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Abstract. The celebrated Harish-Chandra’s integrability theorem states
that the distributional character of an irreducible smooth representation
of a p-adic groupG(F ) is integrable, that is represented by an L1

loc(G(F ))
function. Here F is a non-Archimedean local field of characteristic 0 and
G is a reductive algebraic group defined over F . In this paper we focus on
cuspidal representations of GLn(F ) for a field F of positive characteristic.
We show that in this case the integrability holds under the hypothesis of
existence of desingularization of (certain) algebraic varieties in positive
characteristics.

Furthermore, in the case char(F ) > n
2 we establish the regularity of

such characters unconditionally.
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1. Introduction

Throughout the paper we fix a non-Archimedian local field F of arbitrary
characteristic. Denote by ℓ the size of the residue field of F . All the algebraic
varieties and algebraic groups that we will consider are defined over F . We
will also fix a natural number n and set G = GLn, considered as an algebraic
group defined over F . Denote G = G(F ).
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We will denote by C−∞(G) the space of generalized functions on G, i.e.
functionals on the space of smooth compactly supported measures. We also
denote by L1

loc(G) the space of locally L1-functions on G and consider it as
a subspace of the space of generalized functions C−∞(G) in the usual way.

1.1. Main results. We study the following conjecture:

Conjecture A. Let ρ be an irreducible cuspidal smooth representation of G
and let χρ ∈ C−∞(G) be its character. Then χρ ∈ L1

loc(G).

When the characteristic of F is zero, this is a special case of a well known
result of Harish-Chandra [HC70]. In this paper we show that this conjecture
follows from the conjectural existence of resolution of singularities in positive
characteristic.

More precisely, consider the following:

Conjecture B. Let Z be an algebraic variety defined over the finite field Fℓ.
Then there exists a proper birational map γ : Z̃ → Z s.t.

• Z̃ is smooth.
• γ is an isomorphism outside the singular locus of Z.
• The preimage of the singular locus of Z (considered as a subvariety

of Z̃) is a strict normal crossings divisor.

In this paper we prove:

Theorem C (§12). Conjecture B implies Conjecture A.

We also prove the following unconditional result:

Proposition D (§12). If char(F ) > n
2
then Conjecture A holds.

Remark 1.1.1. In fact, for given F and n it is enough to assume Con-
jecture B for a specific variety defined over Fℓ. We also give some other
alternatives that replace the role of Conjecture B in Theorem C, see §13.

Remark 1.1.2. We also prove analogues of Theorem C and Proposition D
for orbital integrals. See §1.4 below.

1.2. Background.

1.2.1. Previous results. In [CGH14, Theorem 2.2] it was established that
local integrability of characters of irreducible representations of reductive
groups over Fℓ((t)) holds true for large enough characteristics (depending on
the group G). However, no explicit bound was given.
The case of GL2(F ) was already proven in [JL70, Chapter 9].
In [Rod85] it was established that local integrability of characters of ir-

reducible representations of GLn(Fℓ((t))) holds true in neighborhoods of el-
ements with separable characteristic polynomials. In particular the local
integrability holds whenever char(Fℓ) > n.

In a series of papers ([Lem96], [Lem04], [Lem05]) it was claimed that local
integrability holds true in arbitrary characteristics for the family of groups
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GLn(F ),GLn(D), SLN(D) where F = Fℓ((t)) is a local non-Archimedean
field and D a division algebra over F . However the arguments in these
papers have a flaw. See more detailed explanation in Appendix B.

On the other hand, it seems that the argument in [Lem96] can give a proof
for Proposition D of the present paper.

1.2.2. The original argument of Harish-Chandra. Let us shortly present the
main parts of the original Harish-Chandra’s proof of the local integrability
of cuspidal characters from [HC70]. This presentation differs slightly from
the original, as it is adapted to better suit our purposes. One can roughly
divide Harish-Chandra’s proof into two parts:

(1) Bound the character (up to a logarithmic factor) by the inverse square

root of the discriminant — |∆|− 1
2 .

(2) Prove the integrability of |∆|− 1
2 .

In more details, let p : G → C := (G//Ad(G))(F ) be the Chevalley map.
one can divide the first step into the following sub-steps:

(a) Locally bound the character by the orbital integral Ω(f) of a smooth
function f ∈ C∞

c (G) (up to a logarithmic factor). See Notation 3.0.1
for the definition of Ω(f). We did this in [AGKSc].

(b) Bound the orbital integral Ω(f) by a product |∆|− 1
2 · p∗(p∗(f)) where,

the push forward is taken w.r.t. some fixed, smooth, nowhere vanish-
ing measures on G and C.

(c) Bound p∗(f).

1.2.3. Difficulties with Harish-Chandra’s argument in positive characteris-
tic. Step (2) does not hold in positive characteristic (even for the case of

GL2 ((t))). So, one should replace |∆|− 1
2 with a better bound (like the func-

tion κ described in §4 below).
Both substep (1)(a) and step (2) are done for each torus in G separately.

This is enough in characteristic zero, as there are only finitely many conju-
gacy classes of tori. However, the latter is no longer true in positive charac-
teristic. See more details in [AGKSb, §1.5]

Substep (1)(c) uses the assumption on characteristic in many places. See
more details in [AGKSb, §1.5.1].

1.2.4. The approach of [JL70, Chapter 9]. The proof of [JL70, Chapter 9] in
the GL2 case goes essentially along the same lines as the proof of [HC70].

All the bounds are much more explicit, and the bound |∆|− 1
2 is replaced by

a different bound which differs from |∆|− 1
2 by a multiplicative constant on

each torus.

1.2.5. Results of [AGKSb]. In [AGKSb] we obtain bounds for p∗(f). These
bounds are conditional on the assumption of existence of a resolution of
singularities or the assumption char(F ) > n/2 as in Theorem C and Propo-
sition D.
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In fact, the only reason that we need the assumptions above is the fact
that we rely on the results of [AGKSb].

1.2.6. The approach of [Rod85]. [Rod85] took a different approach. Instead
of bounding Ω(f) and then bounding the character using it, they bound the
character directly. They do it using a formula of Howe, that expresses the
character (near 1) as a combination of the Fourier transform of nilpotent
orbital integrals. Then they use the fact that all the nilpotent orbits of GLn
are Richardson, in order to prove that these Fourier transforms are locally
integrable.

[Rod85] adapted this argument to work near semi-simple elements, thus
covers all elements with separable characteristic polynomial, and therefore
proves the result whenever char(F ) > n. If one would like to adapt the
argument in [Rod85] to the general case, one has to deal with closed orbits
with non-separable characteristic polynomial, like the orbit of(

0 1
t 0

)
∈ GL2(F2((t))).

Such an adaptation was attempted in [Lem96]. A similar approach to the
one in [Rod85] was used in [HC99] (for the characteristic 0 case) in order
to show local integrability for general (not necessarily cuspidal) characters.
However, since [HC99] is not limited to the generality of GLn it could not
use the Richardson property of the nilpotent orbits, and thus had to prove
the local integrability of the Fourier transforms of nilpotent orbital integrals
in a different way. This is done using the local integrability of Ω(f) proven
in [HC70] (for the characteristic 0 case).

1.3. Our approach. Our approach follows the original approach of Harish-
Chandra (for the cuspidal case), thus we circumvent the need to deal directly
with elements with non-separable characteristic polynomial. Also, this ap-
proach gives a bound on Ω(f) and not only on the character. Additionally,
it does not use the fact that all the nilpotent orbits of GLn are Richardson
(see §1.3.1 below).

We replace |∆|− 1
2 with a function κ described in §4 below. One can write

κ = κ0|∆|− 1
2 where κ0 is Ad(G)-invariant and constant on any torus. Thus

the difference between |∆|− 1
2 and κ is almost invisible in the characteristic

zero case. The construction of κ generalizes the construction of the bound
from [JL70, Chapter 9].

Roughly speaking, our general strategy is to replace the torus-by-torus
arguments (from [HC70]) with global geometric arguments. Let us describe
it in more details.

The original proof of substep (1)(a) is based on an effective bound on the
averaging (w.r.t. the adjoint action) of a matrix coefficient of a cuspidal
representation and the stabilization of that averaging. We had to redo this
bound in a way that is uniform on the entire group and not only on a single
torus. We did this in [AGKSc].
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Substep (1)(b) in the argument in [HC70] is rather straightforward. How-
ever, as explained above, it would not be enough just to adapt it to positive
characteristic as is. In order to make step (2) possible we replace the function

|∆|− 1
2 with the function κ. After this change, the proof of substep (1)(b) (in

arbitrary characteristic) becomes more subtle and we do it in §4.
We dealt with substep (1)(c) in [AGKSb], note that this is the first of the

two places where we use [AGKSb], which in turn depends on the assumption
of resolution of singularities.

So we are left with the adapted version of step (2): we have to prove
that κ is locally integrable. Here also, the original proof of Harish-Chandra
treated each torus separately. In case n = 2 one can obtain a bound on
the integral on each torus separately that will lead to the convergence of
the entire integral. This is essentially what is done in [JL70, Chapter 9].
In the general case, we could not do it. Instead we developed a geometric
formula for κ (see §7). Essentially, this formula presents κ as a pushforward
of an (a priori not necessarily locally finite) measure m w.r.t. a morphism
τ : X → G for a certain variety X. The measure m on X(F ) is given by a
(rational) form ωX on X. To make this formula useful we have to prove that
ωX is regular on the smooth locus of X (see §8). Finally we prove that m is
locally finite and use this geometric formula to prove the local integrability
of κ. Here we again used the results of [AGKSb] (and hence the assumption
of existence of a resolution).

Therefore, the main innovation of this paper is the factor κ, the geometric
formula for it, and the successful execution of step (2).

1.3.1. The role of the assumption G = GLn. We used the assumption G =
GLn in order to make all explicit computations easier. However, our argu-
ment does not use any statement that inherently depend on this assumption
(such as existence of mirabolic subgroup, stability of adjoint orbits, or the
Richardson property of all nilpotent orbits).

We also use the results of [AGKSb, AGKSc] that are limited to the GLn
case, however the situation there is similar (see [AGKSb, §1.5.7], [AGKSc,
§1.5.1]).

In conclusion we expect that the methods of the present paper can provide
a proof of the regularity of characters of cuspidal representations for any
reductive group over a non-Archimedean local field F of good characteristic
(see e.g. [SS70, I, §4] for this notion).

1.4. Statements for the orbital integrals. Theorem C and Proposi-
tion D are also valid when we replace the character of ρ with the orbital
integral of a function f ∈ C∞

c (G). Let us recall the notion of orbital integral
of a function.

Notation 1.4.1.

• Denote by Grss the collection of regular semi-simple elements in G.
6



• For f ∈ C∞
c (G) denote by Ω(f) ∈ C∞(Grss) the orbital integral

Ω(f)(x) =

∫
y∈G·x

f(y)dy

where dy is an appropriate measure on G·x, see Notation 3.0.1 below.

Theorem E (Remark 12.0.3). Assume either Conjecture B or char(F ) > n
2
.

Let γ ∈ C∞
c (G). Then Ω(γ) ∈ L1(G).

It is easy to see that this theorem implies its version for the Lie algebra g
of G. Namely we have:

Theorem E’. For γ ∈ C∞
c (g) define Ω(γ) analogously to the case when

γ ∈ C∞
c (G). Then Theorem E is valid with G replaced with g.

In view of [AGKSc, Theorem A’] this theorem implies a version of the main
results for Fourier transforms of characteristic measures of elliptic orbits.
Namely, for a regular semi-simple element x ∈ g, fix an ad(G)-invariant
measure on g supported on the adjoint orbit G · x, and denote it by µG·x.
Let µ̂G·x be its Fourier transform.

Theorem F (Remark 12.0.3). Theorem C and Proposition D are valid when
we replace χρ with µ̂G·x for elliptic (regular semi-simple) x ∈ g (with the
obvious modifications).

Moreover, the arguments of [HC99, §1.4] (which are also valid for positive
characteristic) allow to deduce from this theorem the following one.

Theorem F’. Theorem F is valid when we replace x with any regular semi-
simple element in g.

This theorem is a partial positive characteristic analog of [HC99, Theo-
rem 1.1] that states that µ̂G·x ∈ L1

loc(g). Harish-Chandra used this result
in order to prove that the character of an arbitrary irreducible (smooth)
representation of G is locally integrable [HC99, Theorem 16.3]. However, at
this point, we do not know how to adapt this part of Harish-Chandra’s ar-
gument to positive characteristic, so we still can not prove local integrability
for character of an arbitrary irreducible (smooth) representation in positive
characteristic even under our additional assumptions.

1.5. Unconditional results. We prove Theorem C using an unconditional
bound on the character of a cuspidal representation. In order to formulate
it we need the following notation:

Notation 1.5.1. We denote by:

(1) C − the variety of monic polynomials of degree n that do not vanish
at 0. We will identify it with Gm × An−1.

(2) C := C(F ).
(3) p : G → C − the Chevalley map, i.e. the map that sends a matrix

to its characteristic polynomial.
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(4) µG - the Haar measure on G, normalized on a maximal compact
subgroup of G.

(5) µC - the Haar measure on C, given by the identification C ∼= F× ×
F n−1, normalized on O×

F ×On−1
F , where OF is the ring of integers in

F .

Theorem G (§11). Let ρ be an irreducible cuspidal representation of G and
U ⊂ G be an open compact subset. Then there exist:

(1) ε > 0,
(2) a real valued non-negative f ∈ L1+ε(C), and
(3) a real valued non-negative h ∈ C∞

c (G)

such that for any g ∈ C∞
c (U) we have:

|⟨χρ, g⟩| ≤ ⟨p∗(fp∗(h)), |g|⟩.
More precisely:

|⟨χρ, gµG⟩| ≤
〈
p∗
(
f
p∗(hµG)

µC

)
µG, |g|

〉
.

Remark 1.5.2. Note that the Radon-Nikodym derivative p∗(hµG)
µC

does not

have to be bounded (or finite) but only measurable, so the measure on the
RHS does not have to be locally finite. Hence, a-priory, the RHS might be
infinite (in this case, the statement is void).

Theorem C follows from Theorem G using the following weaker version of
[AGKSb, Theorem D]:

Theorem 1.5.3 (cf. [AGKSb, Theorem D]). Assume Conjecture B. Then
for any t ∈ [1,∞) and any smooth compactly supported measure µ on G, we
have p∗(µ) = fµC for some f ∈ Lt(C).

Similarly, Proposition D follows from Theorem G using the following spe-
cial case of [AGKSb, Theorem E]:

Theorem 1.5.4 (cf. [AGKSb, Theorem E]). Suppose char(F ) > n
2
. Then

for any smooth compactly supported measure µ on G, the measure p∗(µ) can
be written as a product of a function in L∞(C) and a Haar measure on C.

In fact, we prove a more explicit version of the bound in Theorem G. In
order to formulate it we will need the following notation.

Notation 1.5.5. Denote:

(1) By T the standard maximal torus of G.
(2) By W ∼= Sn the Weyl group.
(3) We will identify the Chevalley space C with the categorical quotient

T//W .
(4) By Y := (T×T)//W the categorical quotient by the diagonal action.1

(5) By π : Y → C the projection to the first coordinate.

1See §5 below for its existence.
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(6) Υ := G×C G×C Y.
(7) By ζ : Υ → G the projection on the second coordinate.
(8) By ∆ ∈ OG(G) the discriminant, i.e. ∆(g) is the discriminant of

the characteristic polynomial of g.
(9) By R : G→ N ∪ {∞} the function given by

R(x) = max(0,−min val(xij), val(det(x)), val(∆(x))).

Remark 1.5.6. Throughout the paper we use various notations for specific
varieties, sets and maps between them. We summarize these objects in some
diagrams in Appendix C. It might be easier to follow some parts of the paper
with these diagrams visible. Of course we will not rely on this, and all the
objects will be defined before their first use.

Theorem H (§10.4). Let ρ be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function e ∈ C∞(Υ(F )) such that ζ|Supp e
is proper,

(2) a top differential form ω on the smooth locus of Υ, and
(3) an integer k

such that for any g ∈ C∞
c (G) we have:

|⟨χρ, gµG⟩| ≤ ⟨ζ∗(|ω|e)Rk, |g|⟩.

In order to deduce Theorem G from Theorem H we prove another state-
ment (Proposition I below) about the geometric structure of Y and use a
general result about integrability of pushforward of a smooth measure under
a dominant morphism (Proposition J below). In order to formulate these
results we make the following:

Definition 1.5.7. We say that an algebraic variety Z is geometrically inte-
grable if there exists a resolution of singularities γ : Z̃ → Z s.t. the natural
morphism γ∗(ΩZ̃) → i∗(ΩZsm) is an isomorphism. Here Zsm is the smooth
locus of Z, and i : Zsm ↪→ Z is the embedding.

Proposition I (§6.4). The variety Y= (T×T)//W is geometrically inte-
grable.

Remark 1.5.8.

• In characteristic zero case, the singularities of a variety are rational
iff it is geometrically integrable and Cohen-Macaulay (see e.g. [AA16,
Appendix B, Proposition 6.2]).

• In characteristic 0, Proposition I follows immediately from the fact
that a quotient singularity is rational (see [Bou87, Corollaire]).

• We do not know whether Y is Cohen-Macaulay (in positive charac-
teristic.)

In order to deduce Theorem G from Theorem H and Proposition I we need
the following:
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Proposition J (Theorem A.0.7). Let γ : M → N be a generically smooth
morphism of smooth irreducible algebraic varieties. Then there exists ε > 0
s.t. for any smooth compactly supported measure µM on M := M(F ) there
exist smooth compactly supported measure µN on N := N(F ) and a function
f ∈ L1+ε(N) such that

γ∗(µM) = fµN .

Remark K. Theorems G and H have versions for orbital integrals and for
Fourier transforms of characteristic measures of regular semisimple orbits
analogous to Theorems E’ and F’. The proofs are identical.

1.6. Summary of the logic of the paper. The following diagram provides
a guideline regarding the logic of the proofs of the main results of the paper.

Conjecture A

Conjecture B

Theorem C Proposition D

Theorem G[AGKSb, Theorem D] [AGKSb, Theorem E]

Proposition I

Proposition J

Theorem H

1.7. Ideas of the proofs. Most of the paper is devoted to the proof of
Theorem H. The proofs of Proposition I and Proposition J are significantly
simpler. The rest of the results of the paper follow relatively easily from
these 3 results (and the results of [AGKSb]).

1.7.1. Idea of the proof of Theorem H. In fact, we will prove the following
equivalent version of Theorem H:

Theorem H’ (§10.1). Let ρ be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function f ′ ∈ C∞(Y(F )) such that π|Supp f ′
is proper,

(2) a real valued non-negative function h ∈ C∞(G) such that p|Supph is
proper,

(3) an invertible top differential form ω0
X on the smooth locus of X :=

G×C Y,
10



(4) an integer k, and
(5) a real valued non-negative function γ ∈ C∞(X), where X := X(F ),

such that for any g ∈ C∞
c (G) we have:

|⟨χρ, gµG⟩| ≤
〈
τ∗(|ω0

X|γσ∗(f ′))

µG
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
,

where σ : X → Y and τ : X → G are the projections.

We prove this theorem using the following steps:

(1) Following [HC70], for any function f on G whose support is compact
modulo the center we define the orbital integral Ω(f) which is a
function on the set Grss of regular semi-simple elements in G. See
Notation 3.0.1.

(2) Following [HC70] we showed in [AGKSc] that the character of a cus-
pidal representation ρ is bounded by Ω(|m|) (up to a logarithmic
factor), where m is a matrix coefficient of ρ. Note that we have to
explain what it means for a partially defined function to bound a
generalized function. See Theorem 3.0.2 below for an exact formula-
tion.

(3) We construct an explicit function κ on Grss (see §4 below) and prove
that Ω(|m|) is bounded by κ · p∗(p∗(|m|)). Here the pushforward p∗
is taken with respect to appropriate measures.

(4) We study the varieties Y = (T × T)//W and X = G ×C Y =
G×C (T×T)//W and construct:

• a rational section ω2
X of the square of the canonical bundle on

the smooth locus of X, and
• an open set B ⊂ Y(F ) such that π|B is proper. Here π : Y → C
is the projection.

such that

τ∗

(√
|ω2

X|
∣∣∣∣
σ−1(B)

)
= κ|ωG|.

Here:
•
√
|ω2

X| is the measure on X(F ) corresponding to ω2
X, see §2.3

below for precise definition.
• ωG is the standard top form on G.

See §7 for the construction.
(5) We prove that the section ω2

X is regular. See §8 below.
(6) We construct an invertible top form ωY on the smooth locus of Y.
(7) We use ωY and the standard form ωG on G in order to construct an

invertible top form ω0
X := ωG ⊠ωC

ωY on the smooth locus of X (see
Definition 2.3.7 below for the notation ⊠ωC

).
(8) We use steps (5) and (7) to note that since ω0

X is invertible and ω2
X

is regular, the measure |ω0
X| locally dominates

√
|ω2

X|.
(9) We use steps (2,3,4,8) to obtain that, up to a logarithmic factor, the

character χρ is bounded by τ∗(|ω0
X| · 1σ−1(B))p

∗(p∗(|m|).
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(10) We bound τ∗(|ω0
X| · 1σ−1(B)) by p

∗(π∗(|ωY| · 1B)).
(11) We deduce Theorem H’ from steps (9,10).
(12) We deduce Theorem H.

1.7.2. Idea of the proof of Proposition I. We embed Y into the quotient
(A2)n//Sn and thus reduce to showing the integrabilty of (A2)n//Sn. This
we did in [AGKSa].

1.7.3. Idea of proof of Theorem G. We first deduce from Theorem H’ another
slightly different version of Theorem H:

Theorem H” (§10.3). Let ρ be an irreducible cuspidal representation of G.
Then there exist:

(1) a real valued non-negative function f ′ ∈ C∞(Y(F )) such that π|Supp f ′
is proper,

(2) a real valued non-negative function h ∈ C∞(G) such that p|Supph is
proper,

(3) an invertible top differential form ωY on the smooth locus of Y, and
(4) an integer k
(5) a real valued non-negative function γ ∈ C∞(G)

s.t. for any g ∈ C∞
c (G) we have:

|⟨χρ, gµG⟩| ≤
〈
γp∗

(
π∗(|ωY|f ′)

µC

p∗(|ωG|h)
µC

)
Rk, |g|µG

〉
.

Then we prove Theorem G using the following steps:

(1) Let f ′, h, ωY be as in Theorem H”.
(2) Let π : Y → C be the natural map and set f := π∗(f

′). Here we
choose appropriate measures to define the pushforward.

(3) We use Proposition I and Proposition J in order to show that f ∈
L1+ε
loc .

(4) We deduce Theorem G.

1.7.4. Idea of proofs of Theorems C and D. Let us start by sketching the
proof of Theorem C.

(1) Theorem 1.5.3 and Conjecture B imply that p∗ maps every L∞ com-
pactly supported function to an Lt function for any t ∈ (1,∞).

(2) This implies that p∗ maps every L1+ε function to an L1
loc function.

(3) Let f, h be as in Theorem G. We obtain that p∗(h) ∈ Lt(C(F )) for
all t ∈ (1,∞). Therefore, fp∗(h) ∈ L1+δ(C(F )) for some δ > 0. Thus
p∗(fp∗(h)) ∈ L1

loc as required.

The proof of Proposition D is the same when we replace Theorem 1.5.3
by Theorem 1.5.4 and Conjecture B by the assumption char(F ) > n

2
.
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1.8. Structure of the paper. In §2 we fix some conventions and recall
some standard facts on forms and measures.

In §3 we formulate the main result of [AGKSc] that bounds the character
of a cuspidal representation in terms of orbital integrals of the absolute value
of its matrix coefficient. This establishes our version of substep (1)(a) from
the outline in §1.2.2.

In §4 we begin our study of orbital integrals in the language of algebraic
geometry. For this we construct an auxiliary function κ : Grss → R that
allows us to describe the orbital integrals in terms of the pull of the push
w.r.t. the Chevalley map prss : Grss → Crss. See Theorem 4.0.1 for an exact
formulation. This established our version of substep (1)(b) from the outline
in §1.2.2. Roughly speaking κ introduces an arithmetic correction to the
more traditional factor |∆|− 1

2 .
In §5 we provide the proof of some standard facts regarding quotients of

algebraic varieties by finite groups. Some of these are slightly less standard
in positive characteristic.

In §6 we introduce and study a few algebraic varieties that are related
to G. These varieties and properties of certain maps between them (such
as flatness, irreducible fibers and reduced fibers) will play a key role in our
arguments in the next sections. The reader is advised to consider the diagram
below Lemma 6.2.15 when reading this section. In §6.4 we prove that Y is
geometrically integrable (Proposition I). This bridges between Theorem H
and Theorem G.

In §7 we obtain a geometric formula for κ that relates it to a form ωX on
the variety X.

In §8 we prove that ωX is regular (on the smooth locus of X). This makes
the formula in §7 useful.
In §9 we construct a regular invertible form ω0

X that can bound ωX in the
formula from §7.

In §10 we prove Theorem H and its versions. This provides an explicit
geometric bound on the character of a cuspidal representation.

In §11 we provide a proof of Theorem G.
In §12 we deduce Theorem C and Proposition D from Theorem G com-

bined with results of our previous paper [AGKSb].
In §13 we provide several alternatives to the condition of existence of a

resolution in Theorem C.
Appendix A by I. Glazer and Y. Hendel provides a proof of Proposition J.
In Appendix B we explain the mistake in [Lem96].
In Appendix C we present several diagrams containing the main objects

in the paper. These diagrams can help to follow the arguments in the paper.
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sions of his work.

We would like to thank Dan Abramovich and Michael Temkin for enlight-
ening conversations about resolution of singularities. We would also like to
thank Nir Avni for many conversations on algebro geometric analysis.

13



We thank Itay Glazer and Yotam Hendel for their useful suggestions.
During the preparation of this paper, A.A., D.G. and E.S. were partially

supported by the ISF grant no. 1781/23. D.K. was partially supported by
an ERC grant 101142781.

2. Notations and Preliminaries

2.1. Conventions.

(1) By a variety we mean a reduced scheme of finite type over F .
(2) When we consider a fiber product of varieties, we always consider it

in the category of schemes. We use set-theoretical notations to define
subschemes, whenever no ambiguity is possible.

(3) We will usually denote algebraic varieties by bold face letters (such
as X) and the spaces of their F -points by the corresponding usual
face letters (such as X := X(F )). We use the same conventions when
we want to interpret vector spaces as algebraic varieties.

(4) For Gothic letters we use underline instead of boldface.
(5) We will use the same letter to denote a morphism between algebraic

varieties and the corresponding map between the sets of their F -
points.

(6) We will use the symbol □ in a middle of a square diagram in order
to indicate that the square is Cartesian.

(7) We will use numbers in a middle of a square diagram in order to refer
to the square by the corresponding number.

(8) By an F -analytic manifold we mean an analytic manifold over F in
the sense of [Ser92].

(9) A big open set of an algebraic variety Z is an open set whose com-
plement is of co-dimension at least 2 (in each component).

(10) When no ambiguity is possible we will denote the adjoint action
simply by “ · ”.

(11) For a measure space (Z, µ) we denote by L<∞(Z, µ) :=
⋂
p<∞ Lp(Z, µ).

We also introduce L<∞
loc (Z, µ) :=

⋂
p<∞ Lploc(Z, µ). Note that if Z is

an F -analytic manifold and µ is a nowhere vanishing smooth measure
then the spaces Lploc(Z, µ) and L

<∞
loc (Z, µ) do not depend on µ, so we

will omit µ from the notation.
(12) We will use the symbol < to denote the (not necessarily proper)

containment relation for groups.

2.2. Notations. We denote by:

(1) ωT - the standard T-invariant form on the torus T.
(2) For a group (or an algebraic group) H we denote by Z(H) the center

of H.
(3) Gad := G/Z(G), Gad := G/Z(G). Note that Gad⪇Gad(F ).
(4) µZ(G) the Haar measure on Z(G) normalized on the maximal compact

subgroup of Z(G).
(5) µGad the Haar measure on Gad that corresponds to µG and µZ(G).

14



(6) We equip C with a group structure using the identification C ∼=
Gm × An−1.

(7) g is the Lie algebra of G (considered as an algebraic variety).
(8) g := g(F ).
(9) ∆ the discriminant considered as a regular function on G.
(10) Grss ⊂ G the non-vanishing locus of ∆. This is the locus of regular-

semi-simple elements.
(11) Tr := Grss ∩T.
(12) ∆rss := ∆|Grss .
(13) Grss := Grss(F ).
(14) Crss and Crss the images of Grss and Grss in C and C.
(15) prss : Grss → Crss the restriction of p: G → C.
(16) ∆C the discriminant considered as a function on C.
(17) c := g//G, c := c(F ).
(18) We identify c with the collection of monic polynomials of degree n.

Under this identification C is identified with {f ∈ c|f(0) ̸= 0}.
(19) Similarly Crss is identified with the collection of all separable poly-

nomials in C.

2.3. Forms and measures. By a measure on a topological space Z we
mean a σ-additive complete measure that is defined on all Borel subsets of
Z. We will usually assume that it is positive, but in-general we will not
assume that it is locally finite.

Definition 2.3.1. Let E be a line bundle on an algebraic variety Z.

• A rational section of E is a section defined over an open dense set
in Z.

• A Q−section of E is a pair (n, ξ) where n ∈ N and ξ ∈ Γ(Z, E⊗n)
up to the equivalence relation generated by:

(n, ξ) ∼ (nk, ξ⊗k)

• We define the notion of a rational Q-section correspondingly.
• We will use the notion of rational sections and rational Q-sections
also when E is defined only on an open dense subset of Z.

• In the notions above, if E is the bundle of (relative) top differential
forms we will refer to sections of E as (relative) top forms. If E
is a trivial bundle, we will refer to sections of E as functions. If E
is a trivial bundle and Z is a point, we will refer to sections of E
as numbers. In particular, we will refer to a Q-section of the trivial
bundle over a point as a Q-number.

• Note that any rational Q-function can be raised in any rational power.

Definition 2.3.2. Let Z be an F -analytic manifold.

• Denote by DZ the sheaf of densities on Z, i.e. the sheaf whose sec-
tions are smooth measures.

• If ω is a top form on Z we denote the corresponding measure on Z
by |ω|. If ω is invertible then this is a section of DZ.
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• Define the space of generalized functions C−∞(Z) to be the space of
functionals on the space C∞

c (Z,DZ) of smooth compactly supported
measures.

Definition 2.3.3. Let Z be a smooth algebraic variety.

• Denote by ΩZ the sheaf of top differential forms on Z.
• For a top form ω on Z denote the corresponding measure on Z :=
Z(F ) by |ω|.

• Based on the above, for an invertible section ω of Ω⊗k
Z we can define

the corresponding section |ω| of D⊗k
Z . Note that we have a natural

positive structure on DZ, and this section is positive with respect to
this structure.

• For an invertible Q-top form ω := (k, ω1) we define |ω| := |ω1|
1
k .

Here we take the positive k-th root.
• If ω is not invertible, the definition above defines a density on the
non-vanishing locus of ω. This section naturally extends to a Radon
measure on Z which we denote also by |ω|.

• If ω is a rational Q-top-form we get a measure on an open dense set.
We can push this measure to Z and get a not-necessarily-Radon mea-
sure. However this measure is still σ-finite. We denote this measure
also by |ω|.

Definition 2.3.4.

• For a pair of Borel (not-necessarily locally finite) σ-finite measures
µ1, µ2 on the same topological space s.t. µ1 is absolutely continuous
w.r.t. µ2 we denote by µ1

µ2
to be the Radon-Nikodym derivative. We

consider it as an almost everywhere defined function.
• Given a morphism of F -analytic varieties γ : Z1 → Z2, define the
sheaf of relative densities Dγ := DZ1 ⊗ γ∗(DZ2)

∗. Here ∗ denotes the
internal Hom to the constant sheaf.

• Given a relative Q-top-form on Z1 w.r.t. γ, we denote the correspond-
ing relative density by |ω|. If ω is a rational Q-top form we consider
|ω| as an almost everywhere defined relative density (defined on the
regular locus of ω, and smooth over its invertible locus).

Remark 2.3.5. Note that if γ : Z1 → Z2 is a generically smooth morphism
of algebraic varieties, ωi are rational Q-top forms on Zi and f ∈ C∞(Z1)
then γ∗(|ω1|f) is absolutely continuous w.r.t. |ω2|. However γ∗(|ω1|f) is not
necessarily a locally finite measure so γ∗(|ω1|f)

|ω2| is not necessarily in L1 (or

even generically finite).

Notation 2.3.6.

• For a smooth morphism γ : Z1 → Z2, a top differential form ωZ2 on
Z2, and a relative top differential form ωγ on Z1 with respect to γ,
denote the corresponding top differential form on Z1 by ωZ2∗ωγ.
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We use the same notation for rational Q-top-forms. Also in this
case, we do not have to require that Zi and γ are smooth, instead it
is enough to require that γ is generically smooth.

• Conversely, if we are given (rational Q-)top-forms ωZ1 , ωZ2 there is
a unique (rational Q-)top-form ωγ such that ωZ1 = ωZ2 ∗ωγ. We call
this form the Gelfand-Leray form w.r.t. the map γ and the forms
ωZ1 , ωZ2.

Definition 2.3.7. Given a Cartesian square of smooth morphism and smooth
varieties:

V Z1

Z2 Z

□

and top-forms ω, ωi on Z,Zi define a form ω1 ⊠ω ω2 on V in the following
way:

• Let ω′
i be a Gelfand-Leray relative form on Zi w.r.t. the map Zi → Z.

• Let ω′
1 ⊠Z ω

′
2 be the corresponding relative form on V w.r.t. the map

γ : V → Z.
• Define ω1⊠ωω2 := ω ∗ (ω′

1 ⊠Z ω
′
2).

We use the same notation for rational Q-top-forms. Also in this case,
we do not have to require Zi, Z and γ to be smooth, instead it is enough to
require the maps to be generically smooth.

3. Orbital integrals and characters of cuspidal
representations

In this section we formulate the main result of [AGKSc] that bounds the
character of a cuspidal representation in terms of the orbital integrals of the
absolute value of its matrix coefficient.

Notation 3.0.1. Let x ∈ Grss.

• Denote by µGx the Haar measure on the torus Gx normalized such
that the measure of the maximal compact subgroup of Gx is 1.

• Denote by µG·x the Ad(G)-invariant measure on the conjugacy class
Ad(G) · x that corresponds to the measures µG and µGx under the
identification Ad(G) · x ∼= G/Gx.

• Let f ∈ C∞(G) have compact support modulo the center of G. Let
Ω(f) : Grss → C be the function defined by Ω(f)(x) =

∫
f |G·xµG·x.

Theorem 3.0.2 ([AGKSc, Theorem A]). Let ρ be a cuspidal irreducible
representation of G. Then there exist:

• a function m : G → C with a compact support modulo the center,
and

• a polynomial αρ ∈ N[t]
17



such that for every η ∈ C∞
c (G) we have

|⟨χρ, η · µG⟩| < ⟨f · Ω(|m|), (|η| · µG)|Grss⟩,
where f ∈ C∞(Grss) is defined by

f(g) = αρ(ovGrss(g)).

Remark 3.0.3. A priori, the right hand side of the above inequality can be
infinity. We interpret the statement in that case as void.

4. Expressing the orbital integral through κ

In this section we construct the function κ : Grss → R and prove:

Theorem 4.0.1. Recall that prss : Grss → Crss is the Chevalley map. Let
f ∈ C∞(G) be a function s.t. its support is compact modulo Z(G). Then
there exists γ ∈ C∞(G) such that

Ω(f) = κγ|Grss(prss)∗
(
prss∗ (fµG|Grss)

µC |Crss

)
Explicitly, γ(x) = |ωG|

µG

µC
|ωC| | det(x)

n−1|.

4.1. Construction of κ. Let us start with an informal description of the
construction. We first define a canonical Q-top form on any torus, see Def-
inition 4.1.4 below. For x ∈ Grss we define κ0(x) to be the volume of the
maximal compact subgroup of Gx with respect to this form on Gx. We
define κ := κ0/|∆| 12 .

Notation 4.1.1. Let S be a torus defined over F . By [Bor19, Lemma 8.11]
the extension of scalars SF sep of S to the separable closure F sep of F is a
split torus. Choose an isomorphism

ϕ : SF sep → (Gn
m)F sep .

Let ω(Gn
m)Fsep be the standard top form on (Gn

m)F sep. Let

ωSFsep ,ϕ := ϕ∗(ω(Gn
m)Fsep ).

Denote by
ω2
SFsep ,ϕ

its square considered as a section of Ω⊗2
SFsep

.

Lemma 4.1.2. The section ω2
SFsep ,ϕ does not depend on ϕ.

Proof. Let ϕ, ϕ′ : SF sep → (Gn
m)F sep be 2 isomorphisms. Then

ωSFsep ,ϕ′ = ϕ∗µ∗(ω(Gn
m)Fsep ),

where µ : (Gn
m)F sep → (Gn

m)F sep is an automorphism. This automorphism
corresponds to an element β ∈ GLn(Z). So we have

µ∗(ω(Gn
m)Fsep ) = det(β)ω(Gn

m)Fsep .

We get
ωSFsep ,ϕ′ = det(β)ωSFsep ,ϕ
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and hence
ω2
SFsep ,ϕ′ = det(β)2ω2

SFsep ,ϕ = ω2
SFsep ,ϕ

□

Remark 4.1.3. Note that this notation is compatible with our notation ωT

in the sense that the top form ωT coincides with the form defined here for
the case S = T when considered as a Q-top-form. So in the case S = T the
expression ωT will continue to denote the actual top-form (and not just the
Q-top form).

Definition 4.1.4. Let S be a torus defined over F . By the above lemma
(Lemma 4.1.2) ω2

SFsep ,ϕ does not depend on ϕ. So we will denote it by ω2
SFsep .

By Galois descent there exists a unique section ω2
S of Ω⊗2

SF
s.t. its extension

of scalars to F sep is ω2
SFsep . Define ωS := [(2, ω2

S)] considered as a Q-top
form on S.

Let us now define the function κ : Grss → C:
Notation 4.1.5. Let x ∈ Grss be a regular semi-simple element.

(1) Denote by Kx the unique maximal compact subgroup of Gx.
(2) Define κ0(x) =

∫
Kx

|ωGx|
(3) Recall that ∆rss : Grss → C is the Weyl discriminant.
(4) Define

κ(x) =
κ0(x)√
|∆(x)|

.

Note that the definition of κ0 implies:

Lemma 4.1.6. For x ∈ Grss we have:

|ωGx| = κ0(x)µGx

4.2. Proof of Theorem 4.0.1. Let us first describe the idea of the proof.
For x ∈ Grss we consider two G-invariant measures on G · x:

(1) the Gelfand-Leray measure with respect to the map p : G → C. This
is the absolute value of the Gelfand-Leray form that we denote by
ωG−L
G·x .

(2) The measure µG·x defined in Notation 3.0.1 above.

We need to show that the ratio between these measures is κ. For this we
construct a third measure, which is the absolute value of the Q-top-form ωG·x
that comes from the identification G · x ∼= G/Gx, the standard form ωG on
G and the canonical Q-top-form ωGx on the torus Gx. Thus it remains to
compute the ratios ωG−L

G·x /ωG·x and |ωG·x|/µG(F )·x. The computation of the
first ratio is an algebraic problem which is not sensitive to a field extension.
Thus we can assume that x ∈ T , in which case the computation is straight-

forward. This part is responsible for the |∆|−
1
2 factor. The computation of

the second ratio follows from Lemma 4.1.6. This part is responsible for the
κ0 factor.

For the proof, we will need some preparation.
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Notation 4.2.1. Denote by:

• t the Lie algebra of T,
• g ̸=0 := [t, g],
• ωG the standard G-invariant (both from the left and from the right)
top form on G,

• ωC the C-invariant top form on C corresponding to the standard top
form on Gm × An−1 under the identification C ∼= Gm × An−1.

The following lemma is standard.

Lemma 4.2.2. Let x ∈ T ∩Grss.

(1) Let cx : g
̸=0 → g ̸=0 be defined by cx(y) = [x, y]. Then

det(cx) = ∆(x)

(2) Let I : c → t be the isomorphism given by the identification

c ∼= F n ∼= t.

Then
det(I ◦ dxp|t)2 = ∆(x).

Here we identify TxT ∼= t and Tp(x)C ∼= c using the group structures
on T and C.

Notation 4.2.3. Let x ∈ Grss. Denote by

• ωG−L
G·x the Gelfand-Leray form on G · x = p−1(p(x)) w.r.t. the map
p : G → C and the forms ωG and ωC. Consider it as a Q-top-form.

• ωG/Gx the Q-top-form on G/Gx corresponding to the Q-top-forms
ωG and ωGx.

• ωG·x be a Q-top-form on G · x corresponding to ωG/Gx under the
identification G/Gx

∼= G · x

Lemma 4.2.2 gives us:

Corollary 4.2.4. Let x ∈ Grss. Then ωG·x = ∆− 1
2 (x)ωG−L

G·x det(x)n−1. Here,

∆− 1
2 (x) is considered as a Q-number, and thus can multiply Q-forms.

Proof. Note that validity of the statement for a given x does not change when
we extend the field F . Therefore we can assume without loss of generality
that x is diagonalizable. Also the validity of the statement for a given x
does not change when we conjugate x. Therefore we can assume WLOG
that x ∈ T ∩ Grss. In this case Gx = T. We have a canonical top-form on
T that represents the Q-top form ωT. We will denote it also by ωT.

Since both of the forms in the desired equality areG invariant, it is enough
to verify their equality at the point x. Using the left action of G we can
identify

(4.1) Tx(G) ∼= g

Under this identification we get

(4.2) Tx(G · x) ∼= Im(Idg−adx−1) = g ̸=0.
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Set ωg := ωG|x considered as a form on Tx(G) ∼= g. (note that it does not
depend on x since ωG is G-invariant). Set also ωt := ωT|1 considered as a
form on t. Now we would like to compute ωG−L

G·x |x under the identification
(4.2). Consider the following exact sequences.

0 ker dxp TxG Tp(x)C 0

0 g ̸=0 g t 0

(4.2)

∼=

dxp

(4.1)

∼=

I

I◦dxp

Here, I is the identification from Lemma 4.2.2(2). Let ωg ̸=0 be a form s.t.

ωg ̸=0 ⊠ ωt = ωg. From the exact sequences we obtain ωG−L
G·x |x = det(I ◦

dxp|t)−1ωg ̸=0 . By Lemma 4.2.2(2) we have det(I◦dxp|t)−1ωg̸=0 = ∆− 1
2 (x)ωg ̸=0 ,

and hence ωG−L
G·x |x = ∆− 1

2 (x)ωg ̸=0 .
To calculate ωG·x, note that the Lie algebra of Gx is t. So we can identify

T1(G/Gx) with g ̸=0 (where 1 ∈ G/Gx denotes the class of identity). Under
this identification we have ωG/Gx|1 = ωg̸=0 . Let i : G/Gx

∼= G ·x denote the
standard identification. We have the following commutative diagram:

T1(G/Gx) Tx(G · x)

T1G TxG

g g

d1i

∼=

(4.1)

∼=

− Id+adx−1

Thus, under the identification (4.2), we have ωG·x|x = det((− Id+adx−1)|g̸=0)−1ωg ̸=0 .
Let cx be as in Lemma 4.2.2(1). We have

det(− Idg+adx−1)−1ωg̸=0 = det(x)n−1 det(cx)
−1ωg ̸=0 .

By Lemma 4.2.2(1) we have det(x)n−1 det(cx)
−1ωg ̸=0 = det(x)n−1∆(x)−1ωg ̸=0 .

Altogether, we have

ωG·x|x = ∆− 1
2 (x) det(x)n−1ωG−L

G·x |x
as required. □

Lemma 4.1.6 gives us:

Corollary 4.2.5. For x ∈ Grss we have:

µG·x = κ0(x)|ωG·x|

Proof of Theorem 4.0.1. Let y ∈ Crss. By the definition of the Gelfand-
Leray form we have

(4.3)

∫
(f |p−1(y))|ωG−L

p−1(y)| =
(
prss∗ ((f |ωG|)|Grss)

(|ωC|)|Crss

)
(y)

21



Note that p : Grss → Crss is onto. Let x ∈ Grss s.t. p(x) = y. Set

γ(x) := |ωG|
µG

µC
|ωC| | det(x)

n−1|. We have

Ω(f)(x) =

∫
(f |G·x)µG·x

Cor 4.2.5
=

∫
(f |G·x)κ

0(x)|ωG·x|
Cor 4.2.4

=

=

∫
(f |G·x)κ

0(x)| det(x)n−1∆− 1
2 (x)ωG−L

G·x | =

= κ(x)| det(x)n−1|
∫

(f |G·x)|ωG−L
G·x | (4.3)

= κ(x)| det(x)n−1|
(
prss∗ ((f |ωG|)|Grss)

(|ωC|)|Crss

)
(p(x))

= κ(x)| det(x)n−1| |ωG|
µG

µC
|ωC|

(
prss∗ (fµG|Grss)

µC |Crss

)
(p(x))

= κ(x)γ(x)

(
prss∗ (fµG|Grss)

µC |Crss

)
(p(x))

as required. □

5. Factorizable actions

In this section we give some standard facts about the quotient of an al-
gebraic variety by a finite group which are slightly less standard in positive
characteristic.

Definition 5.0.1. Let a finite group Γ act on a variety Z. We say that this
action is factorizable if the categorical quotient Z//Γ exists (as a variety),
and the map Z → Z//Γ is finite.

Proposition 5.0.2 (See e.g. [AGKSa, Corollary 3.1.8] ). Let a finite group
Γ act on a quasi-projective variety Z. Then the action is factorizable.

Lemma 5.0.3 (See e.g. [AGKSa, Corollary 3.1.5]). Let a finite group Γ act
factorizably on a variety Z. Let U ⊂ Z be an open Γ-invariant set. Then
the action of Γ on U is factorizable and the following diagram is a Cartesian
square.

(5.1) U

��

// Z

��
U//Γ // Z//Γ

Moreover, the bottom arrow is an open embedding.

Lemma 5.0.4 (See e.g. [AGKSa, Lemma 3.2.3]). Let a finite group Γ act
factorizably on a variety Z. Assume that the action is free (i.e. the action
of Γ on Z(F̄ ) is free). Then

(1) The map Z → Z//Γ is étale.
(2) The natural morphism m : Z× Γ → Z×Z//Γ Z is an isomorphism.

Lemma 5.0.5 (Galois descent for free actions, see e.g. [AGKSa, Corollary
3.2.4]). In the setting of the previous lemma, let SchZ//Γ denote the category
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of schemes over Z//Γ and let SchΓZ denote the category of schemes over Z
equipped with an action of Γ which is compatible with the action of Γ on Z.
Consider the functor F : SchZ//Γ → SchΓZ defined by F(X) = X ×Z//Γ Z,
with Γ acting on the second coordinate. Let β : F(X) → X be the projection
on the first component. Then

(i) F is fully faithful.
(ii) GivenX ∈ SchZ//Γ and a sheaf V on it, the pullback V(X) → (β∗V)(F(X))

with respect to β gives an isomorphism

V(X) ∼= (β∗V)(F(X))Γ.

Lemma 5.0.6. Let a finite group Γ act on an affine variety Z. Let γ :
Z1 → Z//Γ be a flat morphism of affine varieties. Then the projection on
the second coordinate Z×Z//Γ Z1 → Z1 defines an isomorphism

(Z×Z//Γ Z1)//Γ ∼= Z1.

We note that the fiber product in the lemma scheme-theoretical, and we
do not claim that in general it is a variety.

Proof. We need to show that the natural map

OZ1(Z1)
Γ →

(
OZ1(Z1)⊗OZ(Z)Γ OZ(Z)

)Γ
is an isomorphism. Equivalently it is enough to show that the natural map

OZ1(Z1)⊗OZ(Z)Γ OZ(Z)
Γ →

(
OZ1(Z1)⊗OZ(Z)Γ OZ(Z)

)Γ
is an isomorphism. This follows from the assumption that OZ1(Z1) is flat
over OZ(Z)

Γ and thus the functor

M 7→ OZ1(Z1)⊗OZ(Z)Γ M

commutes with finite limits. □

The following lemma follows immediately from miracle flatness (see [Sta25,
Lemma 00R4]).

Lemma 5.0.7. Let a finite group Γ act factorizably on a smooth variety X.
Suppose that X//Γ is smooth. Then the factor map X → X//Γ is flat.

6. Some geometric objects related to G

In this section we introduce certain algebraic varieties related to G. The
diagram it §6.3 summarizes most of them. We also prove Proposition I.

6.1. The maps p and q.

Notation 6.1.1. Identify C ∼= T//W and c ∼= t//W . Denote by q : T → C
and q0 : t → c the quotient maps. Denote by p0 : g → c the Lie algebra
version of the Chevalley map p: G → C.

Lemma 5.0.7 and Proposition 5.0.2 imply

Lemma 6.1.2. The maps q0, q are flat.
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Lemma 6.1.3. The maps p0, p are flat.

Proof. See [AGKSb, Corollary 5.0.5] for the flatness of p0. This implies the
flatness of p. □

Lemma 6.1.4. The fibers of p (and of p0) are absolutely irreducible.

Proof. This follows from the Jordan decomposition. □

Notation 6.1.5. Denote by Gr the smooth locus of p.

Lemma 6.1.6 (cf. [AGKSb, Lemma 5.0.8]). p|Gr : Gr → C is onto.

Proof. This follows from the notion of companion matrix. □

Corollary 6.1.7. Gr is big in G, and the fibers of p are absolutely reduced.
Additionally the same holds for the fibers of p0.

Proof. The analogous statements for gr and p0 are proven in [AGKSb, Corol-
lary 5.0.9]. The statement for Gr and p follows from that. □

6.2. The varieties X, Y, Υ.

Notation 6.2.1. Denote G′ := G ×C T. Denote by ψ : G′ → G the
projection on the first coordinate and by φ : G′ → T the projection on the
second coordinate.

Lemma 6.2.2. Let Z2 be an irreducible variety. Let γ : Z1 → Z2 be a flat
map of finite type of schemes. Assume that the fibers of γ are irreducible.
Then Z1 is irreducible.

Proof. We have to show that every two non-empty open subsetsU1,U2 ⊂ Z1

intersect. By [Sta25, Lemma 01UA], γ is an open map. Thus γ(Ui) are
open, and since Z2 is irreducible they intersect. Let p ∈ γ(U1) ∩ γ(U2).
Then Ui ∩ γ−1(p) are non-empty open subsets of the fiber γ−1(p). Since the
fiber is irreducible, they have to intersect. Thus U1 and U2 intersect. □

Lemma 6.2.3. G′ is absolutely reduced, locally complete intersection, and
irreducible.

Proof. By Lemma 6.1.3, G′ is a locally complete intersection, and the maps
p ◦ ψ : G′ → C and φ : G′ → T are flat. By Lemma 6.1.4, the fibers of
φ are absolutely irreducible. Therefore, by Lemma 6.2.2, G′ is absolutely
irreducible. Thus it is enough to show that G′ is generically absolutely
reduced. Since p ◦ ψ : G′ → C is flat, (p ◦ ψ)−1(Crss) is dense in G′ (since
the preimage of a dense subset under a flat morphism is dense, see [Sta25,
Lemma 01UA]). Thus it is enough to show that (p ◦ψ)−1(Crss) is absolutely
reduced. Note that (p ◦ ψ)−1(Crss) ∼= Tr ×Crss Grss. The assertion follows
now from the statement that the natural map Tr → Crss is étale. This in
turn follows from Lemma 5.0.4(1). □

Notation 6.2.4.
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• Y := (T × T)//W , where W acts diagonally. Let µ : T × T → Y
denote the quotient map. Note that the quotient exists by Proposi-
tion 5.0.2.

• Let π : Y → C denote the map induced by the projection on the first
coordinate T×T → T. Let α : Y → C×C denote the natural map.

• X := G×CY, and let τ : X → G and σ : X → Y be the projections.

• X̃ := G′ × T and let ν : X̃ → X be the natural map given by the

identification X̃ ∼= G×C T×T and the quotient map T×T → Y.

From Lemma 6.2.3 we obtain

Corollary 6.2.5. X̃ is absolutely reduced, absolutely irreducible and locally
complete intersection.

Lemma 6.2.6. The map ν : X̃ → X induces an isomorphism X̃//W ∼= X.

Proof. By Lemma 6.1.3, p : G → C is flat. Since the base change of a flat
map is flat, the projection σ : X → Y is flat. Thus, by Lemma 5.0.6, the
natural map X×Y (T×T) → X gives an isomorphism

(X×Y (T×T))//W ∼= X

The assertion follows now from the fact that

X×Y (T×T) ∼= G×C Y ×Y (T×T) ∼= X̃.

□

Corollary 6.2.7. X is absolutely reduced and absolutely irreducible.

Notation 6.2.8. Denote by (T×T)f the free locus of the action of W .
Denote by µ : T×T the quotient map. Denote Yf := µ((T×T)f ).

The following lemma is standard.

Lemma 6.2.9. (T×T)f is a big open set in T×T.

Corollary 6.2.10. Yf is big in Y.

Lemmas 5.0.3 and 5.0.4 imply

Corollary 6.2.11.

(i) Yf is smooth.
(ii) µ|(T×T)f is smooth.
(iii) q is generically smooth.

Proof. By Lemma 5.0.3, (T×T)f//W ∼= Yf . By Lemma 5.0.4, the quotient
map (T×T)f → (T×T)f//W is étale. Since it is also finite, and (T×T)f

is smooth, this implies that Yf is smooth. □

Lemma 6.2.12. Let γ : Z2 → Z1 be a flat morphism of algebraic varieties.
Assume that the fibers of γ are reduced and γ is smooth over an open dense
subset of Z1. Assume that Z1 has a big smooth locus. Then Z2 has a big
smooth locus.
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Proof. Without loss of generality we can assume that Z1 is smooth. Let
U ⊂ Z1 be an open dense subset such that γ is smooth over U. Let Z3

be the complement of U. It is enough to show that γ is smooth in every
generic point of Z3. This follows from the fact that γ is flat and its fibers
are generically smooth (since they are reduced). □

Corollary 6.2.13. X has a big smooth locus.

Proof. By Lemma 6.2.12 and Corollaries 6.2.11 and 6.2.10, it is enough to
show that:

(i) The map σ : X → Y is flat.
(ii) The fibers of σ are reduced.
(iii) There exists an open dense subset of Y such that σ is smooth over it.

Note that σ is a base change of p : G → C. Note also that p is flat by
Lemma 6.1.3, and its fibers are reduced by Corollary 6.1.7. Thus (i) and (ii)
hold.

Now, p is smooth over the open dense subset Crss, and π is locally domi-
nant (since Y is irreducible and π is dominant). This implies (iii). □

Lemma 6.2.14.

(i) Υ is reduced and irreducible.
(ii) The regular locus of Υ is big in Υ.

Proof.

(i). Consider the Chevalley map p : G → C. It is flat and its fibers are
reduced and irreducible. Therefore, so is the natural map p′ : Υ →
X. By Lemma 6.2.2, this implies the assertion.

(ii). By Corollary 6.2.13, the regular locus of X is big. By Corollary 6.1.7
the fibers of p are reduced. It is well known that the regular loci of
the (reduction of the) fibers of p are big (in these fibers). So such are
also the regular loci of the fibers of p′. This implies the assertion.

□

Lemma 6.2.15.

(i) G×C G is reduced and irreducible.
(ii) The regular locus of G×C G is big in G×C G.

Proof. The proof is similar to the proof of Lemma 6.2.14. □
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6.3. Summary. The following diagram summarizes the main objects dis-
cussed in this section.

G′ ×T X̃ T×T

Υ X Y C×C

G×C G G C

T G′ T

prT

prG′

=

□ν µ
q×q

pr1

p′

□
ζ

□

σ

τ

α

π

pr1C

pr2G

□

p

ψ

φ

q

In this diagram

• prG′ , pr1 and pr1C are the projections on the first coordinate.
• prT, pr

2
G and p′ are the projections on the second coordinate.

Lemma 6.3.1. The maps in the above diagram are generically smooth.

Proof. µ and q are generically smooth by Corollary 6.2.11. p is generically
smooth by Corollary 6.1.7. This implies that q× q is generically smooth and
hence so is π◦µ. Therefore (in view of the irreducibility ofY) π is generically
smooth. The rest of the statements are either obvious or obviously follow
from the above. □

6.4. Integrability of Y – Proof of Proposition I. We now deduce
Proposition I, which states that Y is geometrically integrable, from the re-
sults of [AGKSa]. For this we introduce the following notation.

Notation 6.4.1. Let t be the Lie algebra of T and let y := t× t//W where
the action of W is diagonal.

By Lemma 5.0.3 Y can be embedded as an open set in y. Thus, Proposi-
tion I follows from the following one.

Proposition 6.4.2. y is geometrically integrable.

Proof. Note that y ∼= (A2)n//Sn. The assertion follows now from [AGKSa,
Corollary C]. □

7. Algebro-geometric formula for κ

Recall that X = G ×C Y and that τ : X → G is the projection on the
first factor. In §4.1 we introduced a function κ on Grss. In this section we
construct a clopen A ⊂ X and a rational Q-top-form ωX on X and prove

Theorem 7.0.1. We have τ∗((|ωX|)|A) = κ|ωG|.
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7.1. Construction of ωX. The construction is based on the relative rational
Q-top form ωτ on X with respect to the map τ : X → G. The idea of the
construction of ωτ is based on the observation that the generic fibers of τ
admit natural group structures of tori. The relative form ωτ is defined in
such a way that its restrictions to the generic fibers of τ are the canonical
Q-top forms on the fibers (see Definition 4.1.4). We use ωτ and the standard
top form ωG on G in order to construct a form ω′

X on X. Finally we divide
the form ω′

X by the square root of the discriminant to obtain ωX.
To implement this idea we start with the following notation.

Notation 7.1.1. Recall that Tr = T ∩Grss. Denote Yr := (Tr ×T)//W .

The following lemma is standard:

Lemma 7.1.2. Consider the commutative diagram of affine algebraic vari-
eties

Z11 Z12 Z13

Z21 Z22 Z23

δ1

γ11

□ δ2

γ12

δ3

γ21 γ22

Assume also that we have:

Z11 Z13

Z21 Z23

δ1

γ12◦γ11

□ δ3

γ22◦γ21

and that the map γ21 is faithfully flat. Then we have:

Z12 Z13

Z22 Z23

δ2

γ12

□ δ3

γ22

Proof. We want to show that the natural map

Z12 → Z13 ×Z23 Z22

is an isomorphism. We know that the natural map

Z12 ×Z22 Z21 → (Z13 ×Z23 Z22)×Z22 Z21

is an isomorphism. The assertion follows now from the fact that Z21 is
faithfully flat over Z22 using faithfully flat descent for isomorphisms (see e.g.
[Sta25, Lemma 02L4]). □

Lemma 7.1.3. The square

(7.1) Tr ×T

prr1
��

µr // Yr

πr

��
Tr qr // Crss
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is Cartesian. Here, πr, qr, µr, and prr1 are restrictions of π, q, µ and pr1
respectively.

Proof. Consider the following diagram

(7.2) W×Tr ×T

prTr×T

��

��

a1 // Tr ×T

µr

��
qr◦prr1

��

Tr ×T

prr1
��

µr // Yr

πr

��
Tr qr // Crss

where a1 is the diagonal action map, and prTr×T is the projection. By
Lemmas 5.0.4 and 5.0.3, the squares

(7.3) W×Tr ×T

prTr×T

��

a1 // Tr ×T

µr

��
Tr ×T

µr // Yr

and

(7.4) W×Tr

prTr

��

a2 // Tr

qr

��
Tr qr // Crss

are Cartesian, where a2 is the action map and prTr is the projection.
Also the square

W×Tr ×T

prW×Tr

��

a1 // Tr ×T

prr1
��

W ×Tr a2 // Tr

is Cartesian, where prW×Tr is the projection. Hence the square

(7.5) W×Tr ×T

prr1◦prTr×T=prTr◦prW×Tr

��

a1 // Tr ×T

qr◦prr1=πr◦µr
��

Tr // Crss

is Cartesian. By Corollary 6.2.11(ii) the map µr is etale. Hence by Lemma 7.1.2,
and from (7.3) and (7.5), we get that the square

(7.6) Tr ×T

prr1
��

µr // Yr

πr

��
Tr qr // Crss

is Cartesian, as required. □

Definition 7.1.4.
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• Define a group-scheme structure on the Crss-scheme Yr → Crss in
the following way. Consider the Cartesian square given by Lemma 7.1.3

(7.7) Tr ×T

prr1
��

µr // Yr

πr

��
Tr qr // Crss

The left column has a natural structure of a group scheme (over
Tr). W acts homomorphically w.r.t. this structure. By Lemma 5.0.5(i),
this gives a group scheme structure on the right column (over Crss).

• Recall that ωT is the standard top differential form on T. Let ωprr1
be the relative top differential form on Tr × T w.r.t to the map prr1
obtained from ωT. Consider it as a Q-top differential form. As such
it is W invariant. Hence by Lemma 5.0.5(ii) it descends to a relative
Q-top differential form ωπ on Yr w.r.t. πr. Consider it as a relative
rational Q-top differential form on Y.

• Consider the Cartesian square

(7.8) X

τ
��

σ // Y

π
��

G
p // C

Denote ωτ := σ∗(ωπ) considered as a relative rational Q-top differen-
tial form on X w.r.t. τ .

• Let ω′
X := ωG∗ωτ , considered as a rational Q-top differential form on

X. Here we use the fact that the morphism τ : X → G is generically
smooth, as provided by Lemma 6.3.1.

• Denote ωX := τ ∗(∆−1/2)ω′
X.

The definition of ωτ gives us the following:

Lemma 7.1.5. For any x ∈ Grss the form ωτ |τ−1(x) is the canonical Q-top-
form on the torus τ−1(x) (as defined in Definition 4.1.4)

7.2. The fibers of τ : X → G. Let x ∈ Grss. In this subsection we
prove that the algebraic group τ−1(x) is (non-canonically) isomorphic to the
centralizer Gx of x - see Corollary 7.2.3 below.

We start with the following standard lemma:

Lemma 7.2.1. Let x ∈ Grss(F ). Then there exists z ∈ G(F sep) s.t.
zxz−1 ∈ T(F sep).

Next, we describe certain fibers of the map π : Y → C in terms of cen-
tralizers.

Lemma 7.2.2. Let x ∈ Grss. Then the algebraic group π−1(p(x)) is (non-
canonically) isomorphic to the centralizer Gx of x.
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Proof. We will construct an isomorphism of F sep−schemes

ε : (Gx)F sep/F → π−1(p(x))F sep/F

and show that for any F sep-scheme S, and for any γ ∈ Gal(F sep/F ) the
following diagram is commutative

(7.9) (Gx)F sep/F (S)

γ

��

ε // π−1(p(x))F sep/F (S)

γ

��
(Gx)F sep/F (S)

ε // π−1(p(x))F sep/F (S)

Step 1. Construction of ε.
By Lemma 7.2.1 we can choose z ∈ G(F sep) such that zxz−1 ∈
Tr(F sep/F ). Denote y := zxz−1. Let

µy : {y} ×TF sep/F → π−1(p(y))F sep/F = π−1(p(x))F sep/F

be the restriction of (µ)F sep/F . By definition of the group structure on
π−1(p(y)), µy is a group isomorphism. Take ε to be the composition

(Gx)F sep/F
ad(z)→ TF sep/F → TF sep/F × {y} µy→ π−1(p(x))F sep/F .

It is an isomorphism of algebraic groups (over F sep).
Step 2. Proof of commutativity of the diagram (7.9). Let n := γ(z)z−1.

Note that z(Gx)F sep/F z
−1 = (Gy)F sep/F = TF sep/F and thus

γ(z)(Gγ(x))F sep/F )γ(z)
−1 = γ(z(Gx)F sep/F z

−1) = γ(TF sep/F ) = TF sep/F

Thus n normalizes TF sep/F . Therefore ad(n) acts on T by an element
w ∈ W . Let u ∈ (Gx)F sep/F (S). We have

ε(γ(u)) = µ(zγ(u)z−1, y) = µ(w · zγ(u)z−1, w · y) = µ(nzγ(u)z−1n−1, nyn−1) =

= µ(γ(z)z−1zγ(u)z−1zγ(z)−1, γ(z)z−1zxz−1zγ(z)−1) =

= µ(γ(zuz−1), γ(z)xγ(z)−1) = µ(γ(zuz−1), γ(z)γ(x)γ(z)−1) =

= µ(γ(zuz−1, zxz−1)) = µ(γ(zuz−1, y)) = γ(ε(u))

□

Corollary 7.2.3. Let x ∈ Grss. Then the algebraic group τ−1(x) is (non-
canonically) isomorphic to the centralizer Gx of x.

7.3. Construction of A and its properties. In this subsection we con-
struct a clopen subset A ⊂ X s.t. τ |A is proper and a generic fiber of τ
intersects A along the maximal compact subgroup of this fiber (see Corol-
lary 7.3.7).

The following lemma is straightforward:
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Lemma 7.3.1. Consider the following commutative diagram in arbitrary
category.

Z11 Z12 Z13

Z21 Z22 Z23

δ1

γ11

□δ2

γ12

δ3

γ21 γ22

Assume also that we have:

Z11 Z13

Z21 Z23

δ1

γ12◦γ11

□ δ3

γ22◦γ21

Then we have:

Z11 Z12

Z21 Z22

δ1

γ11

□ δ2

γ21

Definition 7.3.2.

• Recall that α : Y = (T × T)/W → T/W × T/W = C × C is the
natural map.

• Let B := α−1(C(F )×C(OF )) ⊂ Y = Y(F ).
• Let Br := B ∩ Y r.

Proposition 7.3.3.

(i) B ⊂ Y is clopen.
(ii) π|B is proper.
(iii) For any x ∈ Crss := Crss(F ) the set π−1(x)(F ) ∩ B is the maximal

compact group of π−1(x)(F ).

For the proof we will need the following lemmas.

Lemma 7.3.4. Consider the commutative diagram

(7.10)

T r ×T(OF ) Br C ×C(OF )

T r × T Y r C × C

T r Crss

1 2

prr1

µr

3 πr

α|Y r

qr

Then all the squares in this diagram are Cartesian.

Proof. The square 2 is Cartesian by the definition of B. The square 3 is
Cartesian by Lemma 7.1.3. It remains to show that 1 is a Cartesian square.
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The fact that OF is integrally closed inside F implies that the square

(7.11) T(OF )

��

// C(OF )

��
T

q // C

is Cartesian. Thus we have the Cartesian square

(7.12) C ×T(OF )

��

// C ×C(OF )

��
C × T

Id×q // C × C

.

Composing it with the Cartesian square

(7.13) T r ×T(OF )

��

// C ×T(OF )

��
T r × T

q|Tr×q
// C × T

.

we obtain the Cartesian square:

T r ×T(OF ) C ×C(OF )

T r × T C × C
q|Tr×q

This square is also the composition of squares 1,2. Since we already showed
that square 2 is Cartesian, it follows by Lemma 7.3.1 that the square 1 is
Cartesian. □

Lemma 7.3.5. Let S be a torus defined over F . Let E/F be a finite field
extension. Let K ⊂ S(E) be the maximal compact subgroup. Then K∩S(F )
is the maximal compact subgroup of S(F ).

Proof. This follows from the uniqueness of the maximal compact subgroup
of a torus. □

Proof of Proposition 7.3.3.

(i) is obvious.
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(ii) Consider the diagram:

B C ×C(OF )

Y C × C

C

π|B

αB

□

pr

π

α

Here pr is the projection to the first coordinate and αB is the restriction
of α. The morphism α is finite, thus proper on the level of F -points.
Therefore, αB is proper. Since C(OF ) is compact, we obtain that pr is
proper. Thus π|B = pr ◦ αB is proper.

(iii) Step 1. Proof for the case when x ∈ q(T r).
Follows from the Cartesian squares

(7.14)

T r ×T(OF ) Br

T r × T Y r

T r Crss

□

□

given by Lemma 7.3.4.
Step 2. General case.

Follows from the previous case and Lemma 7.3.5.

□

Notation 7.3.6. A = G×C B ⊂ X.

Proposition 7.3.3 gives us:

Corollary 7.3.7.

(i) A ⊂ X is clopen.
(ii) τ |A is proper.
(iii) For any x ∈ Grss the set τ−1(x)(F )∩A is the maximal compact subgroup

of τ−1(x)(F ).

7.4. Proof of Theorem 7.0.1. It is enough to show that

τ∗((|ω′
X|)|A) = κ0|ωG|.

For this it is enough to show that

τ∗((|ωτ |)|A) = κ0,
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almost everywhere. For this it is enough to show that for every x ∈ Grss, we
have ∫

A∩τ−1(x)

∣∣ωτ |τ−1(x)

∣∣ = κ0(x).

Fix x ∈ Grss. Recall that Kx denotes the maximal compact subgroup of
Gx. By Lemma 7.2.2 we can choose an isomorphism γ : Gx ≃ τ−1(x). The
group γ(Kx) is the maximal compact subgroup of τ−1(x). So, by Corollary
7.3.7(iii), γ(Kx) = A ∩ τ−1(x). Thus we have∫

A∩τ−1(x)

∣∣ωτ |τ−1(x)

∣∣ = ∫
Kx

∣∣γ∗(ωτ |τ−1(x))
∣∣

By Lemma 7.1.5, γ∗(ωτ |τ−1(x)) = ωGx . Thus we obtain∫
Kx

∣∣γ∗(ωτ |τ−1(x))
∣∣ = ∫

Kx

|ωGx| = κ0(x).

8. Regularity of ωX

Recall thatX = G×CY, withY := (T×T)//W , whereW acts diagonally
and that µ : T×T → Y is the quotient map.
In this section we prove the following theorem.

Theorem 8.0.1. ωX is a regular Q-top differential form on the smooth locus
of X.

Before we begin the proof we give a short description of the idea. Recall
that by Lemma 6.2.3, G′ = G×C T is absolutely reduced, locally complete
intersection, and irreducible. The idea of the proof is as follows: we pullback
ωX under

ν : G′ ×T = X̃ → X,

and obtain a form that can be written as a product ωG′ ⊠ ωT. The form
ωG′ has an explicit description, see Notation 8.0.6 below. We deduce the
regularity of ωX from the regularity of ωG′ which we prove in §8.1 below.

Notation 8.0.2. For a Cartezian square

Z11 Z12

Z21 Z22

δ1

γ1

□ δ2

γ2

and a relative (rational Q-)top form ωδ2 on Z12 w.r.t. δ2 we denote by
γ∗2(ωδ2) its pullback to a relative (rational Q-)top form on Z11 w.r.t. δ1.
As the bundle of δ1-relative top-differential forms on Z11 is the pullback of

the bundle of δ2-relative top-differential forms on Z12 w.r.t. γ1, one can also
denote the form γ∗2(ωδ2) by γ

∗
1(ωδ2), as we did in Definition 7.1.4.

Notation 8.0.3. Define the following algebraic varieties.

(i) X̃rss := Grss ×Crss Tr ×T

(ii) X̃f := G×C (T×T)f
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Lemma 8.0.4. Let µ : T×T → Y be the quotient map. Then

(i) µ is finite.
(ii) µ|(T×T)f is étale.

Proof. Items (i) follows from the fact that the action of W on T × T is
factorizable, see Proposition 5.0.2. Item (ii) follows from Lemmas 5.0.4 and
5.0.3. □

Corollary 8.0.5.

(i) ν is finite.
(ii) ν|X̃f is étale.

(iii) X̃f ⊂ X̃ is big in X̃.

Proof. Items (i) and (ii) follow from the previous lemma. Item (iii) follows
from the fact that Yf ⊂ Y is big (Corollary 6.2.10) and the fact that p (and
hence σ) are flat (Lemma 6.1.3). □

As we will see below, this lemma implies that in order to prove Theo-
rem 8.0.1 it is enough to show that ν∗(ωX) is a regular Q-top differential

form on the smooth locus of X̃.

Notation 8.0.6. Recall that ψ : G′ → G is the projection on the first
factor. Let

ωG′ := ψ∗(ωG ·∆− 1
2 )

Lemma 8.0.7. ν∗(ωX) = ωG′ ⊠ ωT.

Proof. Recall that prG′ : X̃ = G′ × T → G′ is the projection. Denote
Xrss := Grss ×Crss Yr. Consider the following diagram

(8.1)

X̃rss Xrss Yr Tr ×T T

(G′)rss Grss Crss Tr pt

prrssT

prr
G′ 1

νr

τr 2 πr 3 prr1 4 ϕT

ψrss

ϕ(G′)rss

pr qr ϕTr

where (G′)rss := Grss×Crss Tr, the maps prrG′ , τ r, πr, νr, pr, qr, ψrss, prrssT are
obtained by restriction of the maps prG′ , τ, π, ν, p, q, ψ, prT, and ϕT, ϕTr and
ϕ(G′)rss are the projections to the point. The squares 2, 4 are Cartesian by
definition, the square 3 is Cartesian by Lemma 7.1.3, and the square 1 is
Cartesian since it is the base change of square 3 along square 2. Also, the
outside square
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(8.2)

X̃rss T

(G′)rss pt

prrssT

prr
G′ ϕT

ϕ(G′)rss

is Cartesian by definition. Consider ωT as a relative rational Q-differential
form with respect to ϕT. Denote ωprG′ = ϕ∗

(G′)rss(ωT) and consider it as a

relative rational Q-top differential form on X̃ w.r.t. to prG′ .
For each vertical arrow in the above diagram we have a relative form.

These forms are compatible with all the squares possibly except (a-priori)
square 1. We would like to show that it is compatible with square 1 as well.
Explicitly, we have:

ϕ∗
Tr(ωT) = ωprr1

(8.3)

(qr)∗(ωπ) = ωprr1
(8.4)

(pr)∗(ωπ) = ωτ(8.5)

ϕ∗
(G′)rss(ωT) = ωprG′(8.6)

We would like to deduce that (ψrss)∗(ωτ ) = ωprr
G′ . It is enough to check this

equality after extension of scalars to F̄ . For this it is enough to show that
for any x ∈ (G′)rss(F̄ ) we have

(ψrss)∗(ωτ )|(prr
G′ )

−1(x) = ωprr
G′ |(prrG′ )

−1(x).

This follows from (8.3)-(8.6). We obtained:

(ψrss)∗(ωτ ) = ωprr
G′ .

Now we have

ν∗(ωX) = ν∗((ωG·∆−1/2)∗ωτ ) = ψ∗(ωG·∆−1/2)∗ψ∗(ωτ ) = ωG′∗ωprr
G′ = ωG′⊠ωT

□

Lemma 8.0.8. ωG′ is regular on the smooth locus of G′.

We postpone the proof of this lemma to §8.1. Let us now deduce Theo-
rem 8.0.1.

Proof of Theorem 8.0.1. By Lemma 8.0.8, ωG′ is regular on the smooth locus
of G′. Therefore, by Lemma 8.0.7, ν∗(ωX) is regular on the smooth locus

of X̃. Therefore, by Corollary 8.0.5(ii), (ωX)|ν(X̃f ) is regular on the smooth

locus of ν(X̃f ). By Corollary 8.0.5(i,iii), the open set ν(X̃f ) in X is big.
Therefore ωX is regular on the smooth locus of X, as required. □
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8.1. Proof of Lemma 8.0.8. We will use the following ad-hoc definition.

Definition 8.1.1. Let ϕ : C → D be a finite map of algebraic varieties
defined over F , with D being smooth. Let f be a rational Q-function on
D. We say that the pair (ϕ, f) is good, if for any open set U ⊂ D and
any (regular) top-differential form ω on U, the rational Q-form ϕ∗(f · ω) is
regular on the smooth locus of ϕ−1(U).

Lemma 8.1.2. Let ϕ : L → D be a finite map of algebraic varieties defined
over F , with D being smooth. Let f be a rational Q-function on D.

(i) If there is an invertible form ω on D s.t. the rational Q-form ϕ∗(f ·ω)
is regular on D then (ϕ, f) is good.

(ii) The property of being good is local on D in the smooth topology. I.e.
(a) If (ϕ, f) is good and γ : E → D is smooth then (γ∗(ϕ), γ∗(f)) is

good.
(b) If γ : E → D is smooth and surjective and (γ∗(ϕ), γ∗(f)) is good

then (ϕ, f) is good.
(iii) If U ⊂ L is big and (ϕ|U, f) is good then (ϕ, f) is good.

Proof. (i, iii) are obvious. Let us prove (ii).

Case 1. γ :
∐

Ui → D is a Zariski cover of an open subset of D.
This case is obvious.

Case 2. γ is an étale map, and D admits an invertible top differential form.
In this case (iia) follows from (i), and (iib) is trivial.

Case 3. γ is an étale map.
Follows from the two previous cases.

Case 4. γ can be decomposed as U
i→ D × An pr→ D where i is an open

embedding and pr is the projection, and D admits an invertible top
differential form.
In this case (iia) follows from (i), and (iib) is trivial.

Case 5. γ can be decomposed as U
i→ D × An pr→ D where i is an open

embedding and pr is the projection.
Follows from the previous case and Case 1.

Case 6. the relative dimension of γ is constant.
By [Sta25, Lemma 054L], we can find a commutative diagram

E D

Ẽ D× An,

γ

ε

γ1

pr

Where pr is the projection, ε is surjective étale map and γ1 is étale.
• Proof of (iia)
If (ϕ, f) is good then, by Case 5 so is (pr∗(ϕ), pr∗(f)). Thus,
by Case 5 so is

(γ∗1pr
∗(ϕ), γ∗1pr

∗(f)) = (ε∗γ∗(ϕ), ε∗γ∗(f)).
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Therefore, by Case 3(iib) the pair (γ∗(ϕ), γ∗(f)) is good.
• Proof of (iib)
If (γ∗(ϕ), γ∗(f)) is good then, by Case 3(iia) so is

(ε∗γ∗(ϕ), ε∗γ∗(f)) = (γ∗1pr
∗(ϕ), γ∗1pr

∗(f)).

Thus, by Case 3 so is (pr∗(ϕ)|Im γ1 , pr
∗(f)Im γ1). Therefore, by

Case 5, the pair (ϕ, f) is good.
Case 7. General case.

Follows immediately from the previous case.

□

Notation 8.1.3.

(1) Let (G′)r := ψ−1(Gr) ⊂ G′.
(2) Let ψr : (Gr)′ → Gr be the restriction of ψ.

Lemma 4.2.2(2) gives us:

Corollary 8.1.4. The pair (q,∆
−1/2
C ) is good.

Proof of Lemma 8.0.8. We have to show that (ψ,∆
− 1

2
G ) is good.

Consider the Cartesian square

(8.7) (G′)r

ψr

��

// T

q

��
Gr

p|Gr
// C

By Lemmas 8.1.2(ii) and 6.1.6, the last corollary (Corollary 8.1.4) implies

that (ψr,∆G|
− 1

2
Gr ) is good. Therefore (ψ|(G′)r ,∆

− 1
2

G ) is good.
Since q is finite and flat (see Proposition 5.0.2 and Lemma 6.1.2), so

is ψ. So Corollary 6.1.7 implies that (G′)r is big in G′. Therefore, by

Lemma 8.1.2(iii) we obtain that (ψ,∆
− 1

2
G ) is good, as required. □

9. Regularity and invertability of the form ω0
X

In this section we construct the rational form ω0
X on X and prove the

following theorem.

Theorem 9.0.1. ω0
X is regular and invertible over the smooth locus of X.

We also prove regularity and invertability of some other forms (see Lemma 9.0.3
and Corollary 9.0.6 below).

Notation 9.0.2.

(1) Let ωT×T := ωT ⊠ ωT

(2) Note that ωT×T is W invariant, since for any w ∈ W we have

w∗(ωT×T) = sign(w)2ωT×T = ωT×T.

So, by Lemma 5.0.5(ii) it descends to a top form on Yf . Denote this
form by ωY and interpret is as a rational top form on Y.
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(3) ω0
X := ωG ⊠ωC

ωY

(4) Let Ysm be the smooth locus of Y and X0 := Gr ×C Ysm.

The following lemma is obvious.

Lemma 9.0.3. ωY is regular and invertible over the smooth locus of Y.

Lemma 9.0.4. X0 is smooth, and is big in X.

Proof. The map X0 → Ysm is a base change of a smooth map, and hence is
smooth. Thus X0 is smooth. Since q : Y → C is flat (see §6), we have

dimX = dimG+ dimY − dimC,

and
dim(G∖Gr)×C Y = dim(G∖Gr) + dimY − dimC.

As X is irreducible (see §6) and Gr is big in G (see §6), this implies that
Gr ×C Y is big in X. By §6 Ysm is big in Y. Similarly to the above
argument, we obtain that G×C Ysm is big in X. Thus, X0 is big in X. □

Proof of Theorem 9.0.1. By Lemma 9.0.4 it is enough to show that ω0
X is

regular and invertible on X0. Consider the diagram:

C×C

Gr ×Ysm C

X0 1

d

□

(p|Gr )×(q|Ysm )

(τ ,σ)

where d is the ratio map w.r.t. the group structure on C and 1 is the neutral
element w.r.t. this structure.

It is easy to see that ω0
X|X0 is, up to a sign, the Gelfand-Leray form w.r.t.

the smooth map d ◦ ((p|Gr) × (q|Ysm)) and the forms ωG|Gr ⊠ ωY|Ysm and
ωC. Hence it is regular and invertible. □

Finally, we introduce some more forms and prove their regularity and
integrability.

Notation 9.0.5. Denote

• ωΥ := ωG⊠ωC
ω0
X = ωG⊠ωC

ωG⊠ωC
ωY, considered as a rational top

form on Υ.
• ωG×CG := ωG⊠ωC

ωG considered as a rational top form on G×C G.

Note that here we use that the relevant maps are generically smooth, as
guaranteed by Lemma 6.3.1.

Theorem 9.0.1 gives us:

Corollary 9.0.6.

(i) The form ωΥ is invertible on the regular locus of Υ.
(ii) The form ωG×CG is invertible on the regular locus of G×C G.
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Proof.

(i) Let Υ′ be the smooth locus of p′. The above shows that Υ′′ :=
(p′)−1(Ysm)∩Υ′ is big in Υ also, by Theorem 9.0.1, ω0

X is invertible.
By definition so is ωG. Therefore ωΥ|Υ′′ is invertible. This implies
the assertion.

(ii) The proof is similar to the proof of previous item.

□

10. Explicit geometric bounds on the character

10.1. Proof of Theorem H’. Let m,αρ, f be as in Theorem 3.0.2. Let
f ′ = 1B, and h = |m|. By Proposition 7.3.3, π|Supp(f ′) is proper.

By Theorem 4.0.1 there exists γ0 ∈ C∞(G) such that

(10.1) Ω(|m|) = γ0|Grss(prss)∗
(
prss∗ (|m|µG|Grss)

µC |Crss

)
κ

Let k, C be s.t. f < CRk. Let g ∈ C∞
c (G). By Theorem 3.0.2 we have:

⟨χρ, gµG⟩ ≤ ⟨f · Ω(|m|), (|g| · µG)|Grss⟩≤⟨CRk · Ω(|m|), (|g| · µG)|Grss⟩.
By (10.1) we obtain

⟨χρ, gµG⟩ ≤ ⟨CRk · γ0|Grss(prss)∗
(
prss∗ (|m|µG|Grss)

µC |Crss

)
κ, (|g| · µG)|Grss⟩.

By Theorem 7.0.1 we obtain

⟨χρ, gµG⟩ ≤ ⟨CRk · γ0|Grss(prss)∗
(
prss∗ (|m|µG|Grss)

µC |Crss

)
τ∗(1A · |ωX|)|Grss

(|ωG|)|Grss

, (|g| · µG)|Grss⟩ =

= ⟨CRk · γ0p∗
(
p∗(|m|µG)

µC

)
τ∗(1A · |ωX|)

|ωG|
, |g| · µG⟩

= ⟨CRk · γ0p∗
(
p∗(|m|µG)

µC

) τ∗(1A ·
∣∣∣ωX

ω0
X

∣∣∣ · |ω0
X|)

|ωG|
µG
µG

, |g| · µG⟩

Let F := µG
|ωG|

∣∣∣ωX

ω0
X

∣∣∣. By Theorems 8.0.1 and 9.0.1, and Corollary 6.2.13,

the function F is continuous. Let F ′ ∈ C∞(X) be a real valued function s.t.
F ′ > F . Set γ = τ ∗(γ0C)F ′.
We obtain:

⟨χρ, gµG⟩ ≤ ⟨CRk · γ0p∗
(
p∗(|m|µG)

µC

)
τ∗(1A · F · |ω0

X|)
µG

, |g| · µG⟩

≤ ⟨CRk · γ0p∗
(
p∗(|m|µG)

µC

)
τ∗(1A · F ′ · |ω0

X|)
µG

, |g| · µG⟩

=

〈
τ∗(|ω0

X|τ ∗(γ0C)F ′σ∗(1B))

µG
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
=

〈
τ∗(|ω0

X|γσ∗(f ′))

µG
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
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as required.

10.2. Base change for integration. In order to pass from Theorem H’ to
the other versions of Theorem H we will need the following:

Lemma 10.2.1. Let

Z1 Z2

Z3 Z4

δ′

γ′ γ

δ

□

be a Cartesian square of algebraic varieties. Assume that all the maps in this
diagram are generically smooth. Let ωi for i = 2, 3, 4 be invertible Q-forms
on the smooth loci of Zi and let ω1 := ω2 ⊠ω4 ω3. Let Zi := Zi(F ). Let
h3 ∈ C∞(Z3) s.t. δ|Supp(h3) is proper. Then,

(1)

γ∗
(
δ∗(h3 · |ω3|)

|ω4|

)
=
δ′∗ ((γ

′)∗(h3)·|ω1|)
|ω2|

(2) For every h2 ∈ C∞(Z2) s.t. γ|Supp(h2) is proper we have:

δ∗(h3 · |ω3|)
|ω4|

γ∗(h2 · |ω2|)
|ω4|

=
(γ ◦ δ′)∗(h2 ⊠Z4 h3 · |ω1|)

|ω4|
.

Note that these are equalities of functions that are defined only almost ev-
erywhere and, in particular, are valid also only almost everywhere.

Proof.

Case 1. The varieties and maps in the diagram are smooth.
This is a straightforward computation.

Case 2. General case.
Follows from the previous case.

□

10.3. Proof of Theorem H”. Lemma 10.2.1(1) gives us:

Corollary 10.3.1. There exists λ ∈ R s.t. for any f ∈ C∞(Y ) with p|Supp(f)
being proper, we have

τ∗(σ
∗(f) · |ω0

X|)
µG

= λp∗
(
π∗(f · |ωY|)

µC

)
Proof. We take λ :=

(
|ωG|
µG

)(
µC
|ωC|

)
and use Lemma 10.2.1(1), and the fact

that X and Y are reduced and the maps in the following diagram are gener-
ically smooth.

X G

Y C

σ

τ π

p

See Lemma 6.3.1. □
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Proof of Theorem H”. Let f ′, h, k as in Theorem H’. 2 By Theorem H’ there
exists γ0 ∈ C∞(X) s.t.

|⟨χρ, gµG⟩| ≤
〈
τ∗(|ω0

X|γ0σ∗(f ′))

µG
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
.

By the assumptions on f ′ the map τ |Supp(σ∗(f ′)) is proper. Let γ1 ∈ C∞(G)
be defined by

γ1(g) := max
x∈Supp(σ∗(f ′))∩τ−1(g)

γ0(x).

We obtain:

⟨χρ, gµG⟩ ≤
〈
γ1
τ∗(|ω0

X|σ∗(f ′))

µG
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
By Corollary 10.3.1 there is λ ∈ R s.t.

τ∗(σ
∗(f ′) · |ω0

X|)
µG

= λp∗
(
π∗(f

′ · |ωY|)
µC

)
Set γ = λγ1

µG
|ωG| . We obtain:

⟨χρ, gµG⟩ ≤
〈
γ1λp

∗
(
π∗(f

′ · |ωY|)
µC

)
p∗
(
p∗(hµG)

µC

)
Rk, |g|µG

〉
=

〈
γ1λp

∗
(
π∗(f

′ · |ωY|)
µC

)
p∗

(
p∗(h|ωG| µG|ωG|)

µC

)
Rk, |g|µG

〉

=

〈
γp∗

(
π∗(|ωY|f ′)

µC

p∗(|ωG|h)
µC

)
Rk, |g|µG

〉
.

as required.
□

10.4. Proof of Theorem H. Let f ′, h, γ be as in Theorem H’. Let g =
γσ∗(f ′) and set

e :=

(
µG
|ωG|

|ωC|
µC

)2

h⊠C g.

By Theorem H’ it is enough to show that

ζ∗(|ωΥ|e) =
τ∗(|ω0

X|g)
µG

p∗
(
p∗(hµG)

µC

)
µG

We have

τ∗(|ω0
X|g)

µG
p∗
(
p∗(hµG)

µC

)
=

µG
|ωG|

(
|ωC|
µC

)2(
τ∗(|ω0

X|g)
|ωG|

)
p∗
(
p∗(|ωG|h)

|ωC|

)(10.2)

2We will also use ω0
X from Theorem H’, but this is the fixed ω0

X that we defined in
Notation 9.0.2. Formally speaking, if we just use the formulation of Theorem H’ and not
its proof, we can not assume that the form there is the same ω0

X. However, changing γ
appropriately, we can assume it WLOG.
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Consider the Cartesian square:

G×C G G

G C

pr2G

pr1G
p

p

By Lemma 6.3.1 and Lemma 6.2.15 all the objects in this diagram are vari-
eties and all the maps are generically smooth. Thus by Lemma 10.2.1(1) we
have:

(10.3) p∗
(
p∗(|ωG|h)

|ωC|

)
=

(pr2G)∗(|ωG ⊠ωC
ωG|(pr1G)∗(h))

|ωG|

Consider the Cartesian square:

Υ X

G×C G G

p′

π

pr2G

By Lemma 6.3.1, Lemma 6.2.14. and Lemma 6.2.15 all the objects in this
diagram are varieties and all the maps are generically smooth. Thus by
Lemma 10.2.1(2) we have:

(10.4)
τ∗(|ω0

X|g)
|ωG|

(pr2G)∗(|ωG ⊠ωC
ωG|(pr1G)∗(h))

|ωG|
=

ζ∗(|(ωG ⊠ωC
ωG)⊠ωG

ω0
X|(pr1G)∗(h)⊠Gg)

|ωG|
.

Finally:

τ∗(|ω0
X|g)

µG
p∗
(
p∗(hµG)

µC

)
µG

(10.2)
=

=
µG
|ωG|

(
|ωC|
µC

)2(
τ∗(|ω0

X|g)
|ωG|

)
p∗
(
p∗(|ωG|h)

|ωC|

)
µG

(10.3)
=

=
µG
|ωG|

(
|ωC|
µC

)2(
τ∗(|ω0

X|g)
|ωG|

)(
(pr2G)∗(|ωG ⊠ωC

ωG|(pr1G)∗(h))
|ωG|

)
µG

(10.4)
=

=
µG
|ωG|

(
|ωC|
µC

)2
ζ∗(|(ωG ⊠ωC

ωG)⊠ωG
ω0
X|(pr1G)∗(h)⊠Gg)

|ωG|
µG = ζ∗(|ωΥ|e),

as required.
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11. Bounds on characters in terms of the Chevalley map -
Proof of Theorem G

Let f ′, γ and k be as in Theorem H” and let h′ be the function h from

Theorem H”.3 Set f ′′ := π∗(f ′|ωY|)
µC

. By Proposition I there is a resolution of

singularities δ : Ỹ → Y s.t. δ∗(ωY) extends to a regular form ωỸ on Ỹ. We

obtain: f ′′ =
(π◦δ)∗(δ∗(f ′)|ωỸ|)

µC
(almost everywhere). Note that by Lemma 6.3.1

the map π ◦ δ is generically smooth. Thus by Proposition J this implies that
f ′′ ∈ L1+2ε

loc for some ε > 0.
Let M = max(γ|U). Let R1,R2 : G→ N ∪ {∞} the functions given by

R1(x) = max(1,−min val(xij))

and

R2(x) = max(1, val(det(x)), val(∆(x))).

Note that

R ≤ R1R2.

Let R3 ∈ C∞(Crss) s.t. p∗(R3) = (R2)
k. Let N := max(((R1)

k)|U). By
[GH, Theorem 1.3] R3 ∈ L<∞

loc (C) and thus (by Hölder’s inequality) f ′′R3 ∈
L1+ε
loc . Set

f :=MN
|ωG|
µG

R3f
′′ · 1p(U)

and

h := h′ · 1p−1(p(U)).

Using Theorem H” we obtain:

3We will also use ωY from Theorem H’. However it is just the form ωY defined in
Notation 9.0.2. The proof of Theorem G will work with any other form satisfying the
assertion of Theorem H”.
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|⟨χρ, gµG⟩| ≤
〈
γp∗

(
π∗(|ωY|f ′)

µC

p∗(|ωG|h′)
µC

)
Rk, |g|µG

〉
=

〈
γp∗

(
f ′′p∗(|ωG|h′)

µC

)
Rk, |g|µG

〉
=

〈
γp∗

(
|ωG|
µG

f ′′p∗(µGh
′)

µC

)
Rk, |g|µG

〉
≤
〈
p∗
(
M

|ωG|
µG

f ′′p∗(µGh
′)

µC

)
Rk, |g|µG

〉
≤
〈
p∗
(
M

|ωG|
µG

f ′′p∗(µGh
′)

µC

)
Rk

1Rk
2, |g|µG

〉
≤
〈
p∗
(
M

|ωG|
µG

f ′′p∗(µGh
′)

µC
R3

)
,Rk

1|g|µG
〉

≤
〈
p∗
(
MN

|ωG|
µG

f ′′p∗(µGh
′)

µC
R3

)
, |g|µG

〉
=

〈
p∗
(
f
p∗(hµG)

µC

)
µG, |g|

〉
,

as required.

12. Proof of the main results - Theorems C and D

Proposition 12.0.1. Let Z be an F -analytic variety. Let ξ ∈ C−∞(Z). Let
f ∈ L1(Z). Assume that for any smooth measure ρ ∈ C∞

c (Z,DZ) we have

(12.1) ⟨ξ, ρ⟩ ≤ ⟨f, |ρ|⟩.

Then there exists a function g ∈ L1(X) representing ξ.

Proof. Choose an invertible smooth measure on Z and identify C∞
c (Z,DZ) ∼=

C∞
c (Z) and the space of generalized functions with the space of distributions.

Step 1. ξ (as a functional on C∞
c (Z)) can be continuously extended to Cc(Z)

(and thus can be considered as a Radon measure on Z).
This follows from the fact that ξ, as a functional on Cc(Z), is contin-
uous w.r.t. the induced topology from C∞

c (Z), which follows from
the inequality (12.1).

Step 2. For any Borel set A ⊂ Z we have |ξ(A)| ≤
∫
Ω
fµ.

This follows from the inequality (12.1).
Step 3. ξ is an absolutely continuous measure w.r.t. the Lebesgue measure.

Follows from the previous step.
Step 4. End of the proof.

The assertion follows from the previous item and the Radon-Nikodym
theorem.

□
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Lemma 12.0.2. Let γ : Z1 → Z2 be a morphism of F -analytic varieties.
Let µi be nowhere vanishing smooth measures on Zi. Assume that for any

real valued non-negative function f ∈ C∞
c (Z1) we have γ∗(fµ1)

µ2
∈ L<∞(Z2).

Then, for any ε > 0 and any real valued non-negative g ∈ L1+ε(Z2) we have

γ∗(g) ∈ L1
loc(Z1).

Proof. For an F -analytic variety Z, define Mes≥0(Z) to be the collection
of real valued non-negative measurable functions. If Z is equipped with a
nowhere vanishing smooth measure µ we have a natural pairing

B(Z,µ) :Mes≥0(Z)×Mes≥0(Z) → R ∪ {∞}
given by integration:

B(Z,µ)(ϕ, ψ) =

∫
Z

ϕψµ

Notice that by Hölder’s inequality, for any ε > 0, this pairing is finite when-
ever ψ ∈ L<∞

c (Z) and ϕ ∈ L1+ε
loc (Z).

Furthermore, to show that h ∈ Mes≥0(Z) is in L1
loc(Z) it is enough to

show that B(ψ, h) <∞ for any real valued non-negative ψ ∈ C∞
c (Z).

The fact that γ∗(g) ∈ L1
loc(Z1) follows now from:

∀f ∈ C∞
c (Z1) we have B(Z1,µ1)(f, γ

∗(g)) = B(Z2,µ2)

(
γ∗(fµ1)

µ2

, g

)
.

□

Proof of Theorem C. Theorem 1.5.3 and Conjecture B imply that p∗ maps
every C∞

c measure to a measure with L<∞ density. By Lemma 12.0.2 this
implies that for any ε > 0 the operation p∗ maps L1+ε(C) function to an
L1
loc(G) function.
Let U ⊂ G be an open compact subset, and let ε, f , and h be as in

Theorem G. We get that p∗(hµG)
µC

∈ L<∞(C). Thus, by Hölder’s inequality

(12.2) f
p∗(hµG)

µC
∈ L1+ ε

2 (C).

We obtain h′ := p∗(f p∗(hµG)
µC

) ∈ L1
loc(G). By Theorem G, for any g ∈ C∞(U)

we have:

|⟨χρ, gµG⟩| ≤ ⟨h′µG, |g|⟩ .
So by Proposition 12.0.1 above we obtain (χρ)|U ∈ L1(U) and we are done.

□

Proof of Proposition D. The proof is the same as the proof of Theorem C
when we replace Theorem 1.5.3 by Theorem 1.5.4 and Conjecture B by the
assumption char(F ) > n

2
. □

Remark 12.0.3. Note that these proofs also prove Theorems E and E’,
which, using Proposition 12.0.1 and [AGKSc, Theorem A’], implies Theo-
rem F.
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13. Alternative versions of Theorem C

Denote:

• g - the Lie algebra of G
• c - the affine space of degree n monic polynomials.
• p0 : g → c - the Chevalley map.

• g
i
:= gl×in := gln ×c . . .×c gln︸ ︷︷ ︸

i times

considered as an algebraic variety over

Fℓ.
One can replace the assumption of Conjecture B in Theorem C (and the
versions of Theorems E and F) with any of the following more precise con-
ditions:

(1) For any i ∈ N, the variety g
i
admits a strong resolution of singulari-

ties.
(2) For any i ∈ N, the defining ideal of g

i
inside g×i has monomial

principalization (see [AGKSb, Definition 12.0.1]).
(3) (a) The defining ideal of the nilpotent cone inside gln has monomial

principalization, and
(b) For any i ∈ N, the variety, g

i
has a resolution of singularities

(not necessarily a strong one).
(4) Υ is geometrically integrable.
(5) p is almost analytically FRS (see [AGKSb, Definition 1.3.5(3)]).

Indeed,

• The fact that one can replace Conjecture B with condition (1) follows
from the actual formulation of [AGKSb, Theorem D].

• The fact that one can replace Conjecture B with any of the conditions
(2,3) follows from the alternative formulations of [AGKSb, Theorem
D] given in [AGKSb, §12].

• The fact that one can replace Conjecture B with condition (4) follows
from Theorems H and J.

• The fact that one can replace Conjecture B with condition (5) follows
from the proofs of Theorem C and Proposition D.

Remark 13.0.1.

• Note that unlike conditions (1-3), condition (4) is not a special case of
Conjecture B (or its version). However, given an explicit resolution
of singularities of Υ, it should be easy to check whether condition (4)
holds.

• In conditions (1-3) one can replace the requirement for any i, to the

value i = 2n
2+3. This follows from Proposition A.0.8 and from the

proof of Theorem C. Indeed, if in the proof of Theorem G we use
Proposition A.0.8 instead of Proposition J then we get that in Theo-

rem G one can take ε =
(
1 + ((n− 1)n+ n2 − n)2n

2−n
)−1

. Thus in

the proof of Theorem C it is enough to require that p∗ maps any C∞
c
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measure to a measure with density in LN(C), where

N :=
1

1− 1
1+ ε

2

=
2

ε
+ 1 < 2n

2+3,

in order to get (12.2). Now, we need to use Lemma 12.0.2 for ε
2
.

It is easy to see that in this case we can replace (in Lemma 12.0.2)
L<∞ with LN . So, we need to show that our weaker assumption still
implies the assertion of Theorem 1.5.3 with L<∞ replaced by LN .
This follows from [AGKSb, Theorem D] and [AGKSb, §12].

Appendix A. Integrability of pushforward measures in
positive characteristic

by Itay Glazer and Yotam I. Hendel

Let F be a non-Archimedean local field of arbitrary characteristic, with ring
of integers OF and absolute value | · |F , and let X be an F -analytic manifold
of dimension n. Let (Uα ⊂ X,ψα : Uα → F n)α∈I be an atlas, and fix a Haar
measure µFn on F n, with µFn(On

F ) = 1. We consider the following spaces
(whose definition is independent of the choice of atlas).

(1) Let C∞(X) be the space of smooth (i.e. locally constant) complex-
valued functions on X, and let C∞

c (X) be the subspace of smooth
compactly supported functions.

(2) Let M∞(X) be the space of smooth measures on X, i.e. measures
such that each (ψα)∗(µ|Uα) has a locally constant density with re-
spect to the Haar measure on F n. Let M∞

c (X) be the subspace of
compactly supported smooth measures.

(3) For 1 ≤ q ≤ ∞, let Mc,q(X) be the space of compactly supported
Radon measures µ on X such that for every α ∈ I the measure
(ψα)∗(µ|Uα) is absolutely continuous, and with density in Lq(F n).

Given µ ∈ Mc,1(X), we define the integrability exponent

ϵ⋆(µ) := sup {ϵ ≥ 0 : µ ∈ Mc,1+ϵ(X)} .

Definition A.0.1. Let ψ : X → Y be an F -analytic map between F -analytic
manifolds X, Y . We say that ψ is generically submersive if there exists an
open dense subset U in X such that the differential of ψ at each x ∈ U is
surjective.

If ψ is generically submersive, then ψ∗µ ∈ Mc,1(Y ) whenever µ ∈ Mc,1(X).
In particular, it makes sense to consider ϵ⋆(ψ∗µ). This leads us to define the
following invariant.

Definition A.0.2. Let ψ : X → Y be a generically submersive F -analytic
map between F -analytic varieties. For each x0 ∈ X, we define the integra-
bility exponent of ψ at x0 by

(A.1) ϵ⋆(ψ;x0) := sup
U∋x0

inf
µ∈M∞

c (U)
ϵ⋆(ψ∗µ),
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where the supremum is taken over all open neighborhoods U of x0. We also
set

(A.2) ϵ⋆(ψ) := inf
µ∈M∞

c (X)
ϵ⋆(ψ∗µ) = inf

x∈X
ϵ⋆(ψ;x).

The invariant ϵ⋆(ψ;x0) was introduced and explored in [GH21, GHS] in
the characteristic zero case4, where it was shown that ϵ⋆(ψ;x0) is a positive
number that can be bounded from below effectively. This was used in [GGH]
to study integrability of Harish-Chandra characters of representations of
reductive groups over local fields of characteristic zero.

The aim of this appendix is to establish a similar bound on ϵ⋆(ψ;x0) over
local fields of positive characteristic. We start our discussion by noting that
when char(F ) ̸= 0, non-constant analytic maps f : F n → F need not be
generically submersive.

Example A.0.3. Let p be a prime and let f(x) = xp. Then dxf = pxp−1 = 0
for every x ∈ Fp[[t]], so f : Fp[[t]] → Fp[[t]] is not generically submersive.
Moreover, if we take µ = µFp[[t]], then f∗µFp[[t]] is supported on the set of p-th
powers {

∑∞
i=0 ait

pi : ai ∈ Fp} ⊆ Fp[[t]], and thus f∗µFp[[t]] is not absolutely
continuous with respect to µFp[[t]].

We recall the following notion from [GH].

Definition A.0.4 ([GH, Definition 1.1]). Let X be an F -analytic manifold,
let x0 ∈ X and let f1, . . . , fr : X → F be F -analytic functions generating a
non-zero ideal J (in the ring of F -analytic functions on X). We define the
F -analytic log-canonical threshold of J at x0 by

lctF (J ;x0) := sup

{
s > 0 : ∃U ∋ x0 s.t. ∀µ ∈ M∞

c (U),

∫
X

min
1≤i≤r

|fi(x)|−sF µ(x) <∞
}
,

where U in the definition above is an open neighborhood of x0.

Definition A.0.5. Given a generically submersive map ψ : X → Y between
F -analytic manifolds, we write Jψ for the Jacobian ideal sheaf of ψ. Locally,
if X ⊆ F n and Y ⊆ Fm are open subsets, Jψ is the ideal in the algebra
of analytic functions on X generated by the m × m-minors of dxψ. This
construction is invariant under analytic coordinate changes and defines an
ideal sheaf on X.

The following are the main results of this appendix.

Theorem A.0.6. Let ψ : X → Y be an F -analytic map between F -analytic
manifolds. Suppose that ψ is generically submersive. Then for every x0 ∈ X,
there exists ϵx0 > 0 such that

ϵ⋆(ψ;x0) ≥ lctF (Jψ;x0) ≥ ϵx0 .

Given a generically smooth morphism φ : X → Y of smooth algebraic F -
varieties, we get an F -analytic map φF : X(F ) → Y (F ), which is generically
submersive. In this setting, we have a uniform lower bound on ϵ⋆(φF ;x0).

4These works also treat the integrability exponent over Archimedean local fields.
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Theorem A.0.7. Let φ : X → Y be a generically smooth morphism between
smooth algebraic F -varieties. Then there exists ϵ > 0 depending only on the
complexity class5 of φ : X → Y such that

ϵ⋆(φF ) > ϵ.

The following proposition gives a concrete lower bound on ϵ⋆(φF ) using
the data defining φ.

Proposition A.0.8. Let X, Y and φ be as in Theorem A.0.7. Suppose that:

(1) X ′ ⊆ An1+m1
F is a closed (possibly singular) subvariety of dimension

n1 cut by polynomials g1 = . . . = gr1 = 0 of degree at most d1, and
X ⊆ X ′ an open affine subvariety.

(2) Y ⊆ An2+m2
F is a closed subvariety, admitting an étale map π : Y →

An2
F where π1, . . . , πn2 are polynomials of degree at most d2 (locally it

is the case, since Y is smooth).
(3) We have φ = Φ|X , where Φ : An1+m1

F → An2+m2
F is a polynomial map

of degree d.

Then:

ϵ⋆(φF ) ≥
1

((d · d2 − 1) · n2 + (d1 − 1)m1) · dm1
1

.

Theorems A.0.6 and A.0.7 work over all local fields, where the new as-
pect is the proof for local fields of positive characteristic. The inequality
ϵ⋆(ψ;x0) ≥ lctF (Jψ;x0) follows similarly to [GHS, Theorem 1.1]. The in-
equality lctF (Jψ;x0) ≥ ϵx0 follows from [GH], where new methods are re-
quired to deal with local fields of positive characteristic. These results com-
plement [GHS, Theorem 1.1], which was proven in the characteristic zero
case.

Finally, as the next example shows, we note that in the setting of Theorem
A.0.6, ϵ⋆(ψ) might not be strictly positive without an additional assumption.

Example A.0.9. Fix a prime p and set X = Y = F = Fp((t)). For k ≥ 1,
set dk = pk + 1 and Uk := {x ∈ F :

∣∣x− t−k
∣∣
F

≤ 1}. Then the subsets
{Uk}∞k=1 are disjoint. Define ψ : X → Y by

ψ(x) =

{
x if x /∈

⋃∞
k=1 Uk,(

x− t−k
)dk if x ∈ Uk.

Then ψ is generically submersive, and by Proposition A.1.2 we have ϵ⋆(ψ|Uk
) =

1
dk−1

= p−k. In particular, ϵ⋆(ψ) = 0.

Acknowledgement. I.G. was supported by ISF grant 3422/24.

5For a precise definition of complexity, we refer to [GH19, Definition 7.7].
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A.1. Proof of the main theorems.

Lemma A.1.1. Let ψ : X → Y be a submersion of F -analytic manifolds.
Then

ϵ⋆(ψ∗µ) ≥ ϵ⋆(µ)

for every µ ∈ Mc,1(X), with equality if ψ is a local diffeomorphism.

Proof. It is clear that ϵ⋆(ψ∗µ) = ϵ⋆(µ) if ψ is a local diffeomorphism. Since
µ is compactly supported, by working locally using the local submersion
theorem (see e.g. [Ser92, III, p.85]), we may assume that ψ : F n → Fm

is the projection to the last m coordinates, with n ≥ m. For simplicity
write x = (x1, . . . , xn−m), y = (xn−m+1, . . . , xn), so that ψ(x, y) = y. Write
µ = f(x, y)µFn and ψ∗µ = h(y)µFm . Let B ⊆ F n−m be a ball which contains
the projection of supp(µ) to the last n − m coordinates F n−m. Let C :=
µFn−m(B). Then by Jensen’s inequality, for every s > 0, we have:∫

Fm

h(y)1+sdy =

∫
Fm

(∫
Fn−m

f(x, y)dx

)1+s

dy

=

∫
Fm

µFn−m(B)1+s
(

1

µFn−m(B)

∫
B

f(x, y)dx

)1+s

dy

≤ Cs

∫
Fm

∫
Fn−m

f(x, y)1+sdxdy = Cs

∫
Fn

f(x, y)1+sµnF .

This concludes the proof. □

We next reduce Theorem A.0.6 to Proposition A.1.2 below. Recall that a
power series f(x1, . . . , xn) :=

∑
I∈Zn

≥0
aIx

I ∈ F ⟨x1, . . . , xn⟩ is called strictly

convergent if aI −→
|I|→∞

0 (see [GH, Definition 2.1(2)]).

Proposition A.1.2. Let ψ : X → Fm be a generically submersive F -
analytic map, where X ⊆ On

F is an open compact neighborhood of 0, and
such that ψ = (ψ1, . . . , ψm), where ψi : X → F is given by strictly conver-
gent power series centered at 0. Then

ϵ⋆(ψ; 0) ≥ lctF (Jψ; 0) > 0,

with equality if m = n.

Proposition A.1.2 implies Theorem A.0.6. Let ψ : X → Y be a generically
submersive map. Note that if ϕ1 : X ′ −→

≃
U and ϕ2 : V −→

≃
Y ′ are

diffeomorphisms, for open neighborhoods x0 ∈ U ⊆ X and ψ(x0) ∈ V ⊆ Y ,
then

ϵ⋆(ψ;x0) = ϵ⋆(ϕ2 ◦ ψ ◦ ϕ1;ϕ
−1
1 (x0)).

Hence, by analytic change of coordinates, we may assume that x0 = 0,
X ⊆ On

F is an open compact neighborhood of 0, and that Y = Fm, with
n ≥ m. Since ψ is analytic near 0, by shrinking X, we may assume that
ψ = (ψ1, . . . , ψm), where each ψi : X ⊆ F n → F is given by a converging
power series centered at 0. Let ϖF be a uniformizer of F . By altering X as
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follows, we may assume that each ψi converges on On
F , and therefore each ψi

is strictly convergent (see e.g. [BGR84, Section 5.1.4, Proposition 1]). First,
we further shrink X such that ϖ−k

F X ⊆ On
F . Then, we may apply a change

of coordinates of the form (x1, . . . , xn) 7→ (ϖk
Fx1, . . . , ϖ

k
Fxn) for k ∈ N, and

replace ψ with ψ̃(x1, . . . , xn) := ψ(ϖk
Fx1, . . . , ϖ

k
Fxn). Thus, we have reduced

Theorem A.0.6 precisely to the setting of Proposition A.1.2. □

Lemma A.1.3. In the setting of Proposition A.1.2, with m = n, we have:

ϵ⋆(ψ; 0) = lctF (Jacx(ψ); 0),

where Jacx(ψ) := det(dx(ψ)) is the Jacobian determinant at x.

Proof. Since ψ is generically submersive, there is an open dense subset U ⊆
X, where Jacx(ψ) ̸= 0, for every x ∈ U . By the inverse mapping theorem
[Ser92, p. 73], ψ|U : U → Fm is a local diffeomorphism. By [Lip84, Theorem
1], since ψi is strictly convergent for 1 ≤ i ≤ m, there exists L ∈ N such that
# {ψ−1(ψ(x))} ≤ L for every x ∈ U . From here, the proof of the lemma
is identical to the proof of [GHS, Proposition 4.1]. In particular, for every
µ ∈ Mc,∞(X), if ψ∗µ = g(y) · µFn , we get

□(A.3)

∫
X

1

|Jacx(ψ)|sF
µ(x) ≤

∫
Y

g(y)1+sdy ≤ Ls
∫
X

1

|Jacx(ψ)|sF
µ(x).

We can now prove Proposition A.1.2 and deduce Theorem A.0.6.

Proof of Proposition A.1.2. Let ψ : X → Fm be as in Proposition A.1.2.
The inequality lctF (Jψ; 0) > 0 follows from [GH, Theorem 1.2]. It is left to
prove that ϵ⋆(ψ; 0) ≥ lctF (Jψ; 0).

Since ψ is generically submersive, U := {x ∈ X : rk(dxψ) = m} is open
and dense in X. Denote by Am the set of subsets I = {i1, . . . , im} of
{1, . . . , n}. For each I ∈ Am let MI be the corresponding m × m-minor
of dxψ. Fix s < lctF (Jψ; 0). By Definition A.0.4, there exists an open
compact subset 0 ∈ U ′ ⊆ X such that

(A.4) ∀µ′ ∈ M∞
c (U ′),

∫
X

min
I∈Am

|MI(x)|−sF µ′(x) <∞.

For each I ∈ Am, set

UI :=

{
x ∈ U ′ ∩ U : max

I′∈Am

|MI′(x)|F = |MI(x)|F
}
.

We may refine the cover
⋃
I∈Am

UI into a disjoint cover
⋃
I∈Am

VI , where
VI ⊆ UI is a measurable subset. Set J = {j1, . . . ., jn−m} := {1, . . . , n}\I
and consider the map ψI : VI → F n given by ψI(x) := (ψ(x), xj1 , . . . , xjn−m).
Let µ ∈ M∞

c (U ′) and denote µI := 1VI · µ. Since
⋃
I∈Am

VI is of full
measure in U ′, we can write µ =

∑
I µI . We can further write:

ψ∗µ = g(y) · µFm , ψ∗µI = gI(y) · µFm and (ψI)∗ µI = g̃I(z) · µFn
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where

(A.5) g̃I(z) =
∑

x∈ψ−1
I (z)

|Jacx(ψI)|−1
F =

∑
x∈ψ−1

I (z)

|MI(x)|−1
F .

It is enough to show that
∫
Fm g(y)

1+sµFm <∞ for each 0 < s < lctF (Jψ; 0)
as above.

By Jensen’s inequality, there exists C1(s) > 0 such that:
(A.6)∫

Fm

g(y)1+sdy =

∫
Fm

(∑
I∈Am

gI(y)

)1+s

dy ≤ C1(s)
∑
I

∫
Fm

gI(y)
1+sdy.

Let q : F n → Fm be the projection to the first m coordinates. Since ψ|VI =
q ◦ ψI , we have:

gI(y) =

∫
Fn−m

g̃I(y, zm+1, . . . , zn)dz.

Using Jensen’s inequality as in the proof of Lemma A.1.1, there exists
C2(s) > 0 (depending on ψ(U ′)) such that

(A.7)

∫
Fm

gI(y)
1+sdy ≤ C2(s)

∫
Fn

g̃I(z)
1+sdz.

Taking L ∈ N such that #
{
ψ−1
I (ψI(x))

}
≤ L for every x ∈ VI and every I,

and using (A.5), similarly to (A.3), we get:
(A.8)∫

Fn

g̃I(z)
1+sdz ≤ Ls

∫
U ′
|MI(x)|−sF µI ≤ Ls

∫
U ′

min
I∈Am

[
|MI(x)|−sF

]
µ <∞.

Combining (A.6),(A.7) and (A.8), we get∫
Fm

g(y)1+sdy ≤ C1(s)C2(s)
∑
I

∫
Fn

g̃I(z)
1+sdz

≤ C1(s)C2(s)L
s

(
n

m

)∫
U ′

min
I∈Am

[
|MI(x)|−sF

]
µ <∞. □

Proof of Theorem A.0.7. By [GH, Theorem 1.3], there exists ϵ > 0 depend-
ing only on φ, such that for every x0 ∈ X(F ),

lctF (JφF
;x0) > ϵ.

By Theorem A.0.6, we get that ϵ⋆(φF ) ≥ ϵ > 0. □

We finish with a proof of Proposition A.0.8.

Proof of Proposition A.0.8. Fix x0 ∈ X(F ). Since π : Y → An2
F is étale, the

map πF : Y (F ) → F n2 is a local diffeomorphism, and hence ϵ⋆(φF ;x0) =
ϵ⋆((π ◦ φ)F ;x0). By our assumption, the morphism φ̃ := π ◦ φ : X → An2

F

is a restriction of a polynomial map (φ̃1, . . . , φ̃n2) : An1+m1
F → An2

F , where
each φ̃i is of degree ≤ d · d2. Since φ̃ is generically smooth, there exists
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I ′ = {i′1, . . . , i′n1−n2
} ⊆ {1, . . . , n1 + m1} such that the map η : X → An1

F

given by

η(x1, . . . , xn1+m1) := (φ̃(x), xi′1 , . . . , xi′n1−n2
),

is generically étale. Let q : An1
F → An2

F be the projection to the first n2

coordinates. Note that φ̃ = q ◦ η. By Lemma A.1.1 and Proposition A.1.2,
we have,

ϵ⋆(φ̃F ;x0) ≥ ϵ⋆(ηF ;x0) = lctF (Jacx(ηF );x0).

Since X is a smooth open subvariety of X ′ ⊆ An1+m1
F of dimension n1,

and X ′ is cut by g1 = . . . = gr1 = 0, the tangent space Tx0X is given by
dx0g = 0, where dx0g is a matrix of size (n1 +m1) × r1 of (maximal) rank
m1. Therefore, we may choose m1 polynomials out of {g1, . . . , gr1} such that

their common zero locus X̃ ⊇ X is of dimension n1, and where x0 ∈ X̃(F ) is
a smooth point. Without loss of generality, we may take these polynomials

to be g1, . . . , gm1 . Since X̃ is smooth at x0, it is locally irreducible there.
Thus, there exist I = {i1, . . . , im1} ⊆ {1, . . . , n1+m1} and a Zariski open set
x0 ∈ UI ⊆ X on which the I × {1, . . . ,m1}-minor of dxg is non-vanishing,
and such that dxj1 ∧ . . . ∧ dxjn1

is a non-vanishing top form on UI , where
J = {1, . . . , n1 +m1} \ I. We get that

(A.9) Jacx(η) =
dφ̃1 ∧ . . . ∧ dφ̃n2 ∧ dxi′1 ∧ . . . ∧ dxi′n1−n2

dxj1 ∧ . . . ∧ dxjn1

.

Multiplying the n1-forms at the numerator and denominator of (A.9) by
dg1 ∧ . . . ∧ dgm1 , we get:

Jacx(η) =
dφ̃1 ∧ . . . ∧ dφ̃n2 ∧ dxi′1 ∧ . . . ∧ dxi′n1−n2

∧ dg1 ∧ . . . ∧ dgm1

dxj1 ∧ . . . ∧ dxjn1
∧ dg1 ∧ . . . ∧ dgm1

.

Set ψ : UI → A1
F by

ψ(x) :=
dφ̃1 ∧ . . . ∧ dφ̃n2 ∧ dxi′1 ∧ . . . ∧ dxi′n1−n2

∧ dg1 ∧ . . . ∧ dgm1

dx1 ∧ . . . ∧ dxn1+m1

.

Since by our construction, dxj1∧. . .∧dxjn1
∧dg1∧. . .∧dgm1 is a non-vanishing

top form of An1+m1
F near x0 it follows that

lctF (Jacx(ηF );x0) = lctF (ψF (x);x0).

Since ψ(x1, ..., xn+m) is a polynomial of degree ≤ (d ·d2−1) ·n2+(d1−1)m1

it follows by [GH, Theorem 1.4] that:

ϵ⋆(φF ;x0) ≥ lctF (Jacx(ηF );x0) = lctF (ψF (x);x0) ≥
1

((d · d2 − 1) · n2 + (d1 − 1)m1) · dm1
1

.

□
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Appendix B. Explanation of the mistake in [Lem96]

The arguments in [Lem96] and its sequels were based on a construction
of a certain submersion that replaces the Luna slice for closed orbits which
are not semi-simple, see [Lem96, §2.2]. A key property of this submersion
is described in [Lem96, Lemma 2.3.2]. The formulation of this Lemma is
inconsistent. Namely, a certain set (denoted there by U ′

b∩U ′
c) is discussed in

[Lem96, Lemma 2.3.2(2)]. It is implicitly assumed that this set is open both
in U ′

b and U
′
c (as a function in C∞

c (U ′
b ∩ U ′

c) is considered both as a function
on U ′

b and U
′
c) which is wrong in general.

A version of [Lem96, Lemma 2.3.2] with a consistent formulation is [Lem97,
Lemma 5.4.2]. However this lemma is false as stated.

Appendix C. Diagrams

For the convenience of the reader, we present here several diagrams of
objects frequently used in the paper.

C.1. The main varieties in the paper.

G′ ×T X̃ T×T

Υ X Y C×C

G×C G G C

T G′ T

prT

prG′

=

□ν µ
q×q

pr1

p′

□
ζ

□

σ

τ

α

π

pr1C

pr2G

□

p

ψ

φ

q

C.2. Open subsets inside the varieties (mainly used in §§6-7).

T×T Y X

(T×T)f Yf Ysm X0

Tr ×T Yr

Tr Grss Crss

Gr

T G C Gr

µ

□

σ

□

q|Ysm □
□prr1

µr

πr

□

qr

□

prss

p

p|Gr
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C.3. The sets A and B (mainly used in §§7,10).

A B C ×C(OF )

X Y C × C

G C

□ □
σ

τ □ π

α

Index

(G′)r, 39
(T×T)f , 25
∗, 16
<, 14
C, 7
C−∞, 16
Crss, 15
D•, 15, 16
F , 2
F -analytic manifold, 14
G, 2
Gad, 14
Grss, 15
Kx, 19
L<∞, 14
L<∞
loc , 14

OF , 8
W , 8
Z(·), 14
∆, 9, 15
∆rss, 15
∆C , 15
Ω(f), 17
Q-
function, 15
number, 15
section, 15

α, 25
αρ, 17
⊠ω, 17
χ, 3
ℓ, 2
µ1
µ2
, 16

κ(x), 19

C, 7, 8
Crss, 15
G, 2
G′, 24
Gad, 14
Grss, 15
T, 8
Tr, 15
X, 25
X0, 40
Y, 8, 25
Yf , 25
Yr, 28
Ysm, 40
A, 34
B, 32
Br, 32
R, 9
g, 15
pr1, 27
pr1C, 27
prG′ , 27
prT, 27
pr2G, 27
µ, 25
µC , 8
µG, 8
µG·x, 17
µGad , 14
µGx , 17
µZ(G), 14
ν, 25
ω′
X, 30
ω0
X, 40
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ω•, 19
ωC, 20
ωG, 20
ωT, 14
ωX, 30
ωY, 39
ωπ, 30
ωΥ, 40
ωG′ , 36
ωG×CG, 40
ωT×T, 39
ωprr1

, 30
ωτ , 30
π, 8, 25
ψ, 24
ψr, 39
σ, 25
□, 14
τ , 25
φ, 24
|ω|, 15, 16
ζ, 9
p, 7

p′, 27
prss, 15
p0, 23
q, 23
q0, 23
Υ, 9
c, 15
g, 15

geometrically integrable, 9

big open set, 14

factorizable action, 22
form, 15
Q-, rational, 15

Gelfand-Leray form, 17
good pair, 38

section, 15
Q-, 15
rational, 15

variety, 14
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