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Abstract. We prove that the Hilbert scheme of the plane in positive
characteristic admits an invertible top differential form.

This implies certain integrability properties of the symmetric powers
of the plane. This allows to define a function on the collection of monic
polynomials over a local field which can be thought of as a variant of the
inverse square root of the discriminant. In characteristic 0 it essentially
coincides with this inverse square root, however in general it is quite
different, and unlike this inverse square root, it is locally summable. In
a sequel work [AGKS] we use this local summability in order to prove
the positive characteristic analog of Harish-Chandra’s local integrability
theorem of characters of representations under certain conditions.

The main results of this paper are known in characteristic zero. In
fact a stronger result is known: there is a symplectic form on the Hilbert
scheme of a plane.
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1. Introduction

Throughout the paper we fix a field F of arbitrary characteristic. We will
also fix a natural number n.

1.1. The Hilbert Scheme. In order to formulate our results let us first
recall the definition of the Hilbert scheme.

Definition 1.1.1. Let SchF be the category of F -Schemes. For an F -
algebraic variety Z define the Hilbert functor Hilbn(Z) : Sch

op
F → sets by

Hilbn(Z)(S) :=

{sub-scheme Y ⊂ S× Z | (prS)∗(OY) is locally free of rank n over S, }

where prS is the projection.

Theorem 1.1.2 ([Gro62], see also [BK05, Theorem 7.2.3]). If Z is a quasi-
projective variety then the Hilbert functor Hilbn(Z) is representable by a
scheme which we denote by Z[n].

Theorem 1.1.3 (See e.g. [BK05, Theorem 7.4.1]). If Z is a smooth quasi-
projective irreducible algebraic surface then Z[n] is a smooth irreducible vari-
ety of dimension 2n.

1.2. Main results. We prove the following:

Theorem A. There exists an invertible top differential form on (A2)[n].

1.3. Relation to the singularities of the symmetric power of the
plane. Theorem A is related to the singularities of the symmetric power of
the plane. In order to formulate this relation we introduce some notations:

Definition 1.3.1. For a quasi projective algebraic variety Z define its sym-
metric power by:

Z(n) := Zn//Sn.

Here // denotes the categorical quotient. By Corollary 3.1.8 below this quo-
tient exists.

Notation 1.3.2. Let Z be a quasi-projective variety. Let x ∈ Z[n](F̄ ). It
corresponds to a sheaf of ideals Ix ⊂ OZF̄

. For any z ∈ Z(F̄ ) denote

nx(z) := dim(OZF̄ ,z/(Ix)z).

This gives a multiset in Z(F̄ ) of size n. By Lemma 3.0.2 below, we can
interpret this multiset as a point in Z(n)(F̄ ). Denote this point by HZ,n(x).
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Theorem 1.3.3 ([Ive70, II.2,II.3], [BK05, Theorem 7.3.1]1). Let Z be a
quasi-projective variety. There exists (and unique) a projective morphism
HZ,n : Z[n] → Z(n) that gives on the level of F̄ points the map HZ,n defined
above.

This morphism is called the Hilbert-Chow morphism.

Theorems 1.1.3 and 1.3.3 imply:

Corollary 1.3.4. Let Z be a (quasi-projective) smooth surface. Then the
Hilbert-Chow map HZ,n : Z[n] → Z(n) is a resolution of singularities.

Theorem A is related to the properties of this resolution. In order to
formulate these relations we make:

Definition 1.3.5.

(i) We recall that a modification γ : Ṽ → V of algebraic varieties is a
birational proper morphism.

(ii) We call a modification γ : Ṽ → V of algebraic varieties integrable if
for any open U ⊂ V and any top-form ω on the smooth locus of U
the rational form γ∗(ω) on γ−1(U) is regular on the smooth locus of
γ−1(U).

(iii) We call such modification sharply integrable if γ∗(ω) vanishes only on
γ−1(D̄) where D is the zero locus of ω.

(iv) We call a variety (sharply) integrable if it admits a (sharply) integrable
resolution of singularities.

Remark 1.3.6. In characteristic zero, one can show that TFAE:2

(a) the singularities of Z are rational,
(b) Z is integrable and Cohen-Macaulay.

In positive characteristic there is no single accepted definition of rational
singularities, and one can take condition (b) as a definition.

We will see that Theorem A follows from:

Theorem B. The Hilbert-Chow map

HA2,n : (A2)[n] → (A2)(n)

is a sharply integrable modification.

This implies:

Corollary C. (A2)(n) is sharply integrable.

Remark 1.3.7. In fact, it is easy to see that Theorem B and Theorem A
are equivalent. So one could instead prove directly Theorem A and deduce
Theorem B.

1The theorem is formulated in [BK05] for algebraically closed fields. However, it is
based on results from [Ive70] which do not make this assumption, so the proof is valid for
any field.

2See e.g. [AA16, Appendix B, Proposition 6.2])
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1.4. Background and motivation.

1.4.1. The characteristic zero case. The characteristic zero counterpart of
the main results of this paper is well known. In fact, stronger results are
known. Namely, the Hilbert-Chow map for smooth surfaces in characteristic
0 is a symplectic resolution (see e.g. [Nak99, Theorem 1.17]). This implies
the characteristic zero counterpart of Theorem B. This also implies that in
characteristic zero the Hilbert scheme of the plane is a symplectic variety.
This in turn implies the characteristic 0 counterparts of Theorem A and
Corollary C. In addition, (A2)(n) is a quotient of algebraic variety by a finite
group, therefore, by [Bou87, Corollaire], in characteristic zero its singularities
are rational. As mentioned in Remark 1.3.6 this is equivalent to the fact that
it is integrable and Cohen-Macaulay.

1.4.2. Relation to local finiteness of measures. If the field F is local, integra-
bility of an algebraic variety Z implies that given a top form ω on its smooth
locus, the corresponding measure |ω| on Z(F ) is locally finite.
Therefore, given a (locally) dominant map ϕ : Z → Y to a smooth variety

and a function f ∈ C∞
c (Z(F )), the measure ϕ∗(f |ω|) is also locally finite.

Since it is also absolutely continuous (w.r.t. a smooth invertible measure on
Y(F )), this measure has a locally summable density function.

Applying this consideration to the map (A2)(n) → (A1)(n) (induced by
the projection A2 → A1) we get a locally summable density function η
(defined up to multiplication by a smooth compactly supported function) on
(A1)(n)(F ). Note that (A1)(n) is naturally identified with the space of monic
polynomials of degree n.

Over C this function is the absolute value of the inverse square root of the
discriminant – |∆|− 1

2 . Over a general local field of characteristic zero, this

function is bounded from above and from below by a constant times |∆|− 1
2 .

However, in positive characteristic this is no longer true. Moreover, in small
positive characteristic the function |∆|− 1

2 is not locally summable. One can

consider η as a better behaved version of |∆|− 1
2 . In a sequel work [AGKS] we

use the local summability of η in order to prove the positive characteristic
analog of Harish-Chandra’s integrability theorem under certain conditions.
It turns out that for the sake of this theorem η actually plays the role of
|∆|− 1

2 .

1.5. Idea of the proof. We define a closed subset

(A2)
(n)
diag ⊂ (A2)(n)

which corresponds to the diagonal copy of A2. We prove:

Lemma D (For a precise formulation see Lemma 4.0.6). Outside (A2)
(n)
diag

the Hilbert-Chow map looks (locally in the étale topology) like a product of
the Hilbert-Chow maps for smaller values of n.
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We use this Lemma together with the induction hypothesis in order to

prove the theorem outside (A2)
(n)
diag. Then we use the fact that the comple-

ment to

H−1
A2,n((A

2)
(n)
diag)

in (A2)[n] is big in order to deduce the result.
This strategy works only for n > 2, for n = 2 we prove the theorem by an

explicit computation.

1.6. Structure of the paper. In §2 we fix conventions that will be used
throughout the paper.

In §3 we study quotients of varieties by finite group actions. In §4 we
prove Theorem B. In §4.1 we prove Lemma D.

In §5 we prove Theorem A.

1.7. Acknowledgments. We wish to thank Pavel Etigof and Victor Ginzburg
for discussing with us the situation with Hilbert scheme in positive charac-
teristic.

During the preparation of this paper, A.A., D.G. and E.S. were partially
supported by the ISF grant no. 1781/23. D.K. was partially supported by
an ERC grant 101142781.

2. Conventions

(a) By a variety we mean a reduced scheme of finite type over F .
(b) When we consider a fiber product of varieties, we always consider it

in the category of schemes. We use set-theoretical notations to define
subschemes, whenever no ambiguity is possible.

(c) We will usually denote algebraic varieties by bold face letters (such asX)
and the spaces of their F -points by the corresponding usual face letters
(such as X := X(F )). We use the same conventions when we want to
interpret vector spaces as algebraic varieties.

(d) We will use the same letter to denote a morphism between algebraic
varieties and the corresponding map between the sets of their F -points.

(e) We will use the symbol □ in a middle of a square diagram in order to
indicate that the square is Cartesian.

(f) We will use numbers in a middle of a square diagram in order to refer to
the square by the corresponding number.

(g) A big open set of an algebraic variety Z is an open set whose complement
is of co-dimension at least 2 (in each component).

(h) For a variety Z we denote its smooth locus by Zsm.
(i) For a smooth variety Z we denote by Ωtop(Z) the sheaf of top differential

forms on Z.
(j) For a variety Z and a field extension E/F , denote by ZE the extension

of scalars to E. We use similar notation for morphisms.
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3. Factorizable actions

In this section we give some standard facts about quotients of an alge-
braic variety by a finite group which are slightly less standard in positive
characteristic.

Definition 3.0.1. Let a finite group Γ act on a variety Z. We say that this
action is factorizable if the categorical quotient Z//Γ exists (as a variety),
and the map Z → Z//Γ is finite.

Lemma 3.0.2. Let a finite group Γ act factorizably on a variety Z. Then
the map γ : Z(F̄ )/Γ → (Z//Γ)(F̄ ) is a bijection, where Z(F̄ )/Γ denotes the
set of Γ-orbits in Z(F̄ ).

Proof. Since the map is affine, we can assume that Z is affine. The map γ
is onto by the going up theorem. To show that it is one-to-one it is enough
to show that for every O1, O2 ∈ Z(F̄ )/Γ there exists f ∈ (F̄ [Z])Γ such that
f |O1 = 0 and f |O2 = 1. Let f ′ ∈ F̄ [Z] such that f |O1 = 0 and f |O2 = 1, and
let f :=

∏
g∈Γ g

∗(f ′). □

3.1. Factorizabilty of quasi-projective varieties and compatibility
with open embeddings. In this subsection we prove that quasi-projective
varieties are factorizable (see Corollary 3.1.8) and the quotients of factoriz-
able varieties are compatible with open embeddings (see Corollary 3.1.5).

The only place where the positivity of characteristic presents an additional
difficulty is the compatibility for the affine case. See the base of the induction
in the proof of Lemma 3.1.3. There we can not use the standard averaging
method, and we use its multiplicative version instead.

Proposition 3.1.1 (cf. [Har95, Lec. 10, pp. 124-125] or [Ser84]). Let a
finite group Γ act on an affine variety Z. Then the action is factorizable and
Z//Γ ∼= Spec(O(Z)Γ).

Lemma 3.1.2. Let a finite group Γ act on a variety Z. Let Z = Z1∪Z2 be a
cover of Z by open, Γ-invariant factorizable sets. Assume that V := Z1∩Z2

is also factorizable and we have Cartesian squares:

(1)

V Z1

V//Γ Z1//Γ

□

V Z2

V//Γ Z2//Γ

□

with the (lower) horizontal maps being open embeddings. Let

W := Z1//Γ ⊔V//Γ Z2//Γ.
6



Then the natural map Z → W is the categorical quotient map and it is finite.
Moreover, we have the following Cartesian squares:

(2)

Z1 Z

Z1//Γ Z//Γ

□

Z2 Z

Z2//Γ Z//Γ

□

Proof. Let γ : Z → A be a Γ-invariant map to an algebraic variety. The maps
γ|Z1 , γ|Z2 , and γ|V factor through maps α : Z2//Γ → A, β : Z1//Γ → A
and δ : V//Γ → A. These maps give a factorization of γ via a map W → A.
The uniqueness of such factorization is proven similarly (but simpler). Thus
we have proven that the natural map Z → W is the categorical quotient.
Let us now show that the diagrams (2) are Cartesian. Let ϕΓ : Z →

Z//Γ ∼= W be the categorical quotient map. We need to show that ϕ−1
Γ (Z1//Γ) =

Z1 (and similarly for Z2). Let x ∈ ϕ−1
Γ (Z1//Γ). If x ∈ Z1 we are done. Other-

wise x ∈ Z2. This implies that ϕΓ(x) ∈ V//Γ. Thus, by the right Cartesian
square in (1) we get that x ∈ V and we are done.

Finally, the finiteness of ϕΓ follows from the Cartesian squares (2) and the
finiteness of the maps Zi → Zi//Γ. □

Lemma 3.1.3. Let a finite group Γ act on a variety Z. Let U ⊂ Z be an open
Γ-invariant set. Assume that Z can be covered by open affine Γ-invariant
sets. Then

(i) the action of Γ on Z is factorizable.
(ii) The action of Γ on U is factorizable.
(iii) The following natural diagram is a Cartesian square.

U

��

// Z

��
U//Γ // Z//Γ

(iv) The bottom arrow in the diagram is an open embedding.

Proof. We prove the statement by induction on the size N of the (minimal)
cover of Z by open affine Γ-invariant sets.

Base N = 1: (i) follows from Proposition 3.1.1. This implies also that Z//Γ is
affine.

Let A ⊂ Z be the complement of U. For any closed point x ∈ U,
we can find a function fx ∈ OZ(Z) s.t. fx(A) = 0 and fx(Γ·x) = {1}.

Let

gx =
∏
γ∈Γ

γ∗(fx).

Let Ux ⊂ Z be the non-vanishing locus of gx. Note that gx ∈
OZ(Z)

Γ = OZ//Γ(Z//Γ). Let Vx ⊂ Z//Γ be the non-vanishing locus
7



of gx when considered as a function on Z//Γ. By Proposition 3.1.1,
the action of Γ on Ux is factorizable. Ux//Γ ∼= Vx. Let

V =
⋃

x∈Z is closed

Vx

It is easy to deduce that V ∼= U//Γ and we have the required Carte-
sian square.

Step: Write Z =
⋃N

i=1 Zi where Zi are open, affine, and Γ-invariant. Let

Y =
⋃N

i=2 Zi. Let V := Z1 ∩Y. The previous lemma (Lemma 3.1.2)
and the induction hypothesis applied to the pairs V ⊂ Z1, V ⊂ Y,
V ∩U ⊂ Z1 ∩U, and V ∩U ⊂ Y ∩U imply (i) and (ii).

We also get the following Cartesian squares:

(3)

Z1 Z

Z1//Γ Z//Γ

□

Y Z

Y//Γ Z//Γ

□

(4)

Z1 ∩U U

(Z1 ∩U)//Γ U//Γ

□

Y ∩U U

(Y ∩U)//Γ U//Γ

□

with horizontal maps being open embeddings. Moreover,

(5) Z//Γ = Z1//Γ ∪Y//Γ and U//Γ = (Z1 ∩U)//Γ ∪ (Y ∩U)//Γ

Applying the induction hypothesis for the pairs Z1 ∩ U ⊂ Z1 and
Y ∩U ⊂ Y we obtain the following Cartesian squares:

(6)

Z1 ∩U Z1

(Z1 ∩U)//Γ Z1//Γ

□

Y ∩U Y

(Y ∩U)//Γ Y//Γ

□

with horizontal maps being open embeddings.
This together with (3) gives the following Cartesian squares:

(7)

Z1 ∩U Z

(Z1 ∩U)//Γ Z//Γ

□

Y ∩U Z

(Y ∩U)//Γ Z//Γ

□

with horizontal maps being open embeddings.
This together with (5) proves (iv). It remains to prove (iii). For

this it is enough to show that ϕ−1(U//Γ) = U, where ϕ : Z → Z//Γ
denotes the quotient map. This follows from (4) and (5).

□

The last Lemma gives us 2 corollaries:
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Corollary 3.1.4. Let a finite group Γ act on a variety Z. Then TFAE:

(i) the action of Γ is factorizable.
(ii) Z can be covered by open affine Γ-invariant sets.

Corollary 3.1.5. Let a finite group Γ act factorizably on a variety Z. Let
U ⊂ Z be an open Γ-invariant set. Then

(i) the action of Γ on U is factorizable.
(ii) The following natural diagram is a Cartesian square.

U

��

// Z

��
U//Γ // Z//Γ

(iii) The bottom arrow in the diagram is an open embedding.

Lemma 3.1.6. Let Z be a quasi-projective variety, and A ⊂ Z be a finite
subvariety. Then there exists an open affine V ⊂ Z s.t. A ⊂ V.

Proof.

Case 1. Z is the projective space and F is infinite.
In this case one can take V to be a compliment to a hyperplane that
does not intersect A.

Case 2. Z is the projective space.3

By the previous case we may assume that F is finite (and hence
perfect). From the previous case we have an open affine subset
V′ ⊂ ZF̄ that includes AF̄ . We can find a finite (Galois) extension
E/F s.t. there exists V′′ ⊂ ZE satisfying V′′

F̄
= V′. Now, we

can find V s.t. VE =
⋃

α∈Gal(E/F ) α(V
′′). It is easy to see that V

satisfies the requirements.
Case 3. Z is a projective variety.

Follows from the previous case.
Case 4. Z is a quasi-affine variety.

Embed Z as an open subset of an affine variety Z′. Let W be the
complement to Z in Z′. Let f ∈ OZ′(Z′) such that f |A = 1 and
f |W = 0. Take V to be Z′

f .
Case 5. The general case.

Embed Z into a projective variety Z′ as an open dense subset. By
Case 3 we can find an open affine subset V′ ⊂ Z′ satisfying A ⊂ V′.
Note that V′∩Z is quasi-affine. The assertion follows now from the
previous case.

□

Corollary 3.1.7. Let a finite group Γ act on a quasi-projective variety Z.
Then Z can be covered by Γ-invariant open affine subsets.

3In fact, an accurate repetition of Case 1 in the language of schemes will give a proof
for this case, however we prefer the more geometric approach below.
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in view of Corollary 3.1.4, this gives:

Corollary 3.1.8. An action of a finite group on a quasi-projective variety
is factorizable.

3.2. Quotients by free actions.

Lemma 3.2.1. Let ϕ : X → Y be a morphism of algebraic varieties. Assume
that ϕF̄ : XF̄ → YF̄ is étale. Then so is ϕ.

Proof. Without loss of generality we may assume that X and Y are affine.

Step 1. There exists a finite extension E/F such that ϕE : XE → YE is
étale.
It is easy to see that for any E, ϕE is flat. For any E/F let

IE := ker(OX(X)⊗OY(Y) OX(X) → OX(X)).

The fact that ϕE is unramified is equivalent to the fact that IE = I2E.
The assertion follows now from the fact that IF is finitely generated
(as guaranteed by the Hilbert basis theorem).

Step 2. ϕ is étale.
Let E be as in the previous step. It is easy to see that the natural
map YE → Y is finite (and hence integral). The assertion fol-
lows now from descent for étale morphisms (see [Sta25, Proposition
41.20.6]).

□

Lemma 3.2.2. Let ϕ : Z1 → Z2 be an étale map s.t. ϕ(F̄ ) : Z1(F̄ ) → Z2(F̄ )
is a bijection. Then ϕ is an isomorphism.

Proof. Step 1. Let ψ : Z1 → Z2 be a standard étale map (see [Sta25, Defini-
tion 00UB]) s.t. ψ(F̄ ) : Z1(F̄ ) → Z2(F̄ ) is a injection. Then ψ is an
open embedding.
Follows immediately from the definition.

Step 2. ϕ is an isomorphism.
By the previous step we have an open cover Z1 =

⋃
Ui s.t. ϕ|Ui

is
an open embedding. Since ϕ(F̄ ) is a bijection, we obtain that

Z2 =
⋃

ϕ(Ui).

Now we can define ϕ−1 on each ϕ(Ui), and the compatibility follows
from the fact that ϕ(F̄ ) is a bijection.

□

Lemma 3.2.3. Let a finite group Γ act factorizably on a variety Z. Assume
that the action of Γ on Z is free (i.e. the action of Γ on Z(F̄ ) is free). Then

(i) The map Z → Z//Γ is étale.
(ii) The natural morphism m : Z× Γ → Z×Z//Γ Z is an isomorphism.

Proof.

(i) Follows from [Mum08, §II.7] and Lemma 3.2.1.
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(ii)
Step 1. The map m it is étale.

It is enough to show that m|Z×{1} is étale. This map is the
diagonal map ∆ : Z → Z×Z//Γ Z, which is étale by (i) (as the
diagonal of an étale map is étale – [Sta25, Lemma 02GE]).

Step 2. m induces a bijection on the F̄ -points.
Follows from Lemma 3.0.2 since the action of Γ is free.

Step 3. m is an isomorphism.
Follows from the previous steps using Lemma 3.2.2.

□

Corollary 3.2.4 (Galois descent for free actions). In the setting of the pre-
vious lemma, let SchZ//Γ denote the category of schemes over Z//Γ and
SchΓZ denote the category of schemes over Z equipped with an action of
Γ which is compatible with the action of Γ on Z. Consider the functor
F : SchZ//Γ → SchΓZ defined by F(X) = X ×Z//Γ Z, with Γ acting on
the second coordinate. Let β : F(X) → X be the projection on the first
coordinate. Then

(i) F is fully faithful.
(ii) GivenX ∈ SchZ//Γ and a sheaf V on it, the pullback V(X) → (β∗V)(F(X))

with respect to β gives an isomorphism

V(X) ∼= (β∗V)(F(X))Γ.

Proof.

(i) Let X1,X2 ∈ SchZ//Γ. We need to show that F induces a bijection

MorSchΓ
Z
(F(X1),F(X2)) →MorSchZ//Γ

(X1,X2).

The previous lemma implies that:

(8) the maps F(Xi) → Xi are étale (and surjective)

(9) the natural maps F(Xi)× Γ → F(Xi)×Z//Γ F(Xi) are isomorphisms.

The assertion follows now from faithfully flat descent for morphisms,
see e.g. [Tsi14, Lecture 9, Theorem 1.1].

(ii) Follows from (8,9), using the fact that a coherent sheaf in the Zariski
topology is also a sheaf in the étale topology, see e.g. [Sta25, Lemma
03DT].

□

4. Proof of Theorem B

We will use the following straightforward criterion for sharp integrability:

Lemma 4.0.1. Let ϕ : Z̃ → Z be a modification. Assume that

(a) Zsm is big in Z,
(b) Zsm admits an invertible top form ω, and

(c) ϕ∗(ω) can be extended to an invertible top form on Z̃sm.
11
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Then ϕ is sharply integrable.

We need the following notation:

Notation 4.0.2. Let Z be a smooth algebraic (quasi-projective) surface and
x ∈ Z := Z(F ). Define the following:

• Let ιZ,n : Zn → Z(n) denote the quotient map.
• ∆n

Z ⊂ Zn the diagonal copy.

• Z
(n)
diag := ιZ,n(∆

n
Z) ⊂ Z(n). Note that it is closed since ιZ is finite.

• Z
[n]
diag := H−1

Z,n(Z
(n)
diag) ⊂ Z[n].

• Z
(n)
x := ιZ,n({(x, . . . , x)}) ⊂ Z

(n)
diag and Z

[n]
x := H−1

Z,n(Z
(n)
x ) ⊂ Z

[n]
diag.

Proposition 4.0.3 ([BK05, 7.4.E.3]). Let Z be a smooth algebraic (quasi-

projective) surface. Then for any x ∈ Z(F ) we have dimZ
[n]
x = n− 1.

Together with Theorem 1.1.3 this proposition gives the following corollary.

Corollary 4.0.4. Let Z be a smooth algebraic (quasi-projective) surface.
Then

dimZ[n] − dimZ
[n]
diag = n− 1.

Notation 4.0.5. Write n = n1 + n2. Let Z be a quasi-projective algebraic
variety. Denote

Zn1,n2 := {(z1, . . . , zn) ∈ Zn| {z1, . . . , zn1} ∩ {zn1+1, . . . , zn} = ∅} .
Denote also

Z(n1,n2) := Zn1,n2//(Sn1 × Sn2)

and by
ιZ,n1,n2 : Z

n1,n2 → Z(n1,n2)

the quotient map.

Lemma 4.0.6 (See §4.1 below). Let Z be a quasi-projective algebraic variety.
Write n = n1 + n2. Then there exist

• a variety Z[n1,n2]

• morphisms of varieties CZ
[n1,n2]

, CZ
(n1,n2)

, CZ
n1,n2

,HZ,n1,n2

• an open embedding Z[n1,n2] ⊂ Z[n1] × Z[n2]

s.t.

• We have the following commutative diagram:

(10)

Z[n] Z[n1,n2] Z[n1] × Z[n2]

Z(n) Z(n1,n2) Z(n1) × Z(n2)

Zn Zn1,n2 Zn1 × Zn2

HZ,n □HZ,n1,n2

CZ
[n1,n2] ⊂

HZ,n1
×HZ,n2

□

CZ
(n1,n2) ⊂

ιZ,n

∼=

ιZ,n1,n2

⊂
CZ
n1,n2

ιZ,n1
×ιZ,n2

12



• The embeddings in the diagram are open.
• CZ

[n1,n2]
is étale,

• the top left square in the diagram is Cartesian on the level of F̄ points.
• The bottom curved arrow is the standard identification Zn ∼= Zn1 ×
Zn2.

Notation 4.0.7. Note that Z[n1,n2],CZ
[n1,n2]

, CZ
(n1,n2)

, CZ
n1,n2

,HZ,n1,n2 are defined
uniquely by the previous lemma, so we will use these notations in the rest of
the section.

Notation 4.0.8. Let Z be a quasi-projective algebraic variety. Denote

(i) Zn
0 := {(z1, . . . , zn) ∈ Zn | ∀i, j, zi ̸= zj}.

(ii) Z
(n)
0 := ιn(Z

n
0 ) ⊂ Z(n). By Corollary 3.1.5, it is an open subset.

(iii) Z
(n1,n2)
0 := ιn1 × ιn2(Z

n
0 ) ⊂ Z(n1,n2).

From Lemma 4.0.6 we obtain the following corollary.

Corollary 4.0.9. Let Z be a quasi-projective algebraic variety. Then we
have

(i) CZ
n1,n2

(Z
(n1,n2)
0 ) = Z

(n)
0 .

(ii) CZ
n1,n2

|
Z
(n1,n2)
0

is an étale map.

(iii) Z
(n)
0 ⊂ Z(n) and Z

(n1,n2)
0 ⊂ Z(n1,n2) are big subsets.

(iv) The image CZ
n1,n2

(Z(n1,n2)) is open.

(v)
⋃n−1

n1=1 CZ
n1,n2

(Z(n)) = Z(n) ∖ Z
(n)
diag.

The following follows from the Zariski main theorem:

Lemma 4.0.10. Let γ : Z1 → Z2 be a morphism of algebraic varieties.
Assume that:

• Zi are irreducible.
• Z2 normal.
• γ induces a bijection: Z1(F̄ ) → Z2(F̄ ).

Then γ is an isomorphism.

Proof. Notice that γ is dominant and the fibers over geometric points are
singletons. Hence γ is birational. Also γ is quasi-finite. By Zariski main
theorem we can decompose: γ = π ◦ j with j : Z1 → Z3, π : Z3 → Z2 where
π is finite and j is an open immersion. As Z1 is normal, and finite birational
morphism onto a normal variety is an isomorphism, it follows that π is an
isomorphism. As the image of j must contain all geometric points, it is easy
to see that j is also an isomorphism and we are done. □

Lemma 4.0.11. Let Z = A2. Then there is a commutative diagram:

(11)

Bl∆Z
Z2 Z2

Z[2] Z(2)

qS2

bl

ιZ,2

HZ,2

13



where the top row is the blowing-up of Z2 along the diagonal ∆Z, and the
left vertical arrow is the quotient map by the action of S2 given by the flip
of the 2 copies of Z.

Proof. First let us construct the map qS2 . By the definition of the Hilbert
scheme Z[2] this means to construct a scheme Y ⊂ (Bl∆ZZ

2)× Z2 which is
finite flat of rank 2 over Bl∆ZZ

2. Realize Bl∆ZZ
2 as

{(l, x, y)|l is a line in Z;x, y ∈ l}

We get

(Bl∆ZZ
2)× Z = {(l, x, y, z)|l is a line in Z;x, y ∈ l; z ∈ Z}

Let I1, I2, I3 be the sheaves of ideals in (Bl∆ZZ
2)×Z given by the conditions:

1. x = z
2. y = z
3. z ∈ l

respectively. Define I := ⟨I1I2, I3⟩, and let Y be its 0-locus. It is easy
to see that Y is finite flat of rank 2 over Bl∆ZZ

2 and thus defines a map
qS2 : Bl∆ZZ

2 → Z[2]. By Corollary 3.1.8 there exists a categorical quotient
Bl∆ZZ

2//S2. So qS2 factors through a map γ : Bl∆ZZ
2//S2 → Z[2]. It is

easy to see that this map is a bijection on the level of F̄ points. Also, by
Theorem 1.1.3 Z[2] is smooth and irreducible. Hence Lemma 4.0.10 implies
that γ is an isomorphism.
So we constructed the diagram (11) and proved that qS2 is the quotient

map by the action of S2. It is left to show that this diagram is commutative.
It is enough to verify it on the level of F̄ points. This follows from the
definitions. □

The following lemma is obvious.

Lemma 4.0.12. Let γ : X → Y be a modification of algebraic varieties. Let
U ⊂ Y be an open set. Assume that:

• γ−1(U) is big in X
• γ|γ−1(U) → U is a (sharply) integrable modification.

Then γ : X → Y is a (sharply) integrable modification.

Lemma 4.0.13. Assume that we have a commutative diagram

Z11 Z12

Z21 Z22

m1 m2

e1

e2

Assume that e1 is onto and étale, e2 is of relative dimension zero, mi are
resolutions of singularities, m2 is an integrable modification, and there exists
an open smooth set U ⊂ Z21 such that e−1

2 (U) ⊂ Z22 is a big subset. Then
m1 is an integrable modification.

14



Proof. Let V ⊂ Z21 be an open set, and ω be a regular top form on the
smooth locus Vsm of V. We have to show that m∗

1(ω) can be extended to
a top form on m−1

1 (V). Since e1 is onto étale, it is enough to show that
e∗1m

∗
1(ω) can be extended to a top form on e−1

1 m−1
1 (V). Equivalently, it is

enough to show that m∗
2e

∗
2(ω) can be extended to a top form on m−1

2 e−1
2 (V).

Note that e∗2(ω) is regular on e
−1
2 (Vsm∩U) = e−1

2 (V)∩e−1
2 (U). Since e−1

2 (U)
is big in Z22 this implies that e∗2(ω) can be extended to a regular form on
the smooth locus of e−1

2 (V). Now, the fact that m2 is integrable implies the
assertion. □

Proof of Theorem B. Let Z := A2. By Corollary 1.3.4 the Hilbert-Chow
map is a resolution of singularities. So we need to show that it is integrable.
We will do it by analyzing the following cases.

Case 1. n = 2.
Let U ⊂ Z2 be the complement to the diagonal. By Corollary 3.1.5
ιZ,2(U) is open in Z(2), and ιZ,2(U) ∼= U//S2. By Lemma 3.2.3,
U//S2 is smooth. We obtain that V := ιZ,2(U) is an open subset
of the smooth locus of Z(2). In fact, it is equal to this smooth
locus. Also, ι−1

Z,2(V) ⊂ Z2 is big. Let ωZ2 be the standard top form

on Z2 = A4. It is easy to see that it is S2-invariant. Thus, by
Corollary 3.2.4, there exists a top form ωV s.t. ι∗Z,2(ωV) = ωZ2|U.
It is easy to see that ωV is an invertible form. Consider ωV as a
rational top form on Z(2).

By Lemma 4.0.1 it is enough to show that H∗
Z,2(ωV) is an invertible

top form on Z[2].
By Lemma 4.0.11 we have the following commutative diagram:

Bl∆Z
Z2 Z2

Z[2] Z(2)

qS2

bl

ιZ,2

HZ,2

where the top row is the blowing-up and the left vertical arrow is
the quotient map by the action of S2.

The assertion follows now from the following 2 statements:
(a) For an invertible form ω on Z2, the zero locus of the form bl∗(ω)

is the divisor bl−1(∆Z) with multiplicity 1.
(b) If ω is a rational form on Z[2] ∼= Bl∆Z

Z2//S2 s.t. q∗S2
(ω) is

a regular form and its zero locus is the divisor bl−1(∆Z) with
multiplicity 1 then ω is regular.

Proof of (a): This is a standard property of a blowing up of a smooth
variety along smooth subvariety of co-dimension 2.

Proof of (b): As in the proof of Lemma 4.0.11 we can realize Bl∆Z
Z2

as {(l, x, y)|l is a line in Z;x, y ∈ l}. This gives a map
Bl∆Z

Z2 → L, where L is the collection of lines in Z =
A2. This map is S2-invariant, so we get a commutative

15



diagram:

(12)

Bl∆Z
Z2

(Bl∆Z
Z2)//S2 L

qS2

The statement is Zariski local on L. Let L̃ =
⊔
Li →

L be a Zariski cover that trivializes the tautological
bundle. When we pull the diagram (12) to L̃ we obtain
a diagram isomorphic to:

(13)

L̃ × A2

L̃ × A2//S2 L̃

where S2 acts on A2 by flipping the coordinates.
Let q′S2

: A2 → A2//S2 be the quotient map.
It is enough to show that if η is a rational form on
A2//S2 s.t. (q

′
S2
)∗(η) is regular and its zero locus is he

divisor ∆A1 ⊂ A2 with multiplicity 1 then η is regular.
This is a straightforward computation.

Case 2. The general case. We prove the statement by induction on n. Case
n = 1 is obvious. Case n = 2 is the previous case. Assume n > 2.

By Proposition 4.0.3 we have dimZ(n) − dimZ
(n)
diag > 1. Thus by

Lemma 4.0.12 it is enough to prove that

HZ,n|Z(n) : Z(n) ∖ Z
(n)
diag → Z[n] ∖ Z

[n]
diag

is an integrable modification. Write n = n1 + n2 with n1, n2 > 0.
Denote U := CZ

n1,n2
(Z(n1,n2)) ⊂ Z(n). By Corollary 4.0.9(iv), it is an

open subscheme. Denote V := H−1
Z,n(U). By Corollary 4.0.9(v), it is

enough to show that

HZ,n|V : V → U

is an integrable modification, for any decomposition n = n1 + n2.
Let HZ,n1,n2 : Z

[n1,n2] → Z(n1,n2) be as in Lemma 4.0.6. Lemma 4.0.6
and the induction hypothesis imply that HZ,n1,n2 is an integrable
modification. By Lemma 4.0.6, the following diagram is commuta-
tive.

V Z[n1,n2]

U Z(n1,n2)

o
HZ,n

HZ,n1,n2

◦
C[n1,n2]

◦
C(n1,n2)

,

16



where the maps
◦
C[n1,n2],

◦
C(n1,n2), and

o

HZ,n are obtained by restric-
tion from the maps C[n1,n2] and HZ,n. Moreover, this diagram is a
Cartesian square on the level of F̄ -points. This implies that the

map
◦
C[n1,n2] is onto. By Lemma 4.0.6, it is also étale. By Corol-

lary 4.0.9(iii) and Lemma 4.0.13, HZ,n|V : V → U is an integrable
modification, as required.

□

4.1. Proof of Lemma 4.0.6. Note that by Corollary 3.1.5, we have the
Cartesian square

(14)
Z(n1,n2) Z(n1) × Z(n2)

Zn1,n2 Zn1 × Zn2

□

⊂
ιZ,n1,n2

⊂

ιZ,n1
×ιZ,n2

Denote Z[n1,n2] := (HZ,n1 ×HZ,n2)
−1(Z(n1,n2)). This gives us the Cartesian

square

(15)

Z[n1,n2] Z[n1] × Z[n2]

Z(n1,n2) Z(n1) × Z(n2)

□HZ,n1,n2

⊂
HZ,n1

×HZ,n2

⊂

Definition 4.1.1. For an algebraic variety Z define the subfunctor

Hilbn1,n2(Z) ⊂ Hilbn1(Z)×Hilbn2(Z) : Sch
op
F → sets

by

Hilbn1,n2(Z)(S) :=

{(Y1,Y2) ∈ Hilbn1(Z)(S)×Hilbn2(Z)(S) |Y1 ∩Y2 = ∅}

Lemma 4.1.2. The subfunctor Hilbn1,n2 is represented by the open sub-
scheme Z[n1,n2].

For the proof we will need the following straightforward lemma:

Lemma 4.1.3. Consider the following commutative diagram in arbitrary
category.

Z11 Z12 Z13

Z21 Z22 Z23

δ1

γ11

□δ2

γ12

δ3

γ21 γ22

Assume also that we have:

Z11 Z13

Z21 Z23

δ1

γ12◦γ11

□ δ3

γ22◦γ21

17



Then we have:

Z11 Z12

Z21 Z22

δ1

γ11

□ δ2

γ21

Proof of Lemma 4.1.2.

Step 1. Hilbn1,n2 is represented by an open subscheme of Z[n1] × Z[n2].

Step a. Construction of Z
[n1,n2]
0 .

Let Z̃[ni] ⊂ Z×Z[ni] be the tautological scheme over Z[ni], i.e.
the subscheme of Z × Z[ni] that corresponds to the identity
map under the isomorphism

Mor(Z[ni],Z[ni]) ∼= Hilb[ni](Z)(Z
[ni]).

Let W := Z̃[n1]×Z Z̃
[n2]. We have a natural embedding W ⊂

Z×Z[n1]×Z[n2]. Let pr : W → Z[n1]×Z[n2] be the projection.

Note that it is finite. Let Z
[n1,n2]
0 := Z[n1] × Z[n2] ∖ pr(W),

and consider it as an open subscheme of Z[n1] × Z[n2].

Step b. Proof that Z
[n1,n2]
0 represents the functor Hilbn1,n2(Z).

Note that for any S ∈ SchF we have

(16) Mor(S,Z
[n1,n2]
0 ) =

{
γ ∈Mor(S,Z[n1] × Z[n2])|γ∗(W) = ∅

}
,

where γ∗(W) is the object that makes the following square
Cartesian:

γ∗(W) W

S Z[n1] × Z[n2].

□ pr

γ

Write γ = (γ1, γ2). The maps γi corresponds to a Yi ∈
Hilbni

(Z)(S). We will show that γ∗(W) = Y1 ∩Y2.
We have Cartesian squares:

(17)

Yi Z̃[ni]

S Z[ni].

□ pr

γ

18



Consider the following diagram:

Y1 ∩Y2 W Z

Y1 ×S Y2 Z̃[n1] × Z̃[n2] Z× Z

S Z[n1] × Z[n2]

1 2pr diag

3
γ

where diag is the diagonal map. The square 3 is Cartesian
because of (17). The square 2 is Cartesian by the definition
of W . It is obvious that the square

Y1 ∩Y2 Z

Y1 ×S Y2 Z× Z

1 ◦ 2pr diag

is Cartesian. Therefore, by Lemma 4.1.3 the square 1 is
Cartesian and thus γ∗(W) = Y1 ∩ Y2 Together with (16)
this completes the step.

Step 2. Mor(Spec F̄ ,Z[n1,n2]) = Hilbn1,n2(Z)(Spec F̄ ).
Follows directly from the definitions of Z[n1,n2] and Hilbn1,n2(Z),
the characterization of the Hilbert-Chow map (Theorem 1.3.3) and
Lemma 3.0.2.

Step 3. End of the proof.
Follows from the 2 previous steps and the fact that an open subset
in a variety is determined by its F̄ points. The later follows from
the Nullstellensatz.

□

Notation 4.1.4. Define a natural transformation

CZ
[n1,n2]

: Hilbn1,n2(Z) → Hilbn(Z)

by
CZ
[n1,n2]

(Y1,Y2) := Y1 ⊔Y2

By Lemma 4.1.2 this morphism defines a morphism Z[n1,n2] → Z[n], that we
will also denote by CZ

[n1,n2]
.

Notation 4.1.5. Let CZ

(n1,n2)
: Zn//(Sn1 ×Sn2) → Zn//Sn = Z(n) denote the

natural map. By Corollary 3.1.5, Z(n1,n2) can be considered as an open subset

of Zn//(Sn1 × Sn2). Denote the restriction of CZ

(n1,n2)
to Z(n1,n2) by CZ

(n1,n2)
.

Finally, we let CZ
n1,n2

: Zn1,n2 → Zn be the map given by concatenation of
tuples.

Now we defined all the arrows in the diagram (10). It remains to show
that:
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(a) The diagram is commutative.
(b) The top left square is Cartesian on the level of F̄ points.
(c) The map CZ

[n1,n2]
is étale.

It is enough to prove (a) on the level of F̄ points. Thus (a) and (b) are
straightforward computations in view of Corollary 3.1.5, the definition of
Hilbert scheme (Definition 1.1.1), and the characterization of the Hilbert-
Chow map (Theorem 1.3.3).

It remains to show (c). By Theorem 1.1.3, the variety Z[n] is smooth.
By diagrams (14,15) the variety Z[n1,n2] is an open subset of Z[n], and thus
is also smooth. It is enough to show that the map CZ

[n1,n2]
is étale at any

closed point of Z[n1,n2]. Equivalently, we have to show that for any finite
field extension E over F , and any y ∈ Z[n1,n2](E), the differential dyCZ

[n1,n2]

is an isomorphism. Without loss of generality we assume that E = F and Z
is affine.

To x ∈ Z[n](F ) we can assign an ideal I ◁ OZ(Z). This gives us an
identification

TxZ
[n] = {Ĩ ◁ OZ(Z)[t]/t

2 | (OZ(Z)[t]/t
2)/Ĩ ≃ (F [t]/t2)n and Ĩ/t = I}

Here, the isomorphism is an isomorphism of F [t]/t2-modules. Define

γZ,n,x : Hom(I,OZ(Z)/I) → TxZ
[n]

by γZ,n,x(ε) = {a + tb | a ∈ I, b ∈ ε(a)}. It is easy to see that γZ,n,x is an
isomorphism (cf. [BK05, Lemma 7.2.5]). Let

y = (x1, x2) ∈ Z[n1,n2](F ) ⊂ Z[n1](F )× Z[n2](F ).

We have to show that dyCZ
[n1,n2]

is an isomorphism. Let I1, I2 ◁ OZ(Z) be the
ideals corresponding to the points x1, x2. The Chinese remainder theorem
gives an identification

δ0 : OZ(Z)/I1 ⊕OZ(Z)/I2 ∼= OZ(Z)/(I1 ∩ I2)
This gives an identification

δ1 : Hom(I1 ∩ I2,OZ(Z)/I1 ⊕OZ(Z)/I2) ∼= Hom(I1 ∩ I2,OZ(Z)/(I1 ∩ I2))
Define a morphism

δ : Hom(I1,OZ(Z)/I1)×Hom(I2,OZ(Z)/I2) → Hom(I1∩I2,OZ(Z)/(I1∩I2))
by

δ(ε1, ε2) := δ1(ε1|I1∩I2 , ε2|I1∩I2)
It is easy to see that the following diagram is commutative.

Tx1Z
[n1] ×Tx2Z

[n2] TyZ
[n1,n2] TCZ

[n1,n2]
(y)Z

[n]

Hom(I1,OZ(Z)/I1)× Hom(I2,OZ(Z)/I2) Hom(I1 ∩ I2,OZ(Z)/(I1 ∩ I2))

∼=
dyCZ

[n1,n2]

γZ,n1,x1
×γZ,n2,x2 ∼

δ

γ
Z,n,CZ

[n1,n2]
(y) ∼
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Thus it is enough to show that δ is an isomorphism. Let I1, I2 ◁ OZ be
sheaves of ideals corresponding to the ideals I1, I2. δ defines a morphism of
sheaves

δ̃ : Hom(I1,OZ(Z)/I1)×Hom(I2,OZ(Z)/I2) → Hom(I1∩I2,OZ(Z)/(I1∩I2)),

where Hom denotes internal Hom of sheaves. It is enough to show that δ̃
is an isomorphism. Let Ui be the complement to the zero locus of I. It is
enough to show that δ|Ui

is an isomorphism for i = 1, 2. This is obvious.

5. Proof of Theorem A

Theorem A follows from Theorem B and the following lemma:

Lemma 5.0.1. ((A2)(n))sm admits an invertible top form.

Proof. Let Z = A2. Let (Zn)0 ⊂ Zn be the open set of tuples of pairwise
different points in Z. By Corollary 3.1.5 we have the following Cartesian
square:

(Zn)0 Zn

(Z(n))0 Z(n)

□

⊂
ι0Z,n

ιZ,n

⊂
with the horizontal inclusions being open. Let ωZn be the standard form on
Zn and let ω(Zn)0 be its restriction to (Zn)0. By Lemma 3.2.3 the map ι0Z,n
is étale. So, Ωtop((Zn)0) ∼= (ι0Z,n)

∗(Ωtop((Z(n))0))
Note that ω(Zn)0 is Sn invariant. So by Corollary 3.2.4 it gives a top form

ω(Z(n))0 on (Z(n))0 s.t. (ι0Z,n)
∗(ω(Z(n))0) = ω(Zn)0 .

Since ι0Z,n is étale, the fact that ω(Zn)0 is invertible implies that ω(Z(n))0 is

invertible. It is easy to see that (Z(n))0 is big in Z(n). Thus ω(Z(n))0 can be

extended to an invertible top form on (Z(n))sm as required. □

Index

F , 2
Hilbn(Z)(S), 2
Hilbn1,n2 , 17
∆n

Z, 12
Ωtop, 5
ιZ,n1,n2 , 12
ιZ,n, 12
Z//Γ, 6
Zn

0 , 13
Z(n), 2

Z
(n)
diag, 12

Z
(n)
x , 12

Z(n1,n2), 12

Z[n], 2

Z
[n]
diag, 12

Z
[n]
x , 12

Z[n1,n2], 13
Zn1,n2 , 12

Z
(n)
0 , 13

Z
(n1,n2)
0 , 13

ZE, 5
CZ
(n1,n2)

, 13

CZ
[n1,n2]

, 13

CZ
n1,n2

, 13
HZ,n1,n2 , 13
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HZ,n, 3
HZ,n(x), 2
□, 5
n, 2
nx(z), 2
CZ
[n1,n2]

(Y1,Y2), 19

big open set, 5

factorizable action, 6

Hilbert-Chow morphism, 3

integrable modification, 3

modification, 3

sharply integrable modification, 3
sharply integrable variety,

integrable variety, 3

variety, 5
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