = GL(3,R) and let g be its complexified Lie algebra. Let b be the Borel subalgebra of upper-
triangular matrices, let n be its nilradical, and let s be the space of symmetric matrices. Using the
trace form, we identify g with g∗ and n̄ with n∗. Let M be a degenerate principal series representation
corresponding to the (2, 1) parabolic. Then we have

AnVg(M) = R, AsVg(M) = R∩ s

where R is the set of nilpotent matrices of rank ≤ 1.
For a lower triangular matrix let a, b, c denote its entries as shown 0 0 0

a 0 0
b c 0


Then we get

AsVn(M) = prn̄ (R∩ s) =
{
a2b2 + a2c2 + b2c2 = 0

}
AsVn(JM) ⊂ R ∩ n̄ = {ac = 0}

4. Proof of Theorems B, C

We start with two preliminary subsections.

4.1. Nilpotent orbits and wavefront sets. Let G be a real reductive group. Let N ⊂ g∗ denote the
null cone, with Nθ = N∩k⊥ and N0 = N∩g∗0 as before. The groups GC,KC and G act with finitely many
orbits on N , Nθ and N0 respectively. We write O′ ≤ O if O′ is contained in the closure O of O, and we
refer to ≤ as the closure order.

The Kostant-Sekiguchi correspondence ([Sek87]) provides a bijection between G-orbits on N0 and KC-
orbits on Nθ. Let us briefly recall its construction. Let O ⊂ N0 be a nilpotent G-orbit. Then one can
choose an element X ∈ O and an sl(2)-triple (H,X, Y ) satisfying the Cayley property

θ(H) = −H, θ(X) = −Y, θ(Y ) = −X.

The Kostant-Sekiguchi correspondence attaches to O the KC-orbit KS(O) of X ′ = 1
2 (X+Y + iH) ∈ Nθ.

Theorem 4.1.1. (a) The map O 7→ KS(O) gives a well-defined bijection between G-orbits on N0 and
KC-orbits on Nθ.

(b) The orbits O and KS(O) lie in the same complex coadjoint orbit.
(c) For FG as in formula (4) we have FG ·KS(O) = KS(FG · O)
(d) If L ⊂ G is a standard Levi subgroup, then we have KSL(O ∩ l∗) ⊂ KSG(O).
(e) The correspondence KS preserves the closure order on nilpotent orbits.
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Proof. Part (a) is the main result of [Sek87]. For part (b) note that X ′ is the Cayley transform of X,
obtained via conjugation by exp(−πi4 (X + Y )). For part (c) note that the action of FG commutes with θ
and with the complex conjugation, thus it maps Cayley triples to Cayley triples and commutes with the
map KS. For part (d) note that L is θ-stable and θ|L is a Cartan involution of L and hence a Cayley
triple in l0 is a Cayley triple in g0. Part (e) is the main result of [BS98]. �

In addition to the associated variety, there is a further invariant of π called the wavefront set, which
was defined in [How81] in terms of the global character of π. This is a G-invariant set

WF (π) ⊂ iN0

which, by [Ros95a, Ros95b], coincides with the asymptotic support of π introduced in [BV85]. As con-
jectured in [BV85] and proved in [SV00] one also has

Theorem 4.1.2. If (π,W ) ∈M(G) then WF(π) = iKS
(
AsV

(
πHC

))
.

Using Theorem 2.2.4 it follows that for all π ∈M(G) we have

(18) AnV (π) = GC ·AsV (π) = GC ·WF (π)

We will also need the following result.

Theorem 4.1.3 ([Mat92, Theorem A]). For π ∈M(G), we have

WF(π) ∩Ψ×0 = Ψ×0 (π).

Now suppose that G is a complex reductive group, regarded as a real group. Then the real Lie algebra
g0 is already a complex Lie algebra, and we have g ∼= g0 × g0, and g0 is diagonally embedded into g.
The Lie algebra k is also isomorphic to g0, and is embedded into g by X 7→ (X, θ (X)). For a nilpotent
orbit O ⊂ N (g) we have O = O1 ×O2 where Oi ⊂ N (g0). However, if O intersects ig∗0 ⊂ g∗ or k⊥ ⊂ g∗

then O1 = O2, and thus O is defined by a single nilpotent orbit in g0. By Theorem 2.2.4, only orbits
intersecting k⊥ can be open orbits in the annihilator variety of an admissible representation π ∈ M(G),
and thus we will be only interested in such orbits.

4.2. The Jacquet restriction functor. As before let B be the fixed Borel subgroup of G. Let P ⊃ B
be a standard parabolic subgroup, fix a Levi decomposition P = LU and let u be the complexified Lie
algebra of U . For (π,W ) ∈M(G) we have a natural representation of L on the space W/uW where uW
denotes the closure of uW in W (by an unpublished result of Casselman, uW is already closed in W ,
but we will not need this fact). This representation is usually denoted by rP (π) and referred to as the
Jacquet restriction functor, for simplicity we will write rP (π) = πP . Its main properties are summarized
below.

Theorem 4.2.1. [Wall88, 3.8.2 and 5.2.3]

(a) πP ∈M(L)
(b) rP is left adjoint to the parabolic induction functor M(L)→M(G).
(c) (πP )HC = Cu(πHC) := πHC/uπHC .

Recalling the definition of Ψ =
(
n/n
′)∗

etc. from (1) we write ΨG to denote its dependence on
G. For each standard parabolic P = LU we can regard ΨL as a subset of ΨG as follows: ΨL ≈
{ψ ∈ ΨG : ψ|u = 0}. It follows immediately that for π ∈M(G) we have

Ψ (πP ) = Ψ (π) ∩ΨL

Next, recall the definition of FG ⊂ Int(gC) from formula (4) and denote Ψ̃0(π) := FG ·Ψ0(π).

Lemma 4.2.2. Let Π0(G) denote the set of simple restricted roots. Then we have a natural isomorphism

a 7→ εa : FG ' (Z/2Z)Π0(G),

where for β ∈ Π0(G), εa(β) is the sign ±1 by which a ∈ FG acts on gβ.
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Proof. For x ∈ a0, the operator a = ad(exp(ix)) acts on each restricted root space gβ by the scalar
exp(iβ(x)). Thus a ∈ FG if and only if x ∈ πΛ, where Λ is the (restricted) coroot lattice. Then
x 7→ ad(exp(iπx)) defines a surjection Λ � FG with kernel equal to 2Λ. Thus we get FG ' Λ/2Λ '
(Z/2Z)Π0(G). �

Corollary 4.2.3. Let L ⊂ G be a standard Levi subgroup. Then l is FG-invariant and the restriction
map a 7→ a|l gives a surjection FG � FL.

Proof. Since L is a standard Levi subgroup, we have a0 ⊂ l0, and hence l is invariant under FG ⊂
ad(exp(ia0)). By Lemma 4.2.2 we have FG ' (Z/2Z)Π0(G) and FL ' (Z/2Z)Π0(L), and the map a 7→ al
corresponds to the restriction from Π0(G) to Π0(L) ⊂ Π0(G), and therefore it is a surjection. �

Lemma 4.2.4. For π ∈M(G) and P = LU ⊃ B we have

(a) AsV (πP ) ⊂ AsV (π) ∩ l∗, (b) WF (πP ) ⊂WF (π) ∩ l∗

Proof. Part (a) follows from Lemma 2.2.3, and this implies part (b) by Theorems 4.1.1 and 4.1.2 �

Lemma 4.2.5. For π ∈M(G) we have

(a) Ψ0 (π) =
⋃
P⊃B

Ψ×0 (πP ) , (b) Ψ0

(
πHC

)
=
⋃
P⊃B

Ψ×0
(
πHCP

)
, (c) Ψ̃0 (π) =

⋃
P⊃B

Ψ̃×0 (πP )

Proof. Parts (a) and (b) follow from the definition of πP and Lemma 2.3.6. For part (c) we note that by
Corollary 4.2.3 we have

Ψ̃0 (π) =
⋃
a∈FG

a ·Ψ0 (π) =
⋃
a∈FG

⋃
P

a ·Ψ0
× (πP ) =

⋃
P

⋃
a∈FLP

a ·Ψ0
× (πP ) =

⋃
P

Ψ̃×0 (πP ) ,

where LP denotes the Levi subgroup of P . �

Lemma 4.2.6. If iλ ∈ Ψ0 then λ ∈ prn∗(KS(G · λ)).

Proof. By Corollary 2.4.3 prn∗ projects any irreducible component of Nθ onto n∗. This implies the result
if λ is principal nilpotent. For general λ, we choose a standard parabolic LU such that λ vanishes on u
and is principal nilpotent on l ∩ n. The result now follows from Theorem 4.1.1. �

4.3. Proofs of the theorems. We first prove Theorem B.

Proof of Theorem B. By Theorems 2.6.1 and 4.1.3, for all P we have

Ψ×0 (πP ) ⊂WF (πP ) ∩Ψ, Ψ×0
(
πHCP

)
= Ψ̃×0 (πP ) .

Taking the union over all P ⊃ B and using Lemmas 4.2.4 and 4.2.5 we get

(19) Ψ0(π) ⊂WF (π) ∩Ψ, Ψ0(πHC) = Ψ̃0 (π) = FG ·Ψ0(π).

By Lemma 4.2.6, Theorem 4.1.2, and Theorem A, we get

WF (π) ∩Ψ ⊂ prn∗ (KS(WFπ)) = prn∗
(
AsV(πHC)

)
= Ψ(πHC)

Since WF (π) ⊂ Ψ0 , it follows that

(20) WF (π) ∩Ψ ⊂ Ψ0

(
πHC

)
Combining (19) and (20) we obtain (5).
Finally if G is a complex group or if G = GL (n,R) then each complex nilpotent orbit contains at most

one real orbit. This has two consequences. First by (18) it follows that

WF (π) ∩Ψ = AnV (π) ∩Ψ0

Second, since the group FG permutes the real forms of a complex nilpotent orbit, it acts trivially on

orbits and we get Ψ̃(π) = Ψ(π). Thus (6) follows from (5). �

We next prove Theorem C using Theorem D.
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Proof of Theorem C. In view of (18) it suffices to show that WF(π) is determined by Ψ0 (π) = WF(π) ∩
Ψ0. For part (a) of Theorem C this is straightforward since every G-orbit in WF(π) intersects Ψ0.
For part (b), note that since π is irreducible then by [Jos85] there is a complex nilpotent orbit O such
that AnV (π) = O. Since G is itself a complex group, O0 = O ∩ g∗0 is a single G-orbit and we have
WF (π) = iO0. Thus it suffices to show that O0 is determined by O0 ∩Ψ0, which follows from Theorem
D. �

4.4. Some remarks on Theorem B. The action of FG is not very significant in Theorem B. For
instance, let ψ ∈ WF(π) ∩ Ψ0 and choose a parabolic subgroup P = LU such that ψ is a principal
nilpotent element in l∗. Then we have shown that WF(πP ) contains some (real) principal nilpotent orbit.
The action of FL ⊂ FG is used to permute the real principal nilpotent orbits of L, but if G is classical
then there are only 2 such orbits (since L is then a product of a classical group with GLni).

We next give an example to show that Ψ̃0 (π) = Ψ0(πHC) can be a proper subset of AnV(π)∩Ψ0. Let
P ≈ GL (n,C)nHermn be the Siegel-Shilov parabolic subgroup of U (n, n) where Hermn is the space of
n× n Hermitian matrices. Let π be the corresponding unitary degenerate principal series representation
considered by Kashiwara and Vergne in [KV79a, KV79b]. As shown in [KV79a] π decomposes into n+ 1
constituents π0, . . . , πn, all of the same Gelfand-Kirillov dimension (πi is denoted πn−i,i in [KV79a]). On
the other hand, the complex Richardson orbit OC for P contains n+ 1 real orbits O0, . . .,On as well, and
by a result of Barbasch (see [MT07]) the associated wavefront cycle of π is

∑[
Oi
]
, i.e. all multiplicities

are 1. It follows that the wavefront cycle of each πi is the closure of a single real orbit, which after
relabeling we may assume to be Oi.

For the group U(2, 2), OC consists of matrices with rank 2 and square 0. It contains three real nilpotent
orbits O0,O1,O2 whose representatives are the respective block matrices[

0 I2
0 0

] [
0 diag(1,−1)
0 0

]
,

[
0 −I2
0 0

]
The group FG preserves O1, and permutes O0 with O2. It is easy to see that O1 intersects Ψ, while O0

and O2 do not. Thus we get that

Ψ(πHC0 ) ∩Ψ0 = Ψ0(πHC0 ) =
(
O0 ∪ O2

)
∩Ψ0,

which is not equal to OC ∩Ψ0 = AnV(π0) ∩Ψ0. Hence Ψ0(πHC0 ) is a proper subset of AnV(π0) ∩Ψ0.
Theorem B determines only Ψ0(πHC), not Ψ(πHC). From Lemma 3.0.1 we see that Ψ(πHC) is Zariski

closed, so one might ask whether Ψ(πHC) is the Zariski closure of Ψ0(πHC). Using the arguments of
the above two subsections it can be easily proven for split groups. However, this statement does not
generalize to all quasi-split groups. The representation π1 provides a counter-example for U(2, 2), and
degenerate principle series representations (i.e. sections of a line bundle on the projective space CP2)
provide a counter-example for sl3(C). This can be shown using Theorem A.

4.5. Wave-front set of the Jacquet restriction. Theorem B implies the following proposition.

Proposition 4.5.1. Let π ∈ M(G) and P = LU be a standard parabolic subgroup. Suppose that every
maximal orbit of L in WF(π) ∩ l∗ intersects Ψ. Then

WF(πP ) ⊂WF(π) ∩ l∗ ⊂ FL ·WF(πP )

Proof. The first containment is part of Lemma 4.2.4. For the second one we get from Theorem B

WF(π) ∩ l∗ ∩Ψ ⊂ Ψ0(πHC) ∩ l∗ ⊂ Ψ0(πHCP ) ⊂ FL ·WF(πP )

Since WF(πP ) and WF(π) ∩ l∗ are L-stable, and every maximal orbit of L in WF(π) ∩ l∗ intersects Ψ,
we conclude that WF(π) ∩ l∗ ⊂ FL ·WF(πP ). �

Corollary 4.5.2. Let π ∈M(G) and suppose P = LU is a standard parabolic subgroup such that L is a
product of several GLni factors. Then

WF(πP ) = WF(π) ∩ l∗ for all π ∈M (G)
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It is very interesting for us to know whether WF (πP ) = WF (π) ∩ l∗ without any assumption on L.
Obviously, Proposition 4.5.1 and Corollary 4.5.2 are false for the Jacquet functor for p-adic groups, e.g.
for cuspidal π.

5. Applications to GL (n)

Let Gn = GL(n, F ) with F = R or C, and suppose π ∈ M(Gn). [AGS] gives several definitions
for the derivative of π, inspired by the p-adic notion defined in [BZ77]. Here we will use the following
definition. Let Pn ⊂ Gn be the mirabolic subgroup, consisting of matrices with last row (0, . . . , 0, 1), then
Pn ≈ Gn−1 n Vn where Vn ≈ Fn−1 ⊂ Pn is imbedded as the last column. If (τ, V ) is a representation of
pn and ξ is a character of vn we can consider the coinvariants

Cξ (τ) = V/Span{τ (X) v − ξ(X)v : v ∈ V, X ∈ vn}.
Let ξ0 be the trivial character of vn and let ξ1 be the character given by

ξ1(x1, . . . , xn−1) :=
√
−1 Rexn−1.

The normalizers of ξ0 and ξ1 in Gn−1 are Gn−1 and Pn−1 respectively, and hence Cξ0 (τ) and Cξ1 (τ) are

representations of gn−1 and pn−1, respectively. We write Φ(τ) = |det |−1/2 ⊗ Cξ1 (τ) and we define the
k-th derivative of τ to be the following representation of gn−k

Bk(τ) = Cξ0Φk−1(τ).

By [AGS, Proposition 3.0.3] if σ ∈ HC(Gn) then Bk(σ) = Bk(σ|pn) ∈ HC(Gn−k), i.e. Bk(σ) is admissible.
Theorem C allows one to calculate the annihilator variety AnV

(
Bk(σ)

)
in terms of AnV (σ). For

simplicity we consider the case of Gn = GL(n,R), since the case of GL(n,C) is very similar. Note that
AnV (σ) is a union of complex nilpotent orbits Oλ ⊂ g∗n = gl (n,C)

∗
, which are indexed by partitions λ

of n as in section 4.1. Also the nilradical n consists of upper triangular matrices and for each partition
λ we consider the character

ψλ (X) =
√
−1
(∑

j /∈Sλ
Xj,j+1

)
where Sλ is the index set of partial sums {λk + · · ·+ λl : 1 ≤ k < l} with l = length (λ); then we have
ψλ ∈ Oλ.

Lemma 5.0.3. Let µ be a partition of n− k and let µ∪ k be the partition of n obtained by inserting the
part k in the appropriate place of µ. Then we have

ψµ ∈ Ψ
(
Bkσ

)
⇐⇒ ψµ∪k ∈ Ψ (σ)

Proof. Let α be the composition of n obtained by inserting the part k in the end of µ. It is a reordering
of µ ∪ k and thus ψα and ψµ∪k belong to the same nilpotent orbit. The composition with the natural
projection Bkσ � σ defines an isomorphism Wh′ψµ(Bkσ) ∼= Wh′ψα(σ). Thus

ψµ ∈ Ψ
(
Bkσ

)
⇐⇒ ψα ∈ Ψ (σ) ⇐⇒ ψµ∪k ∈ Ψ (σ)

�

If λ is a partition and k ≤ λ1 then there is a unique i such that λi ≥ k > λi+1, and we define

Bk(λ) := (λ1, . . . , λi−1, λi+2, . . . , λl) ∪ (λi + λi+1 − k), Bk(Oλ) = OBk(λ).

We extend this definition to unions of orbits, setting Bk(Oλ) = ∅ if k > λ1.

Lemma 5.0.4. Let λ be a partition of n and let µ be a partition of n− k, then µ ∪ k ≤ λ if and only if
k ≤ λ1 and µ ≤ Bk(λ).

Proof. We use the notion of transposed partition (λt)i = max{j|λj ≥ i} and note that

(a) transposition is order-reversing.
(b) (µ ∪ k)t is obtained from µt by adding 1 to each of the first k parts.
(c) (Bk(λ))t is obtained from λt by subtracting 1 from each of the first k parts.
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The lemma follows. �

Theorem 5.0.5. If σ ∈ HC(Gn) then AnV(Bkσ) = Bk (AnV(σ)).

Proof. Since ψλ ∈ Oλ, by Theorem C and Lemma 5.0.3 we have

Oµ ⊂ AnV(Bkσ)⇔ ψµ ∈ Ψ
(
Bkσ

)
⇐⇒ ψµ∪k ∈ Ψ (σ) ⇐⇒ Oµ∪k ⊂ AnV(σ)

Thus it suffices to show that for any O, Oµ∪k ≤ O ⇔ Oµ ≤ Bk(O); this follows from Lemma 5.0.4. �

In [AGS] the depth of σ is defined to be the maximal rank of a matrix A ∈ AnV(σ) ⊂ gln(C), which
is identified with Matn×n(C) via the trace form. Note that if AnV(σ) = Oλ, then depth(σ) = λ1.

Corollary 5.0.6. If σ ∈ HC(Gn) then Bk(σ) = 0 if and only if k > depth(σ).

By [AGS, Corollary 4.2.2], Theorem C implies

Proposition 5.0.7. Let χi be characters of GLni and n := n1 + · · ·+nk. Let π = χ1×· · ·×χk ∈M(Gn)
be the corresponding induced representation. Then π has a unique irreducible subquotient τ with

AnV(τ) = AnV(π) = O(n1,...,nk).

Moreover, τ occurs in π with multiplicity one.

Proof. Without loss of generality, we can suppose n1 ≥ · · · ≥ nk and write λ := (n1, . . . , nk). Then it
is known that AnV(π) = Oλ and thus AnV(τ) ⊂ Oλ for any subquotient τ of π. Now by Theorem C,
AnV(τ) ⊃ Oλ iff ψλ ∈ Ψ (τ) , and by [AGS, Corollary 4.2.2], π has a unique such constituent. �

6. The case of complex classical groups

In this section we prove Theorem D. For convenience we fix an invariant form 〈x, y〉 on g0 and we
identify ig∗0 with g0 as follows:

ψx (y) = i 〈x, y〉 .
Let H,B,Π0 etc. be as before, then Ψ0 ⊂ g0 can be identified with the direct sum of negative simple

roots spaces

Ψ0 =
⊕

β∈Π0

g−β0

By Proposition 2.3.5 this identifies non-degenerate elements of Ψ0 with the principal nilpotent elements

in Ψ0, namely those for which each of the projections pβ : Ψ0 → g−β0 is non-zero. Lemma 2.3.6 gives the
following result.

Lemma 6.0.1. If e ∈ Ψ0 then there is a standard Levi subalgebra l0 such that e is a principal nilpotent
element in l0.

We say that a nilpotent orbit O ⊂ g0 is a PL-orbit if O∩ l0 is a principal nilpotent orbit in some Levi
subalgebra l0. Let PL (G) denote the set of PL-orbits, and for an arbitrary nilpotent orbit O define

PL (O) =
{
O′ ≤ O | O′ ∈ PL (G)

}
.

Lemma 6.0.2. For each nilpotent orbit O, the sets O ∩Ψ0 and PL (O) determine each other uniquely.

Proof. Let X denote the union of the orbits in PL (O) and let Y = O∩Ψ0. Then by the previous lemma
we get X = G · Y and Y = X ∩Ψ0. �

Therefore Theorem D reduces to the following statement.

Theorem 6.0.3. For a complex classical group, every nilpotent orbit O is determined by PL (O).

We will prove this in §6.3 after describing the sets PL (G) for classical groups. First we recall the
classification of nilpotent orbits in classical complex Lie algebras.
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6.1. Nilpotent orbits for complex classical groups. If G = GL (d,R) or if G is a complex classical
group as in (8), then the real nilpotent orbits of G are naturally indexed by partitions, as in [CoMG93].
A partition λ of d of length l is a weakly decreasing integer sequence λ1 ≥ λ2 ≥ · · · ≥ λl > 0 such that∑
j λj = d. The λi are called the parts of λ, and the number of parts of size p is called the multiplicity

mp (λ) of p. We write P (d) for the set of all partitions of d and P1 (d) (resp. P−1 (d) ) for the subset
such that mp (λ) is even for all even (resp. odd) p. We set λj = 0 if j exceeds the length of λ, and we
define a partial order on partitions as follows:

λ ≤ µ iff λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk for all k.

Theorem 6.1.1. There is an order-preserving bijection between nilpotent G-orbits and the set P (G)
below:

G GL (d,R) , GL (d,C) , SL (d,C) O (d,C) Sp (d,C)
P (G) P (d) P1 (d) P−1 (d)

The case of SO (d,C) is slightly different. We say that λ ∈ P1 (d) is “very even” if λ has only even
parts. Note that each even part must occur with even multiplicity, forcing d to be a multiple of 4.

Theorem 6.1.2. The nilpotent orbits of SO (d,C) are the same as O (d,C) except that the very even
orbits Oλ split into two orbits for SO (d,C), denoted OIλ and OIIλ .

For proofs we refer the reader to [CoMG93], especially Chapters 5 and 6.

6.2. Principal nilpotents in Levi subgroups. In this section we assume that G = GL (d,C) , O (d,C)
or Sp (d,C), and write GL (d) etc. for simplicity. Nilpotent orbits for G are parameterized by partitions
of d as in Theorem 6.1.1; we will regard PL (G) as a set of partitions and write PL (λ) instead PL (Oλ) .

Lemma 6.2.1. Let λmax be the partition corresponding to a principal nilpotent orbit; then

λmax =

{
(d− 1, 1, 0, . . .) if G = O (d) with d even
(d, 0, 0, . . .) otherwise

Proof. The principal nilpotent orbit is maximal with respect to the closure order. The result follows from
Theorem 6.1.1 and the easy verification that λmax is the maximal element in P (G). �

For a partition λ write OM (λ) = {p > 1 | mp (λ) is odd} and define

X (G) =

{
P (G) = P (d) if G = GL (d)

{λ ∈ P (G) : |OM (λ)| ≤ 1} otherwise

Proposition 6.2.2. If G = GL (d) , O (d) or Sp (d) then PL (G) = X (G).

Proof. For G = GL (d) the proposition asserts that every orbit is principal in some Levi subgroup, which
follows from the Jordan canonical form.

The Levi subgroups of O (d) and Sp (d) are given as follows: up to conjugacy there is one for each
partition κ with κ1 ≥ · · · ≥ κr such that d′ = d− 2 (κ1 + · · ·+ κr) ≥ 0. Explicitly

Lκ =

{
O (d′)×GL (κ1)× · · · ×GL (κr) if G = O (d)
Sp (d′)×GL (κ1)× · · · ×GL (κr) if G = Sp (d)

The principal nilpotent orbit in Lκ can be determined by the previous lemma. In the partition λκ
for corresponding nilpotent orbit in g∗0, each GL (κi) factor contributes two parts of size κi. Thus up to
decreasing reordering of the parts, we have

λκ =

{
(d′ − 1, 1, κ1, κ1, . . . , κr, κr, 0, 0, · · · ) if G = O (d) with d even
(d′, κ1, κ1, . . . , κr, κr, 0, 0, · · · ) otherwise

By definition, parts with even multiplicity do not contribute to OM (λ), thus

OM (λκ) =

{
OM ((d′ − 1, 1)) if G = O (d) with d even
OM ((d′)) otherwise

Moreover since the part 1 does not contribute to OM (λ), we get |OM (λκ)| ≤ 1. Thus PL (G) ⊆ X (G).
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Conversely suppose λ ∈ P (G) satisfies |OM (λ)| ≤ 1. Then λ has 0, 1, or 2 parts with odd multiplicity,
and in the last case the part 1 has odd multiplicity. Thus the last case can only occur if G = O (d), and
since there are exactly two odd parts with odd multiplicity, d must be even. It follows now that λ is of
the form λκ for some κ. Thus X (G) ⊆ PL (G). �

We prove Theorem 6.0.3 in the next subsection, using the following lemma.

Lemma 6.2.3. For each λ ∈ P (G) and each k there is a partition µ = µ (λ, k) ∈ PL (λ) such that

µ1 + · · ·+ µk = λ1 + · · ·+ λk

Proof. Let j be the largest index such that λj = λk. If (λ1, . . . , λj) contains two or more parts p, q with
odd multiplicity, then necessarily p, q have the same parity and so r = (p+ q) /2 is an integer. If ν is
obtained from λ by replacing a pair (p, q) by (r, r), then we have ν ≤ λ and ν1 + · · ·+ νk = λ1 + · · ·+λk.
Iterating this we may assume that (λ1, . . . , λj) contains at most one part with odd multiplicity.

Now let µ ∈ P (G) be obtained from λ by replacing the parts λj+1, λj+2 . . . by a string of 1’s of length
(λj+1 + λj+2 + · · · ) Then |OM (µ)| ≤ 1 and hence µ satisfies the condition of the Lemma. �

6.3. Proof of Theorem 6.0.3. We now prove Theorem 6.0.3 for all classical groups.

Proof of Theorem 6.0.3. First suppose G = GL (d) , SL (d) , O (d) or Sp (d). We need to show that each
λ ∈ P (G) is determined by the set PL (λ). This is obvious for G = GL (d), SL (d) and therefore we may
assume that G = O (d) or Sp (d). By definition of the partial order, for each k we have

µ1 + · · ·+ µk ≤ λ1 + · · ·+ λk for all µ ∈ PL (λ) .

Moreover by Lemma 6.2.3 equality holds for some µ. Therefore for each k we can recover the sum
λ1 + · · ·+ λk as the maximum of µ1 + · · ·+ µk for µ ∈ PL (λ), and hence we can determine λ as well.

Finally we consider G = SO (d). If O = Oλ where λ is not very even, then O is a single O (d) orbit
and so the result follows by the O (d) argument. If O = OIλ or OIIλ for some very even λ, then O ∩Ψ0 is

nonempty, thus O can be recovered from O ∩Ψ0 in this case as well. �

The theorem does not extend to unions of orbits.

Example 6.3.1. The table below lists some examples of partition triples [λ, µ, ν] such that PL (λ) =
PL (µ) ∪ PL (ν). All orbits are special in the sense of Lusztig-Spaltenstein (see [CoMG93, Section 6.3]).

(21)

G λ µ ν
O (11) (7, 3, 1) (5, 5, 1) (7, 2, 2)
Sp (10) (6, 4) (5, 5) (6, 2, 2)
O (8) (5, 3) (4, 4) (5, 1, 1, 1)

Remark 6.3.2. If G is a classical group, we can regard elements of g0 and g∗0 as matrices. For a matrix
X ∈ Oλ its rank and order of nilpotence are given by n− length(λ) and λ1 respectively; we refer to these
as the rank and depth of Oλ. If V is a union of orbits we define rank(V) and depth(V) by taking maxima,
and the arguments above show that these are uniquely determined by V ∩Ψ0.

For π ∈ M (G) we define rank(π) = rank(WFπ) and depth(π) = depth(WFπ). By [He08] rank(π)
coincides with the Howe rank of π, and for GL(n), depth (π) coincides with the notion of depth in section
5. It would be interesting to give a representation-theoretic characterization of depth for other classical
groups. This remark shows that for all π ∈M (G) the rank and the depth are determined by Ψ(π).

6.4. Exceptional groups. Theorem D is false for every exceptional complex group and we now describe
all counterexamples via the Bala-Carter classification [Car85, §13.4]. Let us say for simplicity that two
nilpotent G-orbits O and O′ are related if PL (O) = PL (O′).
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Proposition 6.4.1. The following is a complete list of related orbits, with special orbits underlined.

G Related orbits G Related orbits

E6 E6(a1) and D5 G2 G2(a1) and Ã1

E6 D4(a1) and A3 +A1 E8 E8(a1), E8(a2) and E8(a3)

E7 E7(a1) and E7(a2) E8 E8(a4), E8(b4) and E8(a5)

E7 E7(a3) and D6 E8 E7(a1), E8(b5) and E7(a2)

E7 E6(a1) and E7(a4) E8 E8(a6) and D7(a1)

F4 F4(a1) and F4(a2) E8 E6(a1) and E7(a4)

F4 F4(a3) and C3(a1) E8 E8(a7), E7(a5), E6(a3) +A1, D6(a2)

Proof. In Bala-Carter notation, the PL-orbits are labeled by the corresponding Levi subalgebra l, while
the other orbits have labels of the form l (∗). Thus for any orbit O we can easily compute PL (O) by
looking at lower orbits whose Bala-Carter labels have no parentheses. With this in mind, the table above
follows from the Bala-Carter classification tables [Car85, §13.4]. �
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