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ABSTRACT. The celebrated Harish-Chandra’s integrability theorem states
that the distributional character of an irreducible smooth representation
of a p-adic group G(F) is integrable, that is represented by an L}, (G(F))
function. Here F' is a non-Archimedean local field of characteristic 0 and
G is a reductive algebraic group defined over F'. In this paper we focus on
cuspidal representations of GL,, (F) for a field F' of positive characteristic.
We show that in this case the integrability holds under the hypothesis of
existence of desingularization of (certain) algebraic varieties in positive
characteristics.

Furthermore, in the case char(F) > % we establish the regularity of
such characters unconditionally.
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1. INTRODUCTION

Throughout the paper we fix a non-Archimedian local field F' of arbitrary
characteristic. Denote by / the size of the residue field of F'. All the algebraic
varieties and algebraic groups that we will consider are defined over F'. We

will also fix a natural number n and set G = GL,,, considered as an algebraic

group defined over F. Denote G = G(F).
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We will denote by C~*(G) the space of generalized functions on G, i.e.
functionals on the space of smooth compactly supported measures. We also
denote by L}, .(G) the space of locally L'-functions on G and consider it as
a subspace of the space of generalized functions C~*°(G) in the usual way.

1.1. Main results. We study the following conjecture:

Conjecture A. Let p be an irreducible cuspidal smooth representation of G
and let x, € C~=(G) be its character. Then x, € Li,.(G).

When the characteristic of F is zero, this is a special case of a well known
result of Harish-Chandra [HC70]. In this paper we show that this conjecture
follows from the conjectural existence of resolution of singularities in positive
characteristic.

More precisely, consider the following:

Conjecture B. Let Z be an algebraic variety defined over the finite field Fy.
Then there exists a proper birational map v : Z — Z s.t.

o Z is smooth.

e v is an isomorphism outside the singular locus of Z.

e The preimage of the singular locus of Z (considered as a subvariety
of y/ ) is a strict normal crossings divisor.

In this paper we prove:
Theorem C (§12). Conjecture B implies Conjecture A.

We also prove the following unconditional result:
Proposition D (§12). If char(F') > § then Conjecture A holds.

Remark 1.1.1. In fact, for given F' and n it is enough to assume Con-
jecture B for a specific variety defined over F,. We also give some other
alternatives that replace the role of Conjecture B in Theorem C, see §13.

Remark 1.1.2. We also prove analogues of Theorem C and Proposition D
for orbital integrals. See §1.4 below.

1.2. Background.

1.2.1. Previous results. In [CGH14, Theorem 2.2] it was established that
local integrability of characters of irreducible representations of reductive
groups over [F,((¢)) holds true for large enough characteristics (depending on
the group ). However, no explicit bound was given.

The case of GLy(F') was already proven in [JL70, Chapter 9].

In [Rod85] it was established that local integrability of characters of ir-
reducible representations of GL,,(F¢((¢))) holds true in neighborhoods of el-
ements with separable characteristic polynomials. In particular the local
integrability holds whenever char(F,) > n.

In a series of papers ([Lem96], [Lem04], [Lem05]) it was claimed that local

integrability holds true in arbitrary characteristics for the family of groups
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GL,.(F),GL,(D),SLx(D) where F' = F,((t)) is a local non-Archimedean
field and D a division algebra over F. However the arguments in these
papers have a flaw. See more detailed explanation in Appendix B.

On the other hand, it seems that the argument in [Lem96] can give a proof
for Proposition D of the present paper.

1.2.2. The original argument of Harish-Chandra. Let us shortly present the
main parts of the original Harish-Chandra’s proof of the local integrability
of cuspidal characters from [HC70]. This presentation differs slightly from
the original, as it is adapted to better suit our purposes. One can roughly
divide Harish-Chandra’s proof into two parts:

(1) Bound the character (up to a logarithmic factor) by the inverse square
root of the discriminant — |A|2.
(2) Prove the integrability of |A| 2.
In more details, let p : G — C := (G//Ad(G))(F) be the Chevalley map.
one can divide the first step into the following sub-steps:

(a) Locally bound the character by the orbital integral Q(f) of a smooth
function f € C°(G) (up to a logarithmic factor). See Notation 3.0.1
for the definition of Q(f). We did this in [AGKSc].

(b) Bound the orbital integral Q(f) by a product |A|~z - p*(p.(f)) where,
the push forward is taken w.r.t. some fixed, smooth, nowhere vanish-
ing measures on G and C.

(c) Bound p.(f).

1.2.3. Difficulties with Harish-Chandra’s argument in positive characteris-
tic. Step (2) does not hold in positive characteristic (even for the case of
GLs ((t))). So, one should replace |A|~2 with a better bound (like the func-
tion x described in §4 below).

Both substep (1)(a) and step (2) are done for each torus in G separately.
This is enough in characteristic zero, as there are only finitely many conju-
gacy classes of tori. However, the latter is no longer true in positive charac-
teristic. See more details in [AGKSb, §1.5]

Substep (1)(c) uses the assumption on characteristic in many places. See
more details in [AGKSD, §1.5.1].

1.2.4. The approach of [JL70, Chapter 9]. The proof of [JL.70, Chapter 9] in
the GLy case goes essentially along the same lines as the proof of [HC70].
All the bounds are much more explicit, and the bound |A\_% is replaced by
a different bound which differs from \A]’% by a multiplicative constant on
each torus.

1.2.5. Results of [AGKSD]. In [AGKSb] we obtain bounds for p.(f). These
bounds are conditional on the assumption of existence of a resolution of
singularities or the assumption char(F) > n/2 as in Theorem C and Propo-

sition D.
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In fact, the only reason that we need the assumptions above is the fact
that we rely on the results of [AGKSDb].

1.2.6. The approach of [Rod85]. [Rod85] took a different approach. Instead
of bounding Q(f) and then bounding the character using it, they bound the
character directly. They do it using a formula of Howe, that expresses the
character (near 1) as a combination of the Fourier transform of nilpotent
orbital integrals. Then they use the fact that all the nilpotent orbits of GL,,
are Richardson, in order to prove that these Fourier transforms are locally
integrable.

[Rod85] adapted this argument to work near semi-simple elements, thus
covers all elements with separable characteristic polynomial, and therefore
proves the result whenever char(F) > n. If one would like to adapt the
argument in [Rod85] to the general case, one has to deal with closed orbits
with non-separable characteristic polynomial, like the orbit of

(g (1)) € GLy(Fs((1))).

Such an adaptation was attempted in [Lem96]. A similar approach to the
one in [Rod85] was used in [HC99] (for the characteristic 0 case) in order
to show local integrability for general (not necessarily cuspidal) characters.
However, since [HC99] is not limited to the generality of GL,, it could not
use the Richardson property of the nilpotent orbits, and thus had to prove
the local integrability of the Fourier transforms of nilpotent orbital integrals
in a different way. This is done using the local integrability of (f) proven
in [HC70] (for the characteristic 0 case).

1.3. Our approach. Our approach follows the original approach of Harish-
Chandra (for the cuspidal case), thus we circumvent the need to deal directly
with elements with non-separable characteristic polynomial. Also, this ap-
proach gives a bound on (f) and not only on the character. Additionally,
it does not use the fact that all the nilpotent orbits of GL,, are Richardson
(see §1.3.1 below).

We replace ]A|_% with a function s described in §4 below. One can write
k = K|A|~2 where 10 is Ad(G)-invariant and constant on any torus. Thus
the difference between |A|_% and « is almost invisible in the characteristic
zero case. The construction of k generalizes the construction of the bound
from [JL70, Chapter 9.

Roughly speaking, our general strategy is to replace the torus-by-torus
arguments (from [HC70]) with global geometric arguments. Let us describe
it in more details.

The original proof of substep (1)(a) is based on an effective bound on the
averaging (w.r.t. the adjoint action) of a matrix coefficient of a cuspidal
representation and the stabilization of that averaging. We had to redo this
bound in a way that is uniform on the entire group and not only on a single

torus. We did this in [AGKSc].
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Substep (1)(b) in the argument in [HC70] is rather straightforward. How-
ever, as explained above, it would not be enough just to adapt it to positive
characteristic as is. In order to make step (2) possible we replace the function
|A|~2 with the function . After this change, the proof of substep (1)(b) (in
arbitrary characteristic) becomes more subtle and we do it in §4.

We dealt with substep (1)(c) in [AGKSD], note that this is the first of the
two places where we use [AGKSb], which in turn depends on the assumption
of resolution of singularities.

So we are left with the adapted version of step (2): we have to prove
that k is locally integrable. Here also, the original proof of Harish-Chandra
treated each torus separately. In case n = 2 one can obtain a bound on
the integral on each torus separately that will lead to the convergence of
the entire integral. This is essentially what is done in [JL70, Chapter 9.
In the general case, we could not do it. Instead we developed a geometric
formula for k (see §7). Essentially, this formula presents x as a pushforward
of an (a priori not necessarily locally finite) measure m w.r.t. a morphism
7 : X — G for a certain variety X. The measure m on X(F) is given by a
(rational) form wx on X. To make this formula useful we have to prove that
wx is regular on the smooth locus of X (see §8). Finally we prove that m is
locally finite and use this geometric formula to prove the local integrability
of k. Here we again used the results of [AGKSb] (and hence the assumption
of existence of a resolution).

Therefore, the main innovation of this paper is the factor x, the geometric
formula for it, and the successful execution of step (2).

1.3.1. The role of the assumption G = GL,,. We used the assumption G =
GL, in order to make all explicit computations easier. However, our argu-
ment does not use any statement that inherently depend on this assumption
(such as existence of mirabolic subgroup, stability of adjoint orbits, or the
Richardson property of all nilpotent orbits).

We also use the results of [AGKSb, AGKSc| that are limited to the GL,
case, however the situation there is similar (see [AGKSb, §1.5.7], [AGKSc,
§1.5.1]).

In conclusion we expect that the methods of the present paper can provide
a proof of the regularity of characters of cuspidal representations for any
reductive group over a non-Archimedean local field F' of good characteristic
(see e.g. [SS70, I, §4] for this notion).

1.4. Statements for the orbital integrals. Theorem C and Proposi-
tion D are also valid when we replace the character of p with the orbital
integral of a function f € C'2°(G). Let us recall the notion of orbital integral
of a function.

Notation 1.4.1.

e Denote by G™° the collection of regular semi-simple elements in G.
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o For f € CX(G) denote by Q(f) € C(G"*) the orbital integral

() (x) = / Iy

where dy is an appropriate measure on G-x, see Notation 3.0.1 below.

Theorem E (Remark 12.0.3). Assume either Conjecture B or char(F) > %.
Let v € C(G). Then Q(v) € LY(G).

It is easy to see that this theorem implies its version for the Lie algebra g
of G. Namely we have:

Theorem E’. For v € C°(g) define Q) analogously to the case when
v € C2(Q). Then Theorem E is valid with G replaced with g.

In view of [AGKSc, Theorem A’] this theorem implies a version of the main
results for Fourier transforms of characteristic measures of elliptic orbits.
Namely, for a regular semi-simple element = € g, fix an ad(G)-invariant
measure on g supported on the adjoint orbit G - x, and denote it by ug...
Let fig., be its Fourier transform.

Theorem F (Remark 12.0.3). Theorem C and Proposition D are valid when
we replace X, with fic., for elliptic (reqular semi-simple) x € g (with the
obvious modifications).

Moreover, the arguments of [HC99, §1.4] (which are also valid for positive
characteristic) allow to deduce from this theorem the following one.

Theorem F’. Theorem F is valid when we replace x with any reqular semi-
simple element in g.

This theorem is a partial positive characteristic analog of [HC99, Theo-
rem 1.1] that states that fig. € L},.(g). Harish-Chandra used this result
in order to prove that the character of an arbitrary irreducible (smooth)
representation of G is locally integrable [HC99, Theorem 16.3]. However, at
this point, we do not know how to adapt this part of Harish-Chandra’s ar-
gument to positive characteristic, so we still can not prove local integrability
for character of an arbitrary irreducible (smooth) representation in positive

characteristic even under our additional assumptions.

1.5. Unconditional results. We prove Theorem C using an unconditional
bound on the character of a cuspidal representation. In order to formulate
it we need the following notation:

Notation 1.5.1. We denote by:

(1) C — the variety of monic polynomials of degree n that do not vanish
at 0. We will identify it with G,, x A" L.

(2) C':=C(F).

(8) p: G — C — the Chevalley map, i.e. the map that sends a matriz

to its characteristic polynomaial.
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(4) e - the Haar measure on G, normalized on a mazimal compact
subgroup of G.

(5) e - the Haar measure on C, given by the identification C' = F* x
F"=t normalized on O x O%~', where O is the ring of integers in
F.

Theorem G (§11). Let p be an irreducible cuspidal representation of G and
U C G be an open compact subset. Then there exist:

(1) € >0,

(2) a real valued non-negative f € L'*(C'), and

(3) a real valued non-negative h € CX(G)

such that for any g € C°(U) we have:
[(Xp, 9| < (0" (f(R)), |9l)-

sl < (o (202 ).

Remark 1.5.2. Note that the Radon-Nikodym derivative ’% does not

have to be bounded (or finite) but only measurable, so the measure on the
RHS does not have to be locally finite. Hence, a-priory, the RHS might be
infinite (in this case, the statement is void).

More precisely:

Theorem C follows from Theorem G using the following weaker version of
[AGKSb, Theorem D]:

Theorem 1.5.3 (cf. [AGKSb, Theorem DJ). Assume Conjecture B. Then
for any t € [1,00) and any smooth compactly supported measure u on G, we

have p.(u) = fuc for some f € LY(C).

Similarly, Proposition D follows from Theorem G using the following spe-
cial case of [AGKSb, Theorem EJ:

Theorem 1.5.4 (cf. [AGKSb, Theorem EJ). Suppose char(F') > %. Then
for any smooth compactly supported measure i on G, the measure p.(u) can
be written as a product of a function in L*(C) and a Haar measure on C.

In fact, we prove a more explicit version of the bound in Theorem G. In
order to formulate it we will need the following notation.

Notation 1.5.5. Denote:

(1) By T the standard maximal torus of G.

(2) By W = S, the Weyl group.

(8) We will identify the Chevalley space C with the categorical quotient
T//W.

(4) ByY := (TxT)//W the categorical quotient by the diagonal action."

(5) By m:Y — C the projection to the first coordinate.

ISee §5 below for its existence.



(6) T =G XcGXCY.

(7) By ¢ : X — G the projection on the second coordinate.

(8) By A € Og(QG) the discriminant, i.e. A(g) is the discriminant of
the characteristic polynomial of g.

(9) By R : G — NU{oo} the function given by

R(x) = max(0, — minval(x;;), val(det(z)), val (A(x))).

Remark 1.5.6. Throughout the paper we use various notations for specific
varieties, sets and maps between them. We summarize these objects in some
diagrams in Appendiz C. It might be easier to follow some parts of the paper
with these diagrams visible. Of course we will not rely on this, and all the
objects will be defined before their first use.

Theorem H (§10.4). Let p be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function e € C=(Y(F)) such that (|suppe
1S proper,

(2) a top differential form w on the smooth locus of X, and

(3) an integer k

such that for any g € C°(G) we have:
[(Xps g1c)| < {G|wle)RY, |g]).

In order to deduce Theorem G from Theorem H we prove another state-
ment (Proposition I below) about the geometric structure of Y and use a
general result about integrability of pushforward of a smooth measure under
a dominant morphism (Proposition J below). In order to formulate these
results we make the following:

Definition 1.5.7. We say that an algebraic variety Z is geometrically inte-
grable if there exists a resolution of singularities v : Z — 7 s.t. the natural
morphism 7.(Qz) — .(Qzsm) is an isomorphism. Here Z*™ is the smooth
locus of Z, and 1 : Z°™ — 7. is the embedding.

Proposition I (§6.4). The variety Y= (T x T)//W is geometrically inte-
grable.

Remark 1.5.8.

e [n characteristic zero case, the singularities of a variety are rational
iff it is geometrically integrable and Cohen-Macaulay (see e.g. [AA1G,
Appendix B, Proposition 6.2]).

e In characteristic 0, Proposition I follows immediately from the fact
that a quotient singularity is rational (see [Bou87, Corollaire] ).

e We do not know whether Y is Cohen-Macaulay (in positive charac-
teristic.)

In order to deduce Theorem G from Theorem H and Proposition I we need

the following;:
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Proposition J (Theorem A.0.7). Let v : M — N be a generically smooth
morphism of smooth irreducible algebraic varieties. Then there exists € > 0
s.t. for any smooth compactly supported measure pp on M := M(F) there
exist smooth compactly supported measure i on N := N(F') and a function
f € LY*(N) such that

Yelpinr) = fun-

Remark K. Theorems G and H have versions for orbital integrals and for
Fourier transforms of characteristic measures of reqular semisimple orbits
analogous to Theorems E’ and F’. The proofs are identical.

1.6. Summary of the logic of the paper. The following diagram provides
a guideline regarding the logic of the proofs of the main results of the paper.

Theorem C [Proposition DJ

Conjecture B

[AGKSb, Theorem E]J

[[AGKSb, Theorem D]

Proposition I Theorem H

Proposition J

1.7. Ideas of the proofs. Most of the paper is devoted to the proof of
Theorem H. The proofs of Proposition I and Proposition J are significantly
simpler. The rest of the results of the paper follow relatively easily from
these 3 results (and the results of [AGKSb]).

1.7.1. Idea of the proof of Theorem H. In fact, we will prove the following
equivalent version of Theorem H:

Theorem H’ (§10.1). Let p be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function f' € C*(Y (F)) such that 7|supp s
1S proper,
(2) a real valued non-negative function h € C*°(G) such that plsuppn is
proper,
(3) an invertible top differential form W% on the smooth locus of X :=
G Xc Y,
10



(4) an integer k, and
(5) a real valued non-negative function v € C*(X), where X := X(F),

such that for any g € C°(G) we have:

(o 1) < <T*('°"9<L”G"*<f D) e (p*fjg@)) R \gluc> ,

where 0 : X =Y and 7 : X = G are the projections.

We prove this theorem using the following steps:

(1) Following [HC70], for any function f on G whose support is compact
modulo the center we define the orbital integral Q(f) which is a
function on the set G™* of regular semi-simple elements in G. See
Notation 3.0.1.

(2) Following [HC70] we showed in [AGKSc| that the character of a cus-
pidal representation p is bounded by Q(|m|) (up to a logarithmic
factor), where m is a matrix coefficient of p. Note that we have to
explain what it means for a partially defined function to bound a
generalized function. See Theorem 3.0.2 below for an exact formula-
tion.

(3) We construct an explicit function x on G™* (see §4 below) and prove
that €(|m|) is bounded by & - p*(p«(|m|)). Here the pushforward p,
is taken with respect to appropriate measures.

(4) We study the varieties Y = (T x T)//W and X = G xc Y =
G xc (T x T)//W and construct:

e a rational section w% of the square of the canonical bundle on
the smooth locus of X, and
e an open set B C Y (F) such that 7|z is proper. Here 7 : Y — C

is the projection.
= klwg].
o~ 1(B)

such that
n <\/|w§<|
Here:

e /|w%k]| is the measure on X(F') corresponding to wk, see §2.3
below for precise definition.
e wg is the standard top form on G.
See §7 for the construction.
(5) We prove that the section w% is regular. See §8 below.
(6) We construct an invertible top form wy on the smooth locus of Y.
(7) We use wy and the standard form wg on G in order to construct an
invertible top form w% := wg X, wy on the smooth locus of X (see
Definition 2.3.7 below for the notation X,).
(8) We use steps (5) and (7) to note that since w¥ is invertible and w¥k
is regular, the measure |w%| locally dominates 4/|w%|.
(9) We use steps (2,3,4,8) to obtain that, up to a logarithmic factor, the
character y, is bounded by 7. (|w%| - 1o,-1(5))p* (p«(|m]).
11




(10) We bound 7.(|wk| - 1o-1(5)) by p*(m(lwy] - 18)).
(11) We deduce Theorem H’ from steps (9,10).
(12) We deduce Theorem H.

1.7.2. Idea of the proof of Proposition I. We embed Y into the quotient
(A%)"//S, and thus reduce to showing the integrabilty of (A%)"//S,. This
we did in [AGKSa].

1.7.3. Idea of proof of Theorem G. We first deduce from Theorem H’ another
slightly different version of Theorem H:

Theorem H” (§10.3). Let p be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function f' € C*(Y (F)) such that 7|supp s
1S proper,

(2) a real valued non-negative function h € C*(G) such that plsuppn s
proper,

(8) an invertible top differential form wy on the smooth locus of Y, and

(4) an integer k

(5) a real valued non-negative function v € C*(G)

s.t. for any g € C°(G) we have:

|(Xp> g1ic)] < <7p* (m(’w"f )p*(le’h)> R”, Iglu(;>.
He He

Then we prove Theorem G using the following steps:

(1) Let f’, h,wy be as in Theorem H”.
(2) Let 7 : Y — C be the natural map and set f := m.(f"). Here we
choose appropriate measures to define the pushforward.

(3) We use Proposition I and Proposition J in order to show that f €
L1+€

loc *

(4) We deduce Theorem G.

1.7.4. Idea of proofs of Theorems C' and D. Let us start by sketching the
proof of Theorem C.

(1) Theorem 1.5.3 and Conjecture B imply that p, maps every L* com-
pactly supported function to an L' function for any ¢ € (1, 00).

(2) This implies that p* maps every L' function to an L}, function.

(3) Let f,h be as in Theorem G. We obtain that p.(h) € LY(C(F)) for
all t € (1,00). Therefore, fp.(h) € L'*°(C(F)) for some § > 0. Thus

p*(fp«(h)) € L} as required.

loc

The proof of Proposition D is the same when we replace Theorem 1.5.3

by Theorem 1.5.4 and Conjecture B by the assumption char(F) > 2.
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1.8. Structure of the paper. In §2 we fix some conventions and recall
some standard facts on forms and measures.

In §3 we formulate the main result of [AGKSc] that bounds the character
of a cuspidal representation in terms of orbital integrals of the absolute value
of its matrix coefficient. This establishes our version of substep (1)(a) from
the outline in §1.2.2.

In §4 we begin our study of orbital integrals in the language of algebraic
geometry. For this we construct an auxiliary function s : G™* — R that
allows us to describe the orbital integrals in terms of the pull of the push
w.r.t. the Chevalley map p"** : G™* — C"**. See Theorem 4.0.1 for an exact
formulation. This established our version of substep (1)(b) from the outline
in §1.2.2. Roughly speaking « introduces an arithmetic correction to the
more traditional factor |A|7z.

In §5 we provide the proof of some standard facts regarding quotients of
algebraic varieties by finite groups. Some of these are slightly less standard
in positive characteristic.

In §6 we introduce and study a few algebraic varieties that are related
to G. These varieties and properties of certain maps between them (such
as flatness, irreducible fibers and reduced fibers) will play a key role in our
arguments in the next sections. The reader is advised to consider the diagram
below Lemma 6.2.15 when reading this section. In §6.4 we prove that Y is
geometrically integrable (Proposition I). This bridges between Theorem H
and Theorem G.

In §7 we obtain a geometric formula for x that relates it to a form wx on
the variety X.

In §8 we prove that wx is regular (on the smooth locus of X). This makes
the formula in §7 useful.

In §9 we construct a regular invertible form w% that can bound wx in the
formula from §7.

In §10 we prove Theorem H and its versions. This provides an explicit
geometric bound on the character of a cuspidal representation.

In §11 we provide a proof of Theorem G.

In §12 we deduce Theorem C and Proposition D from Theorem G com-
bined with results of our previous paper [AGKSb].

In §13 we provide several alternatives to the condition of existence of a
resolution in Theorem C.

Appendix A by I. Glazer and Y. Hendel provides a proof of Proposition J.

In Appendix B we explain the mistake in [Lem96].

In Appendix C we present several diagrams containing the main objects
in the paper. These diagrams can help to follow the arguments in the paper.
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2. NOTATIONS AND PRELIMINARIES

2.1. Conventions.

(1) By a variety we mean a reduced scheme of finite type over F'.

(2) When we consider a fiber product of varieties, we always consider it
in the category of schemes. We use set-theoretical notations to define
subschemes, whenever no ambiguity is possible.

(3) We will usually denote algebraic varieties by bold face letters (such
as X) and the spaces of their F-points by the corresponding usual
face letters (such as X := X(F')). We use the same conventions when
we want to interpret vector spaces as algebraic varieties.

(4) For Gothic letters we use underline instead of boldface.

(5) We will use the same letter to denote a morphism between algebraic
varieties and the corresponding map between the sets of their F-
points.

(6) We will use the symbol [J in a middle of a square diagram in order
to indicate that the square is Cartesian.

(7) We will use numbers in a middle of a square diagram in order to refer
to the square by the corresponding number.

(8) By an F-analytic manifold we mean an analytic manifold over F' in
the sense of [Ser92].

(9) A big open set of an algebraic variety Z is an open set whose com-
plement is of co-dimension at least 2 (in each component).

(10) When no ambiguity is possible we will denote the adjoint action
simply by “- 7.

(11) For a measure space (Z, 1) we denote by L=>(Z, p) 1= (.o, LP(Z, 1)
We also introduce L;,2°(Z, p1) = (1,co0 Line(Z, ). Note that if Z is
an F-analytic manifold and p is a nowhere vanishing smooth measure
then the spaces L] (Z, p) and Li52°(Z, i) do not depend on p, so we
will omit p from the notation.

(12) We will use the symbol < to denote the (not necessarily proper)
containment relation for groups.

2.2. Notations. We denote by:

(1) wr - the standard T-invariant form on the torus T.
(2) For a group (or an algebraic group) H we denote by Z(H) the center
of H.
(3) G = G/Z(G), G = G/Z(G). Note that G¥<G*(F).
(4) 11z(c;) the Haar measure on Z(G) normalized on the maximal compact
subgroup of Z(G).
5) Jicea the Haar measure on G that corresponds to ug and iz ).
H Hz(G)
14



(6) We equip C with a group structure using the identification C =
G,, x A1,

(7) g is the Lie algebra of G (considered as an algebraic variety).

(8) g:=g(F).

(9) A the discriminant considered as a regular function on G.

10) G™* C G the non-vanishing locus of A. This is the locus of regular-
semi-simple elements.

T :=G™NT.

11)
12)
13) G = G™*(F).

14) C™* and C"** the images of G™* and G"™** in C and C.

15) p™*: G"* — C"** the restriction of p: G — C.

16) A the discriminant considered as a function on C.

17) c:=g//G, ¢ :=¢(F).

18) We identify ¢ with the collection of monic polynomials of degree n.
Under this identification C is identified with {f € ¢|f(0) # 0}.

(19) Similarly C™ is identified with the collection of all separable poly-
nomials in C.

e e i e N T T NN

2.3. Forms and measures. By a measure on a topological space Z we
mean a o-additive complete measure that is defined on all Borel subsets of
Z. We will usually assume that it is positive, but in-general we will not
assume that it is locally finite.

Definition 2.3.1. Let E be a line bundle on an algebraic variety Z.

e A rational section of E is a section defined over an open dense set
mn 2.

o A Q—section of E is a pair (n,&) where n € N and £ € T'(Z, E®")
up to the equivalence relation generated by:

(n,€) ~ (nk, ")

e We define the notion of a rational Q-section correspondingly.

o We will use the notion of rational sections and rational Q-sections
also when E is defined only on an open dense subset of Z.

e In the notions above, if E is the bundle of (relative) top differential
forms we will refer to sections of E as (relative) top forms. If E
15 a trivial bundle, we will refer to sections of E as functions. If K
18 a trivial bundle and Z is a point, we will refer to sections of E
as numbers. In particular, we will refer to a Q-section of the trivial
bundle over a point as a Q-number.

e Note that any rational Q-function can be raised in any rational power.

Definition 2.3.2. Let Z be an F-analytic manifold.

e Denote by Dy the sheaf of densities on Z, i.e. the sheaf whose sec-
tions are smooth measures.
e [fw is a top form on Z we denote the corresponding measure on Z

by |w|. If w is invertible then this is a section of Dy.
15



e Define the space of generalized functions C~°(Z) to be the space of
functionals on the space C(Z, Dy) of smooth compactly supported
measures.

Definition 2.3.3. Let Z be a smooth algebraic variety.

e Denote by Qz the sheaf of top differential forms on Z.

e For a top form w on Z denote the corresponding measure on Z :=
Z(F) by |w|.

e Based on the above, for an invertible section w of Q%k we can define
the corresponding section |w| of D?k. Note that we have a natural
positive structure on Dy, and this section is positive with respect to
this structure.

e For an invertible Q-top form w = (k,w;) we define |w| = |wy|r.
Here we take the positive k-th root.

e [f w is not invertible, the definition above defines a density on the
non-vanishing locus of w. This section naturally extends to a Radon
measure on Z which we denote also by |w|.

e [fw is a rational Q-top-form we get a measure on an open dense set.
We can push this measure to Z and get a not-necessarily-Radon mea-
sure. However this measure is still o-finite. We denote this measure
also by |w|.

Definition 2.3.4.

e For a pair of Borel (not-necessarily locally finite) o-finite measures
1, o on the same topological space s.t. 1 s absolutely continuous
w.r.t. py we denote by Z—i to be the Radon-Nikodym derivative. We
consider it as an almost everywhere defined function.

o Giwen a morphism of F-analytic varieties v : Zy — Zs, define the
sheaf of relative densities D, := Dz, @ v*(Dg,)*. Here x denotes the
internal Hom to the constant sheaf.

o Given a relative Q-top-form on Zy w.r.t. v, we denote the correspond-
ing relative density by |w|. If w is a rational Q-top form we consider
lw| as an almost everywhere defined relative density (defined on the
reqular locus of w, and smooth over its invertible locus).

Remark 2.3.5. Note that if v : Zy — Zs is a generically smooth morphism
of algebraic varieties, w; are rational Q-top forms on Z; and f € C*(Z)
then v.(|w1|f) is absolutely continuous w.r.t. |ws|. However vi(|wi|f) is not

necessarily a locally finite measure so % is not necessarily in L' (or

even generically finite).

Notation 2.3.6.

o For a smooth morphism vy : Zy — Zs, a top differential form wg, on
Zy, and a relative top differential form w, on Zy with respect to v,

denote the corresponding top differential form on Zy by wz,*w-.
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We use the same notation for rational Q-top-forms. Also in this
case, we do not have to require that Z; and v are smooth, instead it
15 enough to require that v is generically smooth.

o Conversely, if we are given (rational Q-)top-forms wz,,wz, there is
a unique (rational Q- )top-form w., such that wz, = wyz, *w,. We call
this form the Gelfand-Leray form w.r.t. the map ~v and the forms
Wz, Wz, -

Definition 2.3.7. Given a Cartesian square of smooth morphism and smooth
varieties:

V—>Zl

| o]

ZQ—>Z

and top-forms w,w; on Z,Z; define a form wy X, wy on V in the following
way:
o Let w; be a Gelfand-Leray relative form on Z; w.r.t. the map Z; — Z.
o Let wi Xz wh be the corresponding relative form on V w.r.t. the map
v:V = Z.
o Define wilX¥,wy = w * (w] Kz wh).
We use the same notation for rational Q-top-forms. Also in this case,
we do not have to require Z;, Z and vy to be smooth, instead it is enough to
require the maps to be generically smooth.

3. ORBITAL INTEGRALS AND CHARACTERS OF CUSPIDAL
REPRESENTATIONS

In this section we formulate the main result of [AGKSc| that bounds the
character of a cuspidal representation in terms of the orbital integrals of the
absolute value of its matrix coefficient.

Notation 3.0.1. Let x € G%.

e Denote by i, the Haar measure on the torus G, normalized such
that the measure of the maximal compact subgroup of G, is 1.

e Denote by jic.. the Ad(G)-invariant measure on the conjugacy class
Ad(G) -z that corresponds to the measures pe and pg, under the
identification Ad(G) - x = G/G,.

o Let f € C®(G) have compact support modulo the center of G. Let
Q(f) : G — C be the function defined by QUf)(z) = [ flaatico-

Theorem 3.0.2 ([AGKSc, Theorem Al). Let p be a cuspidal irreducible
representation of G. Then there exist:

e a function m : G — C with a compact support modulo the center,
and
e a polynomial o € N[t]
17



such that for every n € C*(G) we have

[(Xps 11+ )| < {f - Q|ml), (Il - pe)lars),
where f € C°(G"*) is defined by

f(g) = a”(ovgrss(g))-

Remark 3.0.3. A priori, the right hand side of the above inequality can be
infinity. We interpret the statement in that case as void.

4. EXPRESSING THE ORBITAL INTEGRAL THROUGH Kk

In this section we construct the function x : G"™* — R and prove:

Theorem 4.0.1. Recall that p™** : G"™* — C"** is the Chevalley map. Let
f € C®(G) be a function s.t. its support is compact modulo Z(G). Then
there exists v € C>°(G) such that

7SS

QF) = Rylros ()" (%)

piclorss
Explicitly, v(z) = %Z_g” det(z)"1.

4.1. Construction of x. Let us start with an informal description of the
construction. We first define a canonical Q-top form on any torus, see Def-
inition 4.1.4 below. For x € G™* we define k°(z) to be the volume of the
maximal compact subgroup of G, with respect to this form on G,. We
define r := k%/|A2.

Notation 4.1.1. Let S be a torus defined over F. By [Borl9, Lemma 8.11]
the extension of scalars Spser of S to the separable closure F*%P of F' is a
split torus. Choose an isomorphism

¢ : SFsep — (GZ,L)Fsep.

Let w(gn ) psep be the standard top form on (G}),)pser. Let

wSFsep R0) = ¢* (W(an)psep ) .
Denote by
2
wSFsep NG

its square considered as a section of Q> .
Fsep

Lemma 4.1.2. The section ngsep,qﬁ does not depend on ¢.
Proof. Let ¢,¢' : Spser — (GI') pse» be 2 isomorphisms. Then

wSFsep,¢/ = ¢*,LL* (w(Gf‘n)stip)7
where g : (G!)pser — (GI)pser is an automorphism. This automorphism
corresponds to an element § € GL,(Z). So we have

’u* (w(G%)Fsep) = det<5)w(an)Fsep .
We get

WSFSEP 7¢l - det(/ﬁ)wSFsep7¢
18



and hence
2 _ 2 2 _ 2
WSFsep,d)’ - det(/B) WSFsep,(f) - wstep,¢

4

Remark 4.1.3. Note that this notation is compatible with our notation wr
in the sense that the top form wr coincides with the form defined here for
the case S = T when considered as a Q-top-form. So in the case S =T the
expression wr will continue to denote the actual top-form (and not just the

Q-top form).

Definition 4.1.4. Let S be a torus defined over F. By the above lemma
(Lemma 4.1.2) w%Fsep@ does not depend on ¢. So we will denote it by w%Fsep.
By Galois descent there exists a unique section wg of Q%)z s.t. its extension
of scalars to F*% is wg, Define ws = [(2,w3)] considered as a Q-top
form on S.

sep *

Let us now define the function « : G™* — C:

Notation 4.1.5. Let x € G be a reqular semi-simple element.

(1) Denote by K, the unique maximal compact subgroup of G.
(2) Define 9(z) = [, |wa,

(8) Recall that A™° : G"™** — C is the Weyl discriminant.

(4) Define

Note that the definition of x° implies:
Lemma 4.1.6. For x € G™® we have:
wa,| = £ (2)na,

4.2. Proof of Theorem 4.0.1. Let us first describe the idea of the proof.
For x € G™° we consider two G-invariant measures on G - z:

(1) the Gelfand-Leray measure with respect to the map p : G — C. This
is the absolute value of the Gelfand-Leray form that we denote by
wg;L.

(2) The measure ., defined in Notation 3.0.1 above.

We need to show that the ratio between these measures is x. For this we
construct a third measure, which is the absolute value of the Q-top-form wg.,
that comes from the identification G - z =2 G/G,, the standard form wg on
G and the canonical Q-top-form wg, on the torus G,. Thus it remains to
compute the ratios wg_"/wg., and |wg..|/peF) .- The computation of the
first ratio is an algebraic problem which is not sensitive to a field extension.
Thus we can assume that x € T', in which case the computation is straight-

1
forward. This part is responsible for the |A|™2 factor. The computation of
the second ratio follows from Lemma 4.1.6. This part is responsible for the
x? factor.

For the proof, we will need some preparation.
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Notation 4.2.1. Denote by:
e t the Lie algebra of T,
#0 . t ]
o g7 =t g,
e wg the standard G-invariant (both from the left and from the right)
top form on G,
e wc the C-invariant top form on C corresponding to the standard top
form on G,, x A" ! under the identification C = G,,, x AL,

The following lemma is standard.

Lemma 4.2.2. Let x € TN G".
(1) Let c, : g7° — g7 be defined by c,(y) = [x,y]. Then
det(c;) = A(x)
(2) Let I : ¢ — t be the isomorphism given by the identification
c=F" =t

Then

det(I o d,p|)? = A(x).
Here we identify T, T = t and T),,)C = ¢ using the group structures
on T and C.

Notation 4.2.3. Let x € G™*. Denote by

o WS L the Gelfand-Leray form on G - x = p~'(p(z)) w.r.t. the map
p: G — C and the forms wg and we. Consider it as a Q-top-form.

® wg/a, the Q-top-form on G/G, corresponding to the Q-top-forms
wg and wg, -

® wg. be a Q-top-form on G - x corresponding to wg/g, under the

identification G/G, = G -z
Lemma 4.2.2 gives us:

Corollary 4.2.4. Let x € G™°. Then wg., = A_%(x)wg;f det(x)""1. Here,
A~3(z) is considered as a Q-number, and thus can multiply Q-forms.

Proof. Note that validity of the statement for a given x does not change when
we extend the field F'. Therefore we can assume without loss of generality
that = is diagonalizable. Also the validity of the statement for a given x
does not change when we conjugate x. Therefore we can assume WLOG
that x € T'NG™*. In this case G, = T. We have a canonical top-form on
T that represents the Q-top form wr. We will denote it also by wr.

Since both of the forms in the desired equality are G invariant, it is enough
to verify their equality at the point x. Using the left action of G we can
identify

(4.1) T.(G)=g
Under this identification we get
(4.2) T.(G - x) = Im(Idy —ad,1) = g7°.

20



Set wy = we|, considered as a form on 7,(G) = g. (note that it does not
depend on z since wg is G-invariant). Set also wy := wr|; considered as a
form on t. Now we would like to compute w&_*|, under the identification
(4.2). Consider the following exact sequences.

0 —— kerdyp —— T,G —* 5 T,(,;C ——— 0

IR (4.2) R (4.1) l[

Todgzp

0 y g7 0 > g >t > 0

Here, [ is the identification from Lemma 4.2.2(2). Let wg¢o be a form s.t.
w20 X wy = wg. From the exact sequences we obtain w&Fl, = det(l o
duple) T wgro. By Lemma 4.2.2(2) we have det(fod,pl,) wyzo = A_%(x)wﬁo,

and hence wG |, = A~ 2 (z L)Wy

To calculate wg..., note that the Lie algebra of G, is t. So we can identify
T1(G/G,) with g7° (where 1 € G/G, denotes the class of identity). Under
this identification we have wg/q, |1 = wy#o. Let i : G/G, = G - x denote the
standard identification. We have the following commutative diagram:

T(G/Gy) — To(G - )
TG T,G
L . R (4.1)

g———— 9

Thus, under the identification (4.2), we have wg.o|» = det((—Id +-ad,-1)|g20) " wyro.
Let ¢, be as in Lemma 4.2.2(1). We have

det(—Idg +ad,—1) 'wyzo = det(z)" " det(c,)  wyzo.

By Lemma 4.2.2(1) we have det(z)" ! det(c,) twyzo = det(2)" T A(z) wgro.
Altogether, we have

wesle = A73 (z) det ()" wig s
as required. O
Lemma 4.1.6 gives us:
Corollary 4.2.5. For x € G™* we have:
Hea = K (2)|wa.al

Proof of Theorem 4.0.1. Let y € C"*. By the definition of the Gelfand-
Leray form we have

4m [ = (e )
21
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Note that p : G™* — C"™* is onto. Let x € G™ s.t. p(x) = y. Set
v(z) = el te | det(z)n1|. We have

pe lwcl

Q(f)(x) = /(f|G-m)/~LG-x Cort2s /(flc.m)fio(x)|wc_m| Cor 424
= /(f|G~q;)/€0(x)| det(x)”—lA—%(m)wg;ﬂ _

— k() det ()1 G-I (43) ()| det ()7 P ((flwel)larss)
= r(o)ldet(a)" ] [ (fla o) 2 o)l den(oy ) (B 0
() det (21 lwa| pe  (P2°(fpralarss) .
ooty B (BT ) )
_ P uclor)
= c(o (o) (PR ()

as required. O

5. FACTORIZABLE ACTIONS

In this section we give some standard facts about the quotient of an al-
gebraic variety by a finite group which are slightly less standard in positive
characteristic.

Definition 5.0.1. Let a finite group ' act on a variety Z. We say that this
action is factorizable if the categorical quotient Z//T exists (as a variety),
and the map Z — 7/ /T is finite.

Proposition 5.0.2 (See e.g. [AGKSa, Corollary 3.1.8] ). Let a finite group
I' act on a quasi-projective variety Z. Then the action is factorizable.

Lemma 5.0.3 (See e.g. [AGKSa, Corollary 3.1.5)). Let a finite group I' act
factorizably on a variety Z. Let U C Z be an open I'-invariant set. Then
the action of I" on U is factorizable and the following diagram is a Cartesian
square.

(5.1) U Z
|
U//I —=12Z//T

Moreover, the bottom arrow is an open embedding.

Lemma 5.0.4 (See e.g. [AGKSa, Lemma 3.2.3]). Let a finite group I act
factorizably on a variety Z. Assume that the action is free (i.e. the action

of I' on Z(F) is free). Then
(1) The map Z — Z/ )T is étale.
(2) The natural morphism m : Z x I' = Z X z,;0 Z is an isomorphism.

Lemma 5.0.5 (Galois descent for free actions, see e.g. [AGKSa, Corollary

3.2.4]). In the setting of the previous lemma, let Schy, /- denote the category
22
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of schemes over Z//T and let Schi, denote the category of schemes over Z
equipped with an action of I' which is compatible with the action of I' on Z.
Consider the functor F : Schgz;r — Schi, defined by F(X) = X Xz L,
with T acting on the second coordinate. Let B : F(X) — X be the projection
on the first component. Then

(1) F is fully faithful.

(ii) Given X € Schg,/r and a sheafV on it, the pullback V(X) — (8*V)(F (X))

with respect to B gives an isomorphism
V(X) = (BV)(F(X))".

Lemma 5.0.6. Let a finite group I' act on an affine variety Z. Let v :
Z, — Z/]T be a flat morphism of affine varieties. Then the projection on
the second coordinate Z Xz,/r Zy — Zy defines an isomorphism

(Z Xz//T Zl)//F =7

We note that the fiber product in the lemma scheme-theoretical, and we
do not claim that in general it is a variety.

Proof. We need to show that the natural map
Oz,(2)" = (02,(Z1) B0y 0a(Z))'
is an isomorphism. Equivalently it is enough to show that the natural map
Oz,(Z1) @0,y Oa(2)" = (02,(Z1) @0y O2(2))

is an isomorphism. This follows from the assumption that Oz, (Z,) is flat
over Oz(Z)" and thus the functor

M Ozl (Zl) ®OZ(Z)F M
commutes with finite limits. O

The following lemma follows immediately from miracle flatness (see [Sta25,
Lemma 00RA4]).

Lemma 5.0.7. Let a finite group I' act factorizably on a smooth variety X.
Suppose that X/ /T is smooth. Then the factor map X — X//I" is flat.

6. SOME GEOMETRIC OBJECTS RELATED TO G

In this section we introduce certain algebraic varieties related to G. The
diagram it §6.3 summarizes most of them. We also prove Proposition I.

6.1. The maps p and gq.

Notation 6.1.1. Identify C=T//W and ¢ = t//W. Denote by q: T — C
and qo : t — ¢ the quotient maps. Denote by py : g — ¢ the Lie algebra
version of the Chevalley map p: G — C.

Lemma 5.0.7 and Proposition 5.0.2 imply

Lemma 6.1.2. The maps qo,q are flat.
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Lemma 6.1.3. The maps po,p are flat.

Proof. See [AGKSD, Corollary 5.0.5] for the flatness of py. This implies the
flatness of p. O

Lemma 6.1.4. The fibers of p (and of py) are absolutely irreducible.
Proof. This follows from the Jordan decomposition. O
Notation 6.1.5. Denote by G" the smooth locus of p.

Lemma 6.1.6 (cf. [AGKSb, Lemma 5.0.8]). p|gr : G" — C is onto.

Proof. This follows from the notion of companion matrix. O

Corollary 6.1.7. G" is big in G, and the fibers of p are absolutely reduced.
Additionally the same holds for the fibers of po.

Proof. The analogous statements for g" and py are proven in [AGKSb, Corol-
lary 5.0.9]. The statement for G and p follows from that. U

6.2. The varieties X, Y, T.

Notation 6.2.1. Denote G' := G x¢ T. Denote by v : G' — G the
projection on the first coordinate and by ¢ : G' — T the projection on the
second coordinate.

Lemma 6.2.2. Let Zs be an irreducible variety. Let v : Zy — Zs be a flat
map of finite type of schemes. Assume that the fibers of v are irreducible.
Then Zy is irreducible.

Proof. We have to show that every two non-empty open subsets Uy, Uy C Z4
intersect. By [Sta25, Lemma 01UA], v is an open map. Thus v(U;) are
open, and since Z, is irreducible they intersect. Let p € ~(U;) Ny (U,).
Then U; Ny~ !(p) are non-empty open subsets of the fiber v~!(p). Since the
fiber is irreducible, they have to intersect. Thus U; and U, intersect. ]

Lemma 6.2.3. G’ is absolutely reduced, locally complete intersection, and
wrreducible.

Proof. By Lemma 6.1.3, G’ is a locally complete intersection, and the maps
potv : G — Cand ¢ : G" = T are flat. By Lemma 6.1.4, the fibers of
@ are absolutely irreducible. Therefore, by Lemma 6.2.2, G’ is absolutely
irreducible. Thus it is enough to show that G’ is generically absolutely
reduced. Since po1) : G' — C is flat, (p o)~ (C™*) is dense in G’ (since
the preimage of a dense subset under a flat morphism is dense, see [Sta25,
Lemma 01UA]). Thus it is enough to show that (po1))~1(C**) is absolutely
reduced. Note that (p o) 1(C™*) = T" xcrss G™*. The assertion follows
now from the statement that the natural map T" — C"** is étale. This in
turn follows from Lemma 5.0.4(1). O

Notation 6.2.4.
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oY = (T xT)//W, where W acts diagonally. Let n: T xT =Y
denote the quotient map. Note that the quotient exists by Proposi-
tion 5.0.2.

o Let m: Y — C denote the map induced by the projection on the first
coordinate T x T — T. Let o : Y — C x C denote the natural map.

e X =GxcY,andlet7: X = G and o : X =Y be the projections.

e X =G xT and let v : X — X be the natural map given by the
identification X = G x¢ T x T and the quotient map T x T — Y.

From Lemma 6.2.3 we obtain

Corollary 6.2.5. X is absolutely reduced, absolutely irreducible and locally
complete intersection.

Lemma 6.2.6. The map v : X — X induces an isomorphism X//W =~ X.

Proof. By Lemma 6.1.3, p : G — C is flat. Since the base change of a flat
map is flat, the projection ¢ : X — Y is flat. Thus, by Lemma 5.0.6, the
natural map X Xy (T x T) — X gives an isomorphism

(X xy (TxT))//W=X
The assertion follows now from the fact that
X xy (TXT)2G xcY xy (TxT)2X.
O
Corollary 6.2.7. X is absolutely reduced and absolutely irreducible.

Notation 6.2.8. Denote by (T x T)/ the free locus of the action of W.
Denote by 1 : T x T the quotient map. Denote Y/ := u((T x T)7).

The following lemma is standard.
Lemma 6.2.9. (T x T)/ is a big open set in T x T.
Corollary 6.2.10. Y/ is big in Y.

Lemmas 5.0.3 and 5.0.4 imply

Corollary 6.2.11.

(i) Y7 is smooth.

(i) p|(rxT)s is smooth.
(11i) q is generically smooth.

Proof. By Lemma 5.0.3, (T x T)Y//W = Y/. By Lemma 5.0.4, the quotient
map (T x T)/ — (T x T)///W is étale. Since it is also finite, and (T x T)/
is smooth, this implies that Y/ is smooth. O

Lemma 6.2.12. Let v : Zy — Z1 be a flat morphism of algebraic varieties.
Assume that the fibers of ~v are reduced and v is smooth over an open dense
subset of Zy. Assume that Zi has a big smooth locus. Then Zs has a big

smooth locus.
25



Proof. Without loss of generality we can assume that Z; is smooth. Let
U C Z; be an open dense subset such that v is smooth over U. Let Zj
be the complement of U. It is enough to show that ~ is smooth in every
generic point of Zs. This follows from the fact that v is flat and its fibers
are generically smooth (since they are reduced). U

Corollary 6.2.13. X has a big smooth locus.

Proof. By Lemma 6.2.12 and Corollaries 6.2.11 and 6.2.10, it is enough to
show that:

(i) The map o : X — Y is flat.
(ii) The fibers of o are reduced.
(iii) There exists an open dense subset of Y such that ¢ is smooth over it.

Note that o is a base change of p : G — C. Note also that p is flat by
Lemma 6.1.3, and its fibers are reduced by Corollary 6.1.7. Thus (i) and (ii)
hold.

Now, p is smooth over the open dense subset C™**, and 7 is locally domi-
nant (since Y is irreducible and 7 is dominant). This implies (iii). O

Lemma 6.2.14.

(i) Y is reduced and irreducible.
(ii) The regular locus of Y is big in Y.

Proof.

(). Consider the Chevalley map p : G — C. It is flat and its fibers are
reduced and irreducible. Therefore, so is the natural map p’ : ¥ —
X. By Lemma 6.2.2, this implies the assertion.

(ii). By Corollary 6.2.13, the regular locus of X is big. By Corollary 6.1.7
the fibers of p are reduced. It is well known that the regular loci of
the (reduction of the) fibers of p are big (in these fibers). So such are
also the regular loci of the fibers of p’. This implies the assertion.

O
Lemma 6.2.15.
(i) G xc G is reduced and irreducible.
(ii) The regular locus of G xc G is big in G Xc G.
Proof. The proof is similar to the proof of Lemma 6.2.14. U
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6.3. Summary. The following diagram summarizes the main objects dis-
cussed in this section.

G xT = X —TxT
u gxq
7 5Y 2 s CxC
O “/ prYy
p 7
|:| q
% S

In this diagram

e pro, pr; and prg are the projections on the first coordinate.
e pry, pra and p' are the projections on the second coordinate.

Lemma 6.3.1. The maps in the above diagram are generically smooth.

Proof. u and ¢ are generically smooth by Corollary 6.2.11. p is generically
smooth by Corollary 6.1.7. This implies that ¢ x ¢ is generically smooth and
hence so is mopu. Therefore (in view of the irreducibility of Y') 7 is generically
smooth. The rest of the statements are either obvious or obviously follow
from the above. O

6.4. Integrability of Y — Proof of Proposition I. We now deduce
Proposition I, which states that Y is geometrically integrable, from the re-
sults of [AGKSa]. For this we introduce the following notation.

Notation 6.4.1. Let t be the Lie algebra of T and let v :=t x t//W where
the action of W is diagonal.

By Lemma 5.0.3 Y can be embedded as an open set in y. Thus, Proposi-
tion I follows from the following one.

Proposition 6.4.2. vy is geometrically integrable.

Proof. Note that y = (A?)"//S,. The assertion follows now from [AGKSa,
Corollary C]. O

7. ALGEBRO-GEOMETRIC FORMULA FOR K

Recall that X = G X¢ Y and that 7 : X — G is the projection on the
first factor. In §4.1 we introduced a function x on G"**. In this section we
construct a clopen A C X and a rational Q-top-form wx on X and prove

Theorem 7.0.1. We have 7.((|wx|)|4) = klwa].
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7.1. Construction of wx. The construction is based on the relative rational
Q-top form w; on X with respect to the map 7 : X — G. The idea of the
construction of w, is based on the observation that the generic fibers of 7
admit natural group structures of tori. The relative form w, is defined in
such a way that its restrictions to the generic fibers of 7 are the canonical
Q-top forms on the fibers (see Definition 4.1.4). We use w, and the standard
top form wg on G in order to construct a form wy on X. Finally we divide
the form wy by the square root of the discriminant to obtain wx.
To implement this idea we start with the following notation.

Notation 7.1.1. Recall that T" = T N G"™*. Denote Y™ := (T" x T)//W.
The following lemma is standard:

Lemma 7.1.2. Consider the commutative diagram of affine algebraic vari-
eties

Y11 Y12
7 > Lo AL

=
Y21 Y22
Zy > Lo > Zigg

Assume also that we have:

Z, " Ly
fo [k
Zoy P Lo
and that the map 791 is faithfully flat. Then we have:

Y12
2y —— 73

= o |a

Zsy —" Lo
Proof. We want to show that the natural map
Zyy — Znz Xzy5 Lo
is an isomorphism. We know that the natural map
Z13 X7,y Lyt — (Znz Xz Z2z) X7,y Ly

is an isomorphism. The assertion follows now from the fact that Z,; is
faithfully flat over Zsy using faithfully flat descent for isomorphisms (see e.g.

[Sta25, Lemma 021.4]). O
Lemma 7.1.3. The square
(7.1) T x T2~y

jpf{ LWT'

T/I" qr C/I"SS
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is Cartesian. Here, 7", q", p", and pr] are restrictions of m, q, p and pry
respectively.

Proof. Consider the following diagram

(7.2) WxT x T2 =T xT
T" x T v Y" q"opr]
S
T @ Qrss

where a; is the diagonal action map, and pror«1 is the projection. By
Lemmas 5.0.4 and 5.0.3, the squares

(7.3) WxT x T2 T xT
T xT 2 yr
and
(7.4) WxTr 271"
-,

q'r

TT‘ CT’SS
are Cartesian, where as is the action map and prp- is the projection.
Also the square

WXT" xT 2 =T xT

lprw XTT l pry

W x Tm —2 T
is Cartesian, where pry .- is the projection. Hence the square

a
(7.5) WXT" x T ——=T"xT
pryoprTr x T=PrTrOpriy x T l quOPf’{:WTOIf
TT C’I"SS

is Cartesian. By Corollary 6.2.11(ii) the map p" is etale. Hence by Lemma 7.1.2,
and from (7.3) and (7.5), we get that the square

(7.6) T x T yr
S
T?" a Crss
is Cartesian, as required. U

Definition 7.1.4.
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e Define a group-scheme structure on the C"**-scheme Y™ — C"® in
the following way. Consider the Cartesian square given by Lemma 7.1.3

(7.7) T xT X~y
qu LWT'
T?" qr C?"SS

The left column has a natural structure of a group scheme (over
T"). W acts homomorphically w.r.t. this structure. By Lemma 5.0.5(1),
this gives a group scheme structure on the right column (over C™*).

o Recall that wy is the standard top differential form on T. Let wpyer
be the relative top differential form on T" x T w.r.t to the map pr}
obtained from wr. Consider it as a Q-top differential form. As such
it is W invariant. Hence by Lemma 5.0.5(ii) it descends to a relative
Q-top differential form w, on Y" w.r.t. ©". Consider it as a relative
rational Q-top differential form on Y.

e Consider the Cartesian square

(7.8) X-—2-Y

Lk

G--cC

Denote w, := 0*(wy) considered as a relative rational Q-top differen-
tial form on X w.r.t. T.

o Let wy = wg*w,, considered as a rational Q-top differential form on
X. Here we use the fact that the morphism 7 : X — G 1is generically
smooth, as provided by Lemma 6.3.1.

e Denote wx = 7" (A™Y?2)wk.

The definition of w, gives us the following:

Lemma 7.1.5. For any x € G™° the form w-|.-1(y) is the canonical Q-top-
form on the torus 771 (x) (as defined in Definition 4.1.4)

7.2. The fibers of 7 : X — G. Let x € G"*. In this subsection we
prove that the algebraic group 7!(z) is (non-canonically) isomorphic to the
centralizer G, of x - see Corollary 7.2.3 below.

We start with the following standard lemma:

Lemma 7.2.1. Let © € G"™*(F). Then there exists z € G(F*P) s.t.
zrzt € T(FP).

Next, we describe certain fibers of the map « : Y — C in terms of cen-
tralizers.

Lemma 7.2.2. Let x € G"**. Then the algebraic group 7 *(p(x)) is (non-

canonically) isomorphic to the centralizer G, of x.
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Proof. We will construct an isomorphism of F*®—gschemes

[ (GI)F‘SEP/F % 7T71<p(x))Fsep/F
and show that for any F*“-scheme S, and for any v € Gal(F*?/F) the

following diagram is commutative

(7.9) (Gy)pser/r(S) —E>7r_1(p(x))psep/p(5)

| |
(Ga)pserp(S) —= 77" (p(x)) poer/p(S)

Step 1. Construction of ¢.
By Lemma 7.2.1 we can choose z € G(F*?) such that zzxz"! €
T"(F*?/F). Denote y := zxz~1. Let

fiy - {y} X Tpseryp = 1 (p(y)) poeryp = 1 (p(x)) poer

be the restriction of (i) pser/p. By definition of the group structure on
7 (p(y)), py is a group isomorphism. Take £ to be the composition
ad(z)
(Ga) e

It is an isomorphism of algebraic groups (over F*%).

Step 2. Proof of commutativity of the diagram (7.9). Let n := ~(z)z"'.
NOte that Z(Gm)Fsep/FZ_l p— (Gy>Fsep/F - TFsep/F and thuS

TFSEZD/F — TFsep/F X {y} # T ( (l'))FSEP/F-

’Y(Z)(G»y(x))psep/p)'}/(Z)_l = ")/(Z(G‘I)Fsep/FZ_l) = ’)/(Tpsep/F) = TFsep/F

Thus n normalizes T pser/p. Therefore ad(n) acts on T by an element

w e W. Let u € (G)pser/p(S). We have

“Lwey) = p(nay(u) T nyn ) =

e(y(uw)) = plzy(w)z™",y) = p(w - 27(u)z
(v(2)2~ ZV( )z ey (2) (2)z e ey (2) ) =
(Y(zuz™), v (2)zy(2) ") = ply(zuz"), v (2)v(2)y(2) ) =
(Y(zuz™", z2271)) = p(y(2uz™,y)) = 7(e(u))

0

Corollary 7.2.3. Let x € G™*. Then the algebraic group 7='(z) is (non-
canonically) isomorphic to the centralizer G, of x.

7.3. Construction of A and its properties. In this subsection we con-
struct a clopen subset A C X s.t. 7|4 is proper and a generic fiber of 7
intersects A along the maximal compact subgroup of this fiber (see Corol-
lary 7.3.7).

The following lemma is straightforward:
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Lemma 7.3.1. Consider the following commutative diagram in arbitrary
category.

Y11 Y12
Z11 > Z12 > Zi3

b o s

Y21 Y22
Ly >y Lo > Lo

Assume also that we have:

7120711
le > Z13

I o s

Y220721
Zo1 —— a3

Then we have:

Y11
Ziyn — L2

oo s

Y21
Ly —— L

Definition 7.3.2.
e Recall that a ' Y = (T x T)/W — T/W x T/W = C x C is the

natural map.
o Let B:=a (C(F)x C(Op)) CY =Y(F).
o Let B":=BNY".

Proposition 7.3.3.

(i) BCY is clopen.

(i1) m|g is proper.
(iii) For any x € C™% := C™3(F) the set 7 '(z)(F) N B is the mazimal

compact group of 71 (x)(F).

For the proof we will need the following lemmas.

Lemma 7.3.4. Consider the commutative diagram

T x T(Op) > B » C'x C(Op)
[
(7.10) T — s yr M oo
H ok
" 7" Crss

Then all the squares in this diagram are Cartesian.

Proof. The square 2 is Cartesian by the definition of B. The square 3 is

Cartesian by Lemma 7.1.3. It remains to show that 1 is a Cartesian square.
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The fact that Op is integrally closed inside F' implies that the square

(7.11) T(Or) — C(Or)
b,
T C

is Cartesian. Thus we have the Cartesian square

(7.12) C x T(Op) —= C x C(Op) .
CxT ldxq CxC

Composing it with the Cartesian square

(7.13) T7 x T(Op) —= C x T(Op) .

e

T"xT ——s(CxT

we obtain the Cartesian square:

T" x T(Op) —— C x C(Op)

| |

TTXT&CXC

This square is also the composition of squares 1,2. Since we already showed
that square 2 is Cartesian, it follows by Lemma 7.3.1 that the square 1 is

Cartesian.

Lemma 7.3.5. Let S be a torus defined over F. Let E/F be a finite field
extension. Let K C S(E) be the mazimal compact subgroup. Then K NS(F')

is the mazimal compact subgroup of S(F).

Proof. This follows from the uniqueness of the maximal compact subgroup

of a torus.

Proof of Proposition 7.3.3.

(i) is obvious.
33



(ii) Consider the diagram:
B 225 C x C(Op)

| o |
el Y 2 Ox C
lw

C pr

Here pr is the projection to the first coordinate and a g is the restriction
of a. The morphism « is finite, thus proper on the level of F-points.
Therefore, ap is proper. Since C(Op) is compact, we obtain that pr is
proper. Thus 7| = pr o ap is proper.
(iii) Step 1. Proof for the case when x € ¢(T").
Follows from the Cartesian squares

T" x T(OF) — B

| o |

" xT —— Y’

| o |

TT‘ 3 O’I“SS

(7.14)

given by Lemma 7.3.4.
Step 2. General case.
Follows from the previous case and Lemma 7.3.5.

Notation 7.3.6. A =G x¢ B C X.
Proposition 7.3.3 gives us:

Corollary 7.3.7.
(1) A C X is clopen.

(i1) 7|4 is proper.
(iii) For anyx € G"* the set 7~ (x)(F)NA is the maximal compact subgroup

of T~ (x)(F).
7.4. Proof of Theorem 7.0.1. It is enough to show that
T((Jwx))la) = £°lwel.

For this it is enough to show that

Tu((lwrl)|a) = °,
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almost everywhere. For this it is enough to show that for every z € G™*, we

have
/ |wrlr1@)| = ().
AnT—1(z)

Fix x € G"*. Recall that K, denotes the maximal compact subgroup of
G,. By Lemma 7.2.2 we can choose an isomorphism ~ : G, ~ 771(x). The
group v(K,) is the maximal compact subgroup of 77!(z). So, by Corollary
7.3.7(iii), v(K,) = AN 77! (x). Thus we have

[ el = [ e
AnT—1(z) K,

By Lemma 7.1.5, v*(wr|;-1(z)) = wg,. Thus we obtain

| del = [ leal = ).
K, Ky

8. REGULARITY OF wx

Recall that X = GxcY,with Y := (TxT)//W, where W acts diagonally
and that p: T x T — Y is the quotient map.
In this section we prove the following theorem.

Theorem 8.0.1. wx is a reqular Q-top differential form on the smooth locus
of X.

Before we begin the proof we give a short description of the idea. Recall
that by Lemma 6.2.3, G’ = G x¢ T is absolutely reduced, locally complete
intersection, and irreducible. The idea of the proof is as follows: we pullback
wx under .

v:G'xT=X—X,
and obtain a form that can be written as a product wg' X wp. The form

wg has an explicit description, see Notation 8.0.6 below. We deduce the
regularity of wx from the regularity of wg: which we prove in §8.1 below.

Notation 8.0.2. For a Cartezian square
7y, — VAL
s O l&g
Ly —2 Loy

and a relative (rational Q-)top form ws, on Zyy w.r.t. dy we denote by
v (ws,) its pullback to a relative (rational Q-)top form on Zy; w.r.t. d;.
As the bundle of 61-relative top-differential forms on Zy, is the pullback of
the bundle of do-relative top-differential forms on Zyo w.r.t. v1, one can also
denote the form v (ws,) by Vi (ws,), as we did in Definition 7.1.4.

Notation 8.0.3. Define the following algebraic varieties.
(i) X755 i= G X gres T" X T

(i) X! := G x¢c (T x T)/
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Lemma 8.0.4. Let u: T xT — Y be the quotient map. Then

(1) w is finite.
(i3) pi|erxT)r is €Etale.

Proof. Ttems (i) follows from the fact that the action of W on T x T is
factorizable, see Proposition 5.0.2. Item (ii) follows from Lemmas 5.0.4 and
5.0.3. 0

Corollary 8.0.5.
(1) v is finite.
(ii) v|gs is €tale.
(i4i) X C X is big in X.
Proof. Ttems (i) and (ii) follow from the previous lemma. Item (iii) follows

from the fact that Y/ C Y is big (Corollary 6.2.10) and the fact that p (and
hence o) are flat (Lemma 6.1.3). O

As we will see below, this lemma implies that in order to prove Theo-
rem 8.0.1 it is enough to show that v*(wx) is a regular Q-top differential

form on the smooth locus of X.

Notation 8.0.6. Recall that ¢ : G' — G 1is the projection on the first
factor. Let

war =Y (wg - AT2)
Lemma 8.0.7. v*(wx) = wg' K wr.

Proof. Recall that prg: : X =G xT — G is the projection. Denote
X" 1= G xX@rss Y. Consider the following diagram

Xrss —— X yr T « T T
(8.1) pr’“G,J 1 \Tr 9 \WT 3 lpt{ 4 ‘¢T
$(Gryrss

where (G')"** := G"* X grss T7, the maps prg,, 77, 7", 7, D", ", ", pi® are
obtained by restriction of the maps ptq, 7,7, v, p, ¢, ¢, prr, and ¢, - and
¢(gryrss are the projections to the point. The squares 2,4 are Cartesian by
definition, the square 3 is Cartesian by Lemma 7.1.3, and the square 1 is
Cartesian since it is the base change of square 3 along square 2. Also, the

outside square
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P

XTSS T
(8.2) pl \W

(G/)rss — pt

(b(G/)Tss
is Cartesian by definition. Consider wy as a relative rational Q-differential
form with respect to ¢r. Denote wpy.,, = qb’(kG,)rss(wT) and consider it as a

relative rational Q-top differential form on X w.r.t. to prg:.

For each vertical arrow in the above diagram we have a relative form.
These forms are compatible with all the squares possibly except (a-priori)
square 1. We would like to show that it is compatible with square 1 as well.
Explicitly, we have:

We would like to deduce that (¢"**)"(w;) = wpr,. It is enough to check this
equality after extension of scalars to F. For this it is enough to show that

for any x € (G")"**(F') we have

(W) (W)l per, )1 @) = Wper, | er, )2 (@)-
This follows from (8.3)-(8.6). We obtained:
(") (wr) = Wy, -
Now we have
V¥ (wx) = v (wa- A7) xw,) = ¢ (we- A% (w,) = we kW, = werXw
U
Lemma 8.0.8. wg is reqular on the smooth locus of G'.

We postpone the proof of this lemma to §8.1. Let us now deduce Theo-
rem 8.0.1.

Proof of Theorem 8.0.1. By Lemma 8.0.8, wg is regular on the smooth locus

of G'. Therefore, by Lemma 8.0.7, v*(wx) is regular on the smooth locus

of X. Therefore, by Corollary 8.0.5(ii), (wx)l, s, is regular on the smooth

locus of v(X/). By Corollary 8.0.5(iiii), the open set v(X7) in X is big.

Therefore wx is regular on the smooth locus of X, as required. O
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8.1. Proof of Lemma 8.0.8. We will use the following ad-hoc definition.

Definition 8.1.1. Let ¢ : C — D be a finite map of algebraic varieties
defined over F, with D being smooth. Let f be a rational Q-function on
D. We say that the pair (¢, f) is good, if for any open set U C D and
any (regular) top-differential form w on U, the rational Q-form ¢*(f - w) is
regular on the smooth locus of $~1(U).

Lemma 8.1.2. Let ¢ : L — D be a finite map of algebraic varieties defined
over F', with D being smooth. Let f be a rational Q-function on D.

(1) If there is an invertible form w on D s.t. the rational Q-form ¢*(f - w)
is reqular on D then (¢, f) is good.
(ii) The property of being good is local on D in the smooth topology. I.e.
(a) If (¢, f) is good and v : E — D is smooth then (v*(¢),v*(f)) is
good.
(b) If v : E — D is smooth and surjective and (v*(¢),v*(f)) is good
then (¢, f) is good.
(i11) If U C L is big and (¢|u, f) is good then (¢, f) is good.

Proof. (i, iii) are obvious. Let us prove (ii).

Case 1. 7: [[U; — D is a Zariski cover of an open subset of D.
This case is obvious.

Case 2. v is an étale map, and D admits an invertible top differential form.
In this case (iia) follows from (i), and (iib) is trivial.

Case 3. 7 is an étale map.
Follows from the two previous cases.

Case 4. v can be decomposed as U = D x A" & D where 7 is an open
embedding and pr is the projection, and D admits an invertible top
differential form.

In this case (iia) follows from (i), and (iib) is trivial.

Case 5. v can be decomposed as U - D x A" & D where 7 is an open

embedding and pr is the projection.
Follows from the previous case and Case 1.

Case 6. the relative dimension of v is constant.

By [Sta25, Lemma 054L], we can find a commutative diagram

E—" >D

ET’DXATL,

Where pr is the projection, ¢ is surjective étale map and ~; is étale.
e Proof of (iia)
If (¢, f) is good then, by Case 5 so is (pr*(¢), pr*(f)). Thus,
by Case 5 so is
(yipr™ (@), vipr*(f)) = (€77 (), ™" (f))-
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Therefore, by Case 3(iib) the pair (v*(¢),v*(f)) is good.
e Proof of (iib)
If (v*(¢),v*(f)) is good then, by Case 3(iia) so is
(£(9), e (f)) = (yipr(0), vipr™ (f))-
Thus, by Case 3 so is (pr*(®)|m~i, Pr*(f)im~, ). Therefore, by
Case 5, the pair (¢, f) is good.
Case 7. General case.
Follows immediately from the previous case.

Notation 8.1.3.
(1) Let (G =y YG") C G'.
(2) Let " : (G") — G" be the restriction of 1.
Lemma 4.2.2(2) gives us:

Corollary 8.1.4. The pair (g, A(_Jl/Q) is good.

Proof of Lemma 8.0.8. We have to show that (¢, Ag?) is good.
Consider the Cartesian square

(8.7) (G)——T

"
G plgr C
By Lemmas 8.1.2(ii) and 6.1.6, the last corollary (Corollary 8.1.4) implies
that (¢", Ag|g?) is good. Therefore (¢|(g)r, Ag?) is good.
Since ¢ is finite and flat (see Proposition 5.0.2 and Lemma 6.1.2), so
is 1. So Corollary 6.1.7 implies that (G’)" is big in G’. Therefore, by
1

Lemma 8.1.2(iil) we obtain that (¢, Ag?) is good, as required. O

9. REGULARITY AND INVERTABILITY OF THE FORM w%

In this section we construct the rational form w$% on X and prove the

following theorem.
Theorem 9.0.1. W% is reqular and invertible over the smooth locus of X.

We also prove regularity and invertability of some other forms (see Lemma 9.0.3
and Corollary 9.0.6 below).
Notation 9.0.2.
(1) Let wryr = wr K wy
(2) Note that wrxt is W invariant, since for any w € W we have
w* (wrxt) = Sign(w)2waT = WTXT-
So, by Lemma 5.0.5(ii) it descends to a top form on Y. Denote this

form by wy and interpret is as a rational top form on Y.
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(3) Wg = wg Mg wy
(4) Let Y*™ be the smooth locus of Y and X" := G" xc Y*™.

The following lemma is obvious.
Lemma 9.0.3. wy is reqular and invertible over the smooth locus of Y.
Lemma 9.0.4. X° is smooth, and is big in X.

Proof. The map X° — Y*™ is a base change of a smooth map, and hence is
smooth. Thus XY is smooth. Since ¢ : Y — C is flat (see §6), we have

dimX = dim G 4+ dimY — dim C,
and
dim(G\NG") xc Y =dim(G N G") +dimY — dim C.
As X is irreducible (see §6) and G” is big in G (see §6), this implies that
G" xc Y is big in X. By 8§ Y*®™ is big in Y. Similarly to the above
argument, we obtain that G x¢ Y*™ is big in X. Thus, X° is big in X. O

Proof of Theorem 9.0.1. By Lemma 9.0.4 it is enough to show that w$% is
regular and invertible on X°. Consider the diagram:

CxC
(p\GT)X(th X
G" x Y™ C
(m)T - T
X0 1

where d is the ratio map w.r.t. the group structure on C and 1 is the neutral
element w.r.t. this structure.

It is easy to see that w%|xo is, up to a sign, the Gelfand-Leray form w.r.t.
the smooth map d o ((p|gr) X (q|lys=)) and the forms wg|gr X wy|ysm and
we. Hence it is regular and invertible. U

Finally, we introduce some more forms and prove their regularity and

integrability.
Notation 9.0.5. Denote

o wy = wg X, w% = wa My we Xy wy, considered as a rational top

form on Y.

® Wiex.c = wag Wy, wa considered as a rational top form on G xc G.
Note that here we use that the relevant maps are generically smooth, as
guaranteed by Lemma 6.5.1.

Theorem 9.0.1 gives us:

Corollary 9.0.6.

(i) The form w~y is invertible on the reqular locus of Y.

(i) The form wgxea 1S invertible on the regular locus of G x¢c G.
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Proof.

(i) Let Y’ be the smooth locus of p’. The above shows that Y" :=
(p)~1(Y*™)N Y’ is big in Y also, by Theorem 9.0.1, w¥ is invertible.
By definition so is wg. Therefore wy |y~ is invertible. This implies
the assertion.

(ii) The proof is similar to the proof of previous item.

10. EXPLICIT GEOMETRIC BOUNDS ON THE CHARACTER

10.1. Proof of Theorem H’. Let m,a”, f be as in Theorem 3.0.2. Let
f" =1z, and h = |m|. By Proposition 7.3.3, 7|supp(s7) is proper.
By Theorem 4.0.1 there exists vy € C°°(G) such that

(101) Q(|m|) — f)/O|GTSS (pTS.S)* (p* (|m|[LG GTSS)) .
piclorss
Let k,C be s.t. f < CRE. Let g € C®(G). By Theorem 3.0.2 we have:

(Xpr gic) < (f - Qml), (lg] - pe)lr) (CRY - Q(Iml), (lg] - na)lgrss)-
By (10.1) we obtain

7SS

rssys [ P (|m|MG|Grss)
(X 911G) < (CRF - qolgrss (57™) ( brlecle)) (o) ol

By Theorem 7.0.1 we obtain

TSS(’m|MG|GT‘SS> T*<1A ° |wx|)|GT‘.ss
(gl - pe)lars) =

« [ Px
(Xp: g1ic) < (CR" - yolar: () (
r /,I/C’CT‘SS <|U.)GD ’Grss

—(ORF - op (p*(!mm(;)) Tl - jwx]) 9] - 1)

e wel
(- 2] o)
o ((p<(Im|pc w
= <0Rk " YoP ( (|/~L | )> |wG‘X ) ’g| ’ :uG>
¢ Iz
Let F = ﬁ 2% |- By Theorems 8.0.1 and 9.0.1, and Corollary 6.2.13,
X

the function F is continuous. Let ' € C*°(X) be a real valued function s.t.
F'>F. Set v =7*(70C)F'.
We obtain:

. [(p(Im To(lg - F - |
(Xp: ghic) < (CR* - ~op (p ( ‘MG)) Qa7 X|)>|9| ey
Ho Ha
. [(p(Im To(lg - F' |0l
Ho Ha

<T*(Iw%IT*(VOC)PJ*(ls))p* (p*(l’;gc)) R, !g!ua>

27e

(BRI, ()

%]
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as required.

10.2. Base change for integration. In order to pass from Theorem H’ to
the other versions of Theorem H we will need the following:

Lemma 10.2.1. Let
Z1 L) Z2

Lo b

ZgT>Z4

be a Cartesian square of algebraic varieties. Assume that all the maps in this
diagram are generically smooth. Let w; for 1 = 2,3,4 be invertible Q-forms
on the smooth loci of Z; and let wy = wy K, ws. Let Z; = Z;(F). Let
hs € C*®(Z3) s.t. O|supp(ns) 5 proper. Then,

(1)

v (Mhs : !w?,!)) _ 0. ()" (ha)-wn])
|wa |
(2) For every hy € C*(Z3) s.t. Y|supp(hs) 95 Proper we have:

0s(hs - |ws|) velho - Jwa|) — (708")u(he Kz, hg - |wi])

|wa jwa |wa

Note that these are equalities of functions that are defined only almost ev-
erywhere and, in particular, are valid also only almost everywhere.

Proof.

Case 1. The varieties and maps in the diagram are smooth.
This is a straightforward computation.

Case 2. General case.
Follows from the previous case.

10.3. Proof of Theorem H”. Lemma 10.2.1(1) gives us:

Corollary 10.3.1. There exists A € R s.t. for any f € C®(Y) with p|supp(s)
being proper, we have

(0" () k) ' (m(f- |wY|))

%€ He

Proof. We take \ := <@> (“—C> and use Lemma 10.2.1(1), and the fact

BG lwc]
that X and Y are reduced and the maps in the following diagram are gener-

ically smooth.
X 2> G
Y 25 C
See Lemma 6.3.1.
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Proof of Theorem H”. Let f', h,k as in Theorem H’. ? By Theorem H’ there
exists 79 € C*(X) s.t.

(ol < (LRI (2],

Ha
By the assumptions on f’ the map 7|supp(o+(fy) is proper. Let v, € C=(G)
be defined by

= max xZ).
n(9) zeSupp(e* (f/))nr—1(g) (@)
We obtain:
T (Jwk o 1) . [ p(hpc
(xp,guc>§<% (loxlo( ))p < ( ))R’“,Igluc>
Ha %]

By Corollary 10.3.1 there is A € R s.t.
(0" () - |wkl) _ A (m(f’ : IwYI))

Ha e
Set v = )"Vlﬁ_g\' We obtain:

(Xp» ghc) < <71>\p* (M> P’ (%) R*, Igluc>

2%}

' (hlwg] L
= <%/\p* (—W*(f |WY|)> P’ (p—( |wG|'°"G)) R, Igluc>
e Hc

(o (Bl g,

He 226;

as required.

OJ
10.4. Proof of Theorem H. Let f’,h,v be as in Theorem H’. Let g =

~vo*(f') and set
2
e:= ('U—GM) h™¥e g.
wa| pe
By Theorem H’ it is enough to show that

T (|03 .
C*<|WT|€) _ (|WX’g)p* (p (h,uG)) L
Ha [ 226;

We have
(10.2)
2
T*(IW%Ig)p* (m(We)) e (Iwcl) (T*(!wgclg))p* (p*(!wGlh))
e I lwa| \ ue wa| |wel

2We will also use w} from Theorem H’, but this is the fixed wg that we defined in

Notation 9.0.2. Formally speaking, if we just use the formulation of Theorem H’ and not
0

its proof, we can not assume that the form there is the same wyx. However, changing v
appropriately, we can assume it WLOG.
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Consider the Cartesian square:

GxcG 25, G

bl

G 2 scC

By Lemma 6.3.1 and Lemma 6.2.15 all the objects in this diagram are vari-
eties and all the maps are generically smooth. Thus by Lemma 10.2.1(1) we
have:

(10.3)  p° <1M) _ (r). (e Rug wal(prh)*(h))

|wol wel

Consider the Cartesian square:

Y —2 X
L f
GxcG — G

By Lemma 6.3.1, Lemma 6.2.14. and Lemma 6.2.15 all the objects in this
diagram are varieties and all the maps are generically smooth. Thus by
Lemma 10.2.1(2) we have:

(0.4) Teklg) (pré). (lwe Mue wal(pra)' (7)) _
|WG| |CUG|
Gol(|(wa My we )Xy, wk| (pts)* (h)Xeg) |

lwa|

Finally:

T (| . [ p«(h 10.2
{ x!g)p (p( /«:))H(;( )

|wg| (Iwc!> (n wkl9) ) < (pr)«(|lwg Ko wGI(Pté)*<h))) o 109

IwGI wel

(|wcr)2 Gl Mug we)Rug i (pré) (WMag)
|we| wel ¢

= Ce(lwxle),

as required.
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11. BOUNDS ON CHARACTERS IN TERMS OF THE CHEVALLEY MAP -
Proor orF THEOREM G

Let f’,v and k be as in Theorem H” and let A’ be the function h from
Theorem H”.% Set f” := W By Proposition I there is a resolution of

singularities 0 : Y — Y s.t. 6*(wy) extends to a regular form wg on Y. We

obtain: f” = w (almost everywhere). Note that by Lemma 6.3.1
the map 7o is generically smooth. Thus by Proposition J this implies that
f" € L}T* for some € > 0.

loc

Let M = max(y|y). Let Ry, Re: G — NU {oo} the functions given by
Ri(r) = max(1l, — minval(x;;))
and
Ro(z) = max(1,val(det(z)),val(A(z))).
Note that

R < RiRos.

Let Rz € C®(C"*) st. p*(Rs) = (Ro)k. Let N := max(((R1)*)|y). By
|GH, Theorem 1.3] R3 € L;5>°(C') and thus (by Holder’s inequality) f"Rs €
Le. Set

loc

fo= N el

Ha
and

h = h, -1 —1(p(U))-

p

Using Theorem H” we obtain:

3We will also use wy from Theorem H’. However it is just the form wy defined in
Notation 9.0.2. The proof of Theorem G will work with any other form satisfying the
assertion of Theorem H”.
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| (Xps gtic)| < <7p <7T*<|W|f)p*(’w(;|h)) RE, !g!uc>
| %e] | %e]
(lwalh
— <7p* (f”M) RE \g|uG>
| 2%¢}
_ <7p* ('OJG’ //p*(,uGh/)> Rk |g|,uG>
Ha He ’
N h
< <p ( ’wG| //p (NG )) RkalgluG>
,UG 226,
w N h'
MG [ 20e4
M h'
< <p <M|WG| P (e )R:s) 7R]1€‘9‘NG>
e 2o
«(puah'
Ha He
=<p (f ( MG))MC% |g|>,
226

as required.

12. PROOF OF THE MAIN RESULTS - THEOREMS C AND D

Proposition 12.0.1. Let Z be an F-analytic variety. Let £ € C~>°(Z). Let
fe LY Z). Assume that for any smooth measure p € C>(Z, D) we have

(12.1)

(€ p) < {f;1nl)-

Then there exists a function g € L'(X) representing €.

Proof. Choose an invertible smooth measure on Z and identify C2°(Z, D) =
C*(Z) and the space of generalized functions with the space of distributions.

Step 1.

Step 2.

Step 3.

Step 4.

¢ (as a functional on C2°(Z)) can be continuously extended to C.(Z)
(and thus can be considered as a Radon measure on Z).

This follows from the fact that &, as a functional on C.(Z), is contin-
uous w.r.t. the induced topology from C2°(Z), which follows from
the inequality (12.1).

For any Borel set A C Z we have [£(A4)| < [, fu.

This follows from the inequality (12.1).

¢ is an absolutely continuous measure w.r.t. the Lebesgue measure.
Follows from the previous step.

End of the proof.

The assertion follows from the previous item and the Radon-Nikodym
theorem.

U
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Lemma 12.0.2. Let v : Zy — Zy be a morphism of F-analytic varieties.
Let u; be nowhere vanishing smooth measures on Z;. Assume that for any

real valued non-negative function f € C*(Z;) we have % € L=>(Z,).

Then, for any e > 0 and any real valued non-negative g € L'7(Zy) we have
7'(9) € Lige(Z1)-

Proof. For an F-analytic variety Z, define Mes>o(Z) to be the collection
of real valued non-negative measurable functions. If Z is equipped with a
nowhere vanishing smooth measure 1 we have a natural pairing

Bz : Messo(Z) x Mes>o(Z) = RU {oc0}
given by integration:
Bz (6.0) = [ évn
z

Notice that by Holder’s inequality, for any € > 0, this pairing is finite when-
ever 1 € Ls®(Z) and ¢ € Lit°(Z).

loc
Furthermore, to show that h € Mes>o(Z) is in L}, (Z) it is enough to
show that B(1, h) < oo for any real valued non-negative ¢» € C°(Z2).
The fact that y*(g) € L},.(Z;) follows now from:

loc

%(f/uu)?g) .

Vfe CSO(ZQ we have B(Zl,m)(fv 7*(9)) = B(Z2,u2) ( Lis

O

Proof of Theorem C. Theorem 1.5.3 and Conjecture B imply that p, maps
every C'° measure to a measure with L<* density. By Lemma 12.0.2 this
implies that for any € > 0 the operation p* maps L'™¢(C') function to an
L}, .(G) function.

Let U C G be an open compact subset, and let ¢, f, and h be as in
Theorem G. We get that ’% € L=°(C). Thus, by Holder’s inequality
(12.2) f@ € L' 2 (C).

c

We obtain b’ := p*(f%) € L} .(G). By Theorem G, for any g € C*=(U)

loc
we have:

[(Xps g1} < (W e, |gl) -

So by Proposition 12.0.1 above we obtain (x,)|y € L'(U) and we are done.
U

Proof of Proposition D. The proof is the same as the proof of Theorem C
when we replace Theorem 1.5.3 by Theorem 1.5.4 and Conjecture B by the
assumption char(F) > 7. O

Remark 12.0.3. Note that these proofs also prove Theorems E and FE’,
which, using Proposition 12.0.1 and [AGKSc, Theorem A’|, implies Theo-

rem F.
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13. ALTERNATIVE VERSIONS OF THEOREM C

Denote:

e g - the Lie algebra of G

e ¢ - the affine space of degree n monic polynomials.

® py : g — ¢ - the Chevalley map.

°g = gl =gl X ... X gl, considered as an algebraic variety over

Vv
i times

F,.

One can replace the assumption of Conjecture B in Theorem C (and the
versions of Theorems E and F) with any of the following more precise con-
ditions:
(1) For any i € N, the variety g, admits a strong resolution of singulari-
ties.
(2) For any i € N, the defining ideal of g  inside g has monomial
principalization (see [AGKSD, Definition 12.0.1]).
(3) (a) The defining ideal of the nilpotent cone inside gl,, has monomial
principalization, and
(b) For any i € N, the variety, g, has a resolution of singularities
(not necessarily a strong one).
(4) T is geometrically integrable.
(5) pis almost analytically FRS (see [AGKSb, Definition 1.3.5(3)]).

Indeed,

e The fact that one can replace Conjecture B with condition (1) follows
from the actual formulation of [AGKSb, Theorem D].

e The fact that one can replace Conjecture B with any of the conditions
(2,3) follows from the alternative formulations of [AGKSb, Theorem
D] given in [AGKSb, §12].

e The fact that one can replace Conjecture B with condition (4) follows
from Theorems H and J.

e The fact that one can replace Conjecture B with condition (5) follows
from the proofs of Theorem C and Proposition D.

Remark 13.0.1.

e Note that unlike conditions (1-3), condition (4) is not a special case of
Congecture B (or its version). However, given an explicit resolution
of singularities of T, it should be easy to check whether condition (4)
holds.

e In conditions (1-3) one can replace the requirement for any i, to the
value i = 2"**3. This follows from Proposition A.0.8 and from the
proof of Theorem C. Indeed, if in the proof of Theorem G we use
Proposition A.0.8 instead of Proposition J then we get that in Theo-

-1
rem G one can take € = <1 +((n—1)n+n*— n)2"2*”> . Thus in

the proof of Theorem C' it is enough to require that p, maps any C°
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measure to a measure with density in L (C), where

1 2
N = — =<2
1—1+% €

in order to get (12.2). Now, we need to use Lemma 12.0.2 for .
It is easy to see that in this case we can replace (in Lemma 12.0.2)
L= with LY. So, we need to show that our weaker assumption still
implies the assertion of Theorem 1.5.3 with L<> replaced by L".
This follows from [AGKSb, Theorem D] and [AGKSb, §12].

APPENDIX A. INTEGRABILITY OF PUSHFORWARD MEASURES IN
POSITIVE CHARACTERISTIC

by Itay Glazer and Yotam I. Hendel

Let F' be a non-Archimedean local field of arbitrary characteristic, with ring
of integers O and absolute value |- |, and let X be an F-analytic manifold
of dimension n. Let (U, C X,v, : Uy, = F™)qer be an atlas, and fix a Haar
measure ppn on F" with upn(O%) = 1. We consider the following spaces
(whose definition is independent of the choice of atlas).

(1) Let C*(X) be the space of smooth (i.e. locally constant) complex-
valued functions on X, and let C2°(X) be the subspace of smooth
compactly supported functions.

(2) Let M>(X) be the space of smooth measures on X, i.e. measures
such that each (14).(i|v,) has a locally constant density with re-
spect to the Haar measure on F™. Let M2°(X) be the subspace of
compactly supported smooth measures.

(3) For 1 < g < o0, let M, ,(X) be the space of compactly supported
Radon measures g on X such that for every a € Z the measure
(Va)«(pt|u, ) is absolutely continuous, and with density in LI(F™).

Given p € M. ;1(X), we define the integrability exponent
6*(”) ‘= sup {6 Z 0: 1% € Mc,l—l—e(X)} .

Definition A.0.1. Let ) : X — Y be an F-analytic map between F'-analytic
manifolds X,Y. We say that ¢ is generically submersive if there exists an
open dense subset U in X such that the differential of 1 at each x € U is
surjective.

If ¢ is generically submersive, then ¢, € M. ;(Y) whenever pp € M. ;(X).
In particular, it makes sense to consider €, (1, p). This leads us to define the
following invariant.

Definition A.0.2. Let ¢ : X — Y be a generically submersive F-analytic
map between F-analytic varieties. For each xo € X, we define the integra-
bility exponent of ¥ at xy by

(A.1) €x(V;x0) := sup  inf )e*(w*u),

Uz HEMX (U
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where the supremum is taken over all open neighborhoods U of xy. We also
set

(A.2) Q)= _inf e = inf e (v5a).

HEM(X

The invariant €,(1¢; xo) was introduced and explored in [GH21, GHS] in
the characteristic zero case®, where it was shown that e, (1; 7o) is a positive
number that can be bounded from below effectively. This was used in [GGH]
to study integrability of Harish-Chandra characters of representations of
reductive groups over local fields of characteristic zero.

The aim of this appendix is to establish a similar bound on €,(v; zy) over
local fields of positive characteristic. We start our discussion by noting that
when char(F') # 0, non-constant analytic maps f : ™ — F need not be
generically submersive.

Example A.0.3. Let p be a prime and let f(x) = 2P. Thend,f = paP~' =0
for every x € F,[[t]], so f : Fpl[t]] = F,[[t]] is not generically submersive.
Moreover, if we take = pg ), then f.pr, [ i supported on the set of p-th
powers {d ic a;it? : a; € F,} C Fp[[t]], and thus foum, g is not absolutely
continuous with respect to pup, (-

We recall the following notion from [GH].

Definition A.0.4 ([GH, Definition 1.1]). Let X be an F-analytic manifold,
let xg € X and let f1,...,f, : X — F be F-analytic functions generating a
non-zero ideal J (in the ring of F-analytic functions on X ). We define the
F-analytic log-canonical threshold of J at xy by

letp(J; x0) = sup {s >0:3U 3¢ s.t. Yue MZ(U), 121121 |fi(2)| @ p(z) < oo} ,
x 1<i<r

where U in the definition above is an open neighborhood of xg.

Definition A.0.5. Given a generically submersive map v : X — Y between
F-analytic manifolds, we write Jy for the Jacobian ideal sheaf of 1. Locally,
if X C F" and Y C F™ are open subsets, Ty is the ideal in the algebra
of analytic functions on X generated by the m x m-minors of dv. This
construction is invariant under analytic coordinate changes and defines an
ideal sheaf on X .

The following are the main results of this appendix.

Theorem A.0.6. Let ¢ : X — Y be an F-analytic map between F'-analytic
manifolds. Suppose that i is generically submersive. Then for every xg € X,
there exists €,, > 0 such that

(5 20) > letp(Tp; o) > €xp-

Given a generically smooth morphism ¢ : X — Y of smooth algebraic F-
varieties, we get an F-analytic map ¢p : X (F) — Y (F'), which is generically
submersive. In this setting, we have a uniform lower bound on €, (pr; o).

4These works also treat the integrability exponent over Archimedean local fields.
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Theorem A.0.7. Let p: X — Y be a generically smooth morphism between
smooth algebraic F'-varieties. Then there exists € > 0 depending only on the
complezity class® of ¢ : X —Y such that

ex(pr) > €.

The following proposition gives a concrete lower bound on €,(pr) using
the data defining ¢.

Proposition A.0.8. Let X, Y and ¢ be as in Theorem A.0.7. Suppose that:

(1) X' C AT™ s a closed (possibly singular) subvariety of dimension
ny cut by polynomials g1 = ... = g,, = 0 of degree at most dy, and
X C X' an open affine subvariety.

(2) Y C A%T™ s a closed subvariety, admitting an étale map w:Y —
A%? where Ty, ..., m,, are polynomials of degree at most dy (locally it
is the case, since Y is smooth).

(3) We have p = ®|x, where ® : AT — A7 s q polynomial map
of degree d.

Then:
1
ddg—l)ng—F(dl—l)ml)dTl

6*((PF) Z ((

Theorems A.0.6 and A.0.7 work over all local fields, where the new as-
pect is the proof for local fields of positive characteristic. The inequality
ex(V;20) > letp(Ty; xo) follows similarly to [GHS, Theorem 1.1]. The in-
equality letp(Jy; ko) > €, follows from [GH], where new methods are re-
quired to deal with local fields of positive characteristic. These results com-
plement [GHS, Theorem 1.1], which was proven in the characteristic zero
case.

Finally, as the next example shows, we note that in the setting of Theorem
A.0.6, €,(1) might not be strictly positive without an additional assumption.

Example A.0.9. Fiz a prime p and set X =Y = F =F,((t)). For k> 1,
setdy = p*+1 and Uy == {x € F : |a:—t‘k‘F < 1}. Then the subsets
{U},2, are disjoint. Define 1 : X —Y by

A ifv ¢ UZil Uk,
vl = {(x — M ifr e Uy

Then 1 is generically submersive, and by Proposition A.1.2 we have e,(Y|y, ) =

_dkl—l = p~*. In particular, () = 0.

Acknowledgement. 1.G. was supported by ISF grant 3422/24.

SFor a precise definition of complexity, we refer to [GH19, Definition 7.7].
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A.1. Proof of the main theorems.

Lemma A.1.1. Let ¢ : X — Y be a submersion of F-analytic manifolds.
Then

6*(¢*;“) > €x(p)
for every pn € M. 1(X), with equality if ¢ is a local diffeomorphism.

Proof. Tt is clear that e,(1.u) = e,.(p) if ¢ is a local diffeomorphism. Since
1 is compactly supported, by working locally using the local submersion
theorem (see e.g. [Ser92, III, p.85]), we may assume that ¢ : F"* — F™
is the projection to the last m coordinates, with n > m. For simplicity
write * = (21, ..., Tp-m), ¥ = (Tn—m+1,---,%n), S0 that ¥(x,y) = y. Write
= f(z,y)urn and Yo = h(y)ppn. Let B C F™"™ be a ball which contains
the projection of supp(i) to the last n — m coordinates F"~™. Let C :=
ppn-m(B). Then by Jensen’s inequality, for every s > 0, we have:

/m hy)™dy = /m (/m f(z, y)dm) o dy

1 1+s
= MntHs(—/fﬂf,yd:B) dy
[ B (s [ sl
<co [ [ gy =c [ et
m n—m FTL
This concludes the proof. O

We next reduce Theorem A.0.6 to Proposition A.1.2 below. Recall that a
power series f(z1,...,%,) = ZIEZ’;O arr’ € F(xy,...,xz,) is called strictly

convergent if ay \I|—> 0 (see [GH, Definition 2.1(2)]).
—00

Proposition A.1.2. Let ¢ : X — F™ be a generically submersive F'-

analytic map, where X C O is an open compact neighborhood of 0, and

such that ¥ = (Y1, ...,¢¥m), where ; : X — F is given by strictly conver-

gent power series centered at 0. Then

€(1¥;0) > letp(Ty; 0) > 0,
with equality if m = n.

Proposition A.1.2 implies Theorem A.0.6. Let ¢b : X — Y be a generically
submersive map. Note that if ¢; : X’ — U and ¢ : V — Y’ are

diffeomorphisms, for open neighborhoods xy € U C X and ¢(xy) € V C Y,
then

e(1h;x0) = €.(da 0¥ 0 dr; ¢y ' (20)).
Hence, by analytic change of coordinates, we may assume that z, = 0,
X C O%F is an open compact neighborhood of 0, and that ¥ = F™, with
n > m. Since 1 is analytic near 0, by shrinking X, we may assume that
v = (¢¥1,...,%n), where each 1, : X C F™ — F is given by a converging

power series centered at 0. Let wpr be a uniformizer of F'. By altering X as
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follows, we may assume that each 1; converges on OF%, and therefore each 1);
is strictly convergent (see e.g. [BGR84, Section 5.1.4, Proposition 1]). First,
we further shrink X such that w;kX C O%. Then, we may apply a change
of coordinates of the form (zy,...,x,) — (@hxy,...,@he,) for k € N, and
replace ¢ with J(xl, oy xy) = (L ,wﬁxn). Thus, we have reduced
Theorem A.0.6 precisely to the setting of Proposition A.1.2. O

Lemma A.1.3. In the setting of Proposition A.1.2, with m = n, we have:

€x(1;0) = letp(Jacy (1); 0),
where Jac,(¢) := det(d,(¢)) is the Jacobian determinant at x.

Proof. Since v is generically submersive, there is an open dense subset U C
X, where Jac,(¢) # 0, for every x € U. By the inverse mapping theorem
[Ser92; p. 73|, ¥|y : U — F™ is a local diffeomorphism. By [Lip84, Theorem
1], since 1); is strictly convergent for 1 < ¢ < m, there exists L € N such that
#{v ' (¢(z))} < L for every x € U. From here, the proof of the lemma
is identical to the proof of [GHS, Proposition 4.1]. In particular, for every

pE Meoo(X), 1f¢ 1= g(y) - prn, we get

(A.3) / |Jacx )_/Yg(y)1+sdy§Ls/Xmu(x)- O

We can now prove Proposition A.1.2 and deduce Theorem A.0.6.

Proof of Proposition A.1.2. Let ¢ : X — F™ be as in Proposition A.1.2.
The inequality lctp(Jy;0) > 0 follows from [GH, Theorem 1.2]. It is left to
prove that €,(1;0) > lctp(Ty: 0).

Since v is generically submersive, U := {z € X : rk(d,¥) = m} is open
and dense in X. Denote by A,, the set of subsets I = {iy,...,0,} of
{1,...,n}. For each I € A,, let M; be the corresponding m X m-minor
of dyyp. Fix s < letp(Jy;0). By Definition A.0.4, there exists an open
compact subset 0 € U’ C X such that

(A.4) Vu' e MU, min | M (2)|7° 1 () < oo.

XIE m

For each I € A,,, set
U = {:v ceU'NnU: Jnax |\Mp(z)|p = ’Mf(m)‘F} :
'cAm

We may refine the cover (J;., U; into a disjoint cover (J;c, V7, where
Vi C Uy is a measurable subset. Set J = {j1,....,jn—m} := {1,...,n}\J
and consider the map ¢y : V; — F™ given by ¢;(z) = (¢¥(x), zj,, ..., %), _,.)-

Let p € MZ(U') and denote py := 1y, - p. Since ;e Vi is of full
measure in U’, we can write g =Y, ;. We can further write:

Vupt = g(y) - prrm, Yupir = g1(y) - pem and (1), pr = gr(2) - ppn
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where
(A.5) grz) = > Mac,(n)z' = > IMi(2)[5
zep7!(2) zep; ! (2)

It is enough to show that [, ¢(y)'"*urm < oo for each 0 < s < lctp(Ty;0)
as above.

By Jensen’s inequality, there exists C}(s) > 0 such that:
(A.6)

[ st an= (Igmm(y))l <03 [ at) .

Let g : F™ — F™ be the projection to the first m coordinates. Since |y, =
q o Y7, we have:

gf(y):/ i 1Y, Zmaty -y 2n)d2.

Using Jensen’s inequality as in the proof of Lemma A.1.1, there exists
C5(s) > 0 (depending on ¢ (U")) such that

(A7) / i)y < Ol / i)'

Taking L € N such that # {wl (Yr(z } < L for every x € V; and every I,
and using (A.5), similarly to (A.3), we get:
(A.8)

/ g1(2)*°dz < LS// | M (2)| " ur < L* . Irg}ln [ M5 ()] 1 < oo

Combining (A.6),(A.7) and (A.8), we get
/ g9(y) oy < Ci(s)Cy(s Z/ 2)5dz

< Cl(S)OQ(S)LS(n) min [|M;(z)|" ] p<oco. O

m U’ Ie A,

Proof of Theorem A.0.7. By [GH, Theorem 1.3], there exists ¢ > 0 depend-
ing only on ¢, such that for every xy € X (F),

let p(Tpp; o) > €.
By Theorem A.0.6, we get that e,(pp) > € > 0. O
We finish with a proof of Proposition A.0.8.

Proof of Proposition A.0.8. Fix xy € X(F). Since 7 : Y — A}? is étale, the

map 7p : Y(F) — F™ is a local diffcomorphism, and hence €,(pp; o) =

€x((m o @) p;x0). By our assumption, the morphism ¢ :=71o¢p : X — A2

is a restriction of a polynomial map (@y,...,Pn,) : ART™ — A% where

each @; is of degree < d - dy. Since ¢ is generically smooth, there exists
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I' = {i},...,i, _,} € {L,...,n1 +my} such that the map n : X — A}
given by

(@1, Tnypmy) = (P(X), 24,y ),

nlp—n2

is generically étale. Let ¢ : A% — A%? be the projection to the first no
coordinates. Note that ¢ = ¢ on. By Lemma A.1.1 and Proposition A.1.2,
we have,

e(@r: o) > €x(nr; o) = letp(Jacy (nr); o).

Since X is a smooth open subvariety of X’ C AM*™ of dimension n,
and X’ is cut by ¢ = ... = ¢, = 0, the tangent space T,,X is given by
dz,g = 0, where d,,g is a matrix of size (ny + mq) x r; of (maximal) rank
my. Therefore, we may choose m; polynomials out of {gi, ..., g, } such that
their common zero locus X D X is of dimension ny, and where 7o € X (F)is
a smooth point. Without loss of generality, we may take these polynomials
to be g1,...,Gm,. Since X is smooth at xg, it is locally irreducible there.
Thus, there exist I = {i1,...,4m, } € {1,...,n1+m;} and a Zariski open set
xog € Uy € X on which the I x {1,...,m;}-minor of d,g is non-vanishing,
and such that dzj; A ... Adzj, is a non-vanishing top form on U;, where
J=A{1,...,n1 +my}\ I. We get that

A ] d(ﬁ1/\-.-/\dgﬁ5n2/\alxifl/\.../\dxl-f1 .
9 T = ni—n .
( ) ac (77) dQIjl FANAN dﬂ?jnl

Multiplying the n;-forms at the numerator and denominator of (A.9) by
dgi N ... Ndgp,, we get:

d@l/\.../\d@nz/\dxi/l/\.../\alaci;zl_nQ/\dgl/\.../\algm1
drj, N ... Ndxj, Ndgi A ... A dgn, '

Jac,(n) =

Set ¢ : Uy — Al by

d@l/\.../\d@m/\daz:l-rl/\.../\d:L‘Z-/nl_nZ/\dgl/\.../\dgm1
x) = :
¥(z) drzy N ..o AN dZpy m,

Since by our construction, dzj A...Adzj, Adgi/A...A\dgm, is a non-vanishing
top form of A near z it follows that

letp(Jacy, (nr); xo) = letp(Vp(2); o).

Since (21, ..., Tnim) is @ polynomial of degree < (d-dy —1)-ng+ (dy — 1)my
it follows by [GH, Theorem 1.4] that:

(i 20) > letp (Jacy (ne); 7o) = letp($p(a); 20) > :
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APPENDIX B. EXPLANATION OF THE MISTAKE IN [Lem96|

The arguments in [Lem96] and its sequels were based on a construction
of a certain submersion that replaces the Luna slice for closed orbits which
are not semi-simple, see [Lem96, §2.2]. A key property of this submersion
is described in [Lem96, Lemma 2.3.2]. The formulation of this Lemma is
inconsistent. Namely, a certain set (denoted there by U;NU) is discussed in
[Lem96, Lemma 2.3.2(2)]. It is implicitly assumed that this set is open both
in U} and U, (as a function in C°(U; N U!) is considered both as a function
on U] and U!) which is wrong in general.

A version of [Lem96, Lemma 2.3.2] with a consistent formulation is [Lem97,
Lemma 5.4.2]. However this lemma is false as stated.

APPENDIX C. DIAGRAMS

For the convenience of the reader, we present here several diagrams of
objects frequently used in the paper.

C.1. The main varieties in the paper.

G' xT = X ——TxT
M gxq
T 5Y 2 s CxC
L] W/ ptl
p //\
|:] q
7 s T <

C.2. Open subsets inside the varieties (mainly used in §§6-7).

T xT a sy Y «+ 2 X
(T x T)/ y Y/ — YO < X0
/ 0 /
T x T > YY"

T" /\4&—>Gms Crss qlysm 0

\ ~ ~
y p . C

N
plar




C.3. The sets A and B (mainly used in §§7,10).

A > B » C'x C(Op)
o] o |
X —"—Y ——(CxC
l’r ] lﬂ'
G——C
INDEX
(G)", 39 C, 78
(T x T)/, 25 Crss 15
*, 16 G, 2
<, 14 G/, 24
C,7 G 14
C™>, 16 G™* 15
Cs 15 T, 8
D,, 15, 16 T", 15
F,2 X, 25
F-analytic manifold, 14 X0, 40
G, 2 Y, 8, 25
G, 14 Y/, 25
G, 15 Y", 28
K., 19 Y™ 40
L=> 14 A, 34
Lyx, 14 B, 32
Orp, 8 B, 32
W,8 R, 9
Z(+), 14 g, 15
A9, 15 pry, 27
AT‘SS’ 15 pté, 27
Ac, 15 pros, 27
Q(f), 17 pryp, 27
@_ pt%}a 27
function, 15 1, 25
number, 15 e 8
section, 15 ba, 8
a, 25 MGz 17
af, 17 fgad, 14
X, 17 ta,, 17
x> 3 Hzq), 14
l, 2 v, 25
rh: 16 W, 30
k(z), 19 W%, 40
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We, 19 P, 27

wg, 20 pree 15

wa, 20 Po, 23

wr, 14 q, 23

wx, 30 qo, 23

Wy, 39 T, 9

Wy, 30 ¢, 15

wy, 40 g, 15

wa/, 36 . .
Waxe, 40 geometrically integrable, 9
wrx, 39 big open set, 14

wpq, 30

wyr, 30 factorizable action, 22
m, 8, 25 form, 15

Y, 24 Q-, rational, 15

YT, 39

0. 25 Gelfand-Leray form, 17
D: 14 good pair, 38

T, 25 section, 15

i, 24 Q-, 15

wl, 15, 16 rational, 15

¢, 9

p, 7 variety, 14
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