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ABSTRACT. In this paper, we prove that any relative character (a.k.a. spherical character) of
any admissible representation of a real reductive group G with respect to any pair of spherical
subgroups is a holonomic distribution on G. This implies that the restriction of the relative
character to an open dense subset is given by an analytic function. The proof is based on an
argument from algebraic geometry and thus implies also analogous results in the p-adic case.

As an application, we give a short proof of some results from [KO13; KS] on bounded-
ness and finiteness of multiplicities of irreducible representations in the space of functions on a
spherical space.

In order to deduce this application we prove relative and quantitative analogs of the Bernstein-
Kashiwara theorem, which states that the space of solutions of a holonomic system of differen-
tial equations in the space of distributions is finite-dimensional. We also deduce that, for every
algebraic group G, the space of G-equivariant distributions on any algebraic G-manifold X is
finite-dimensional if G has finitely many orbits on X .
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1. INTRODUCTION

1.1. The relative character. In this paper, we prove that a relative character (a.k.a. spherical
character) of a smooth admissible Fréchet representation of moderate growth of a real reductive
group is holonomic. The relative character is a basic notion of relative representation theory
that generalizes the notion of a character of a representation. By a real reductive group we
mean a connected algebraic reductive group defined over R. Unless confusion is possible, we
will not distinguish between such a group and the group of its real points. Let us now recall
the notions of spherical pair, relative character and holonomic distribution. For the notion
of smooth admissible Fréchet representation of moderate growth and its relation to Harish-
Chandra modules we refer the reader to [Cas89] or [Wal88, Chapter 11].

Definition 1.1.1. Let G be a real reductive group and let H ⊂ G be its (algebraic) subgroup.
Let P denote a minimal parabolic subgroup of G and B denote a Borel subgroup of the com-
plexification GC. The subgroup H is called real spherical if it has finitely many orbits on G/P
and spherical if its complexification has finitely many orbits on GC/B.

It is known that a pair (G,H) is spherical if and only if HC has an open orbit on GC/B and
real spherical if and only if H has an open orbit on G/P , see [KS2].

Definition 1.1.2. LetG be a real reductive group and letH1, H2 ⊂ G be its (algebraic) spherical
subgroups and let hi be the Lie algebras of Hi. Let χi be characters of hi. Let π be a smooth
admissible Fréchet representation of moderate growth of G, π∗ be the continuous dual of π,
and π̂ ⊂ π∗ be the smooth contragredient representation to π (i.e. the only smooth admissible
Fréchet representation of moderate growth with the same space underlying Harish-Chandra
module as π∗). Let φ1 ∈ (π∗)h1,χ1 and φ2 ∈ (π̂∗)h2,χ2 be equivariant functionals. Fix a Haar
measure on G. It gives rise to an action of the space of Schwartz functions S(G) on π∗ and π̂∗,
and this action maps elements of π∗ and π̂∗ to elements of π̂ and ˆ̂π = π respectively. For the
definition of the space of Schwartz functions S(G) see, e.g., [Cas89; Wal88; AG08].

The relative character ξφ1,φ2 of π, with respect to φ1 and φ2, is the tempered distribution on
G (i.e. a continuous functional on S(G)) defined by 〈ξφ1,φ2 , f〉 = 〈φ1, π(f) · φ2〉.

Definition 1.1.3. The singular support1 SS(ξ) of a distribution ξ on a real algebraic manifold X
is the joint zero set in T ∗X of all the symbols of (algebraic) differential operators that annihilate
ξ. The distribution ξ is called holonomic if dim SS(ξ) = dimX .

In this paper we prove the following theorem.

Theorem A (See §4.2). In the situation of Definition 1.1.2, the relative character ξφ1,φ2 is
holonomic.

We prove Theorem A using the following well-known statement.

Proposition 1.1.4 (See §4.2). Let g, hi be the Lie algebras of G and Hi, i = 1, 2. Identify T ∗G
with G× g∗ and let

S := {(g, α) ∈ G× g∗ | α is nilpotent, 〈α, h1〉 = 0, 〈α,Ad∗(g)(h2)〉 = 0}.
Then SS(ξφ1,φ2) ⊂ S.

1a.k.a. characteristic variety
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Note that the Bernstein inequality states that the dimension of the singular support of any
non-zero distribution is at least the dimension of the underlying manifold. Thus Theorem A
follows from the following more precise version, which is the core of this paper.

Theorem B (See §2). We have dimS = dimG.

Let U :=
{
g ∈ G | S ∩ T ∗gG = {(g, 0)}

}
. Note that U is Zariski open since S is conic and

closed. It is easy to see that Theorem B implies the following corollary.

Corollary C. The set U is a Zariski open dense subset of G.

This corollary is useful in view of the next proposition, which follows from Proposition 1.1.4
and Corollary 3.1.3 below.

Proposition 1.1.5. The restriction ξφ1,φ2|U is an analytic function.

Remark 1.1.6. In general, S has irreducible components that can not lie in SS(ξφ1,φ2) for any
φ1, φ2. Indeed, SS(ξφ1,φ2) is coisotropic by [Gab81; KKS73; Mal79], and thus, by Theorem
A, Lagrangian. On the other hand, one can show that when G = GL(4,R), and H1 = H2 =
GL(2,R) × GL(2,R) embedded as block matrices inside G, the variety S has non-isotropic
(and thus non-Lagrangian) components.

1.2. Bounds on the dimension of the space of solutions. Next we apply our results to repre-
sentation theory. For this, we use the following theorem.

Theorem 1.2.1 (Bernstein-Kashiwara). Let X be a real algebraic manifold. Let

{Diξ = 0}i=1...n

be a system of linear PDE on X with algebraic coefficients. Suppose that the joint zero set of
the symbols of Di is dimX-dimensional. Then the space of solutions of this system in S∗(X)
is finite-dimensional.

It seems that this theorem is not found in the literature in this formulation, however it has
two proofs, one due to Kashiwara (see [Kas74; KK76] for similar statements) and another due
to Bernstein (unpublished).

In order to make our applications in representation theory more precise, we need an effective
version of this theorem. We prove such a version (see Theorem 3.2.2 below) following Bern-
stein’s approach, as it is more appropriate for effective bounds. We use this effective version
to derive a relative version. Namely, we show that if the system depends on a parameter in an
algebraic way, then the dimension of the space of solutions is bounded (see §3.3 below).

This relative version allows us to deduce the following theorem.

Theorem D (See §3.3). Let a real algebraic group G act on a real algebraic manifold X with
finitely many orbits. Let g be the Lie algebra of G. Let E be an algebraic G-equivariant
bundle on X . Then, for any natural number n ∈ N, there exists Cn ∈ N such that for every
n-dimensional representation τ of g we have

dim Homg(τ,S∗(X, E)) ≤ Cn,

where Homg denotes the space of all continuous g-equivariant maps.

1.3. Applications to representation theory. Using §3, we give a short proof of some results
from [KO13; KS]. Namely, we prove:

Theorem E (See §4). Let G be a real reductive group, H be a Zariski closed subgroup, and h
be the Lie algebra of H .
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(i) If H is a real spherical subgroup then, for every irreducible smooth admissible Fréchet
representation of moderate growth π ∈ Irr(G), and natural number n ∈ N there exists
Cn ∈ N such that for every n-dimensional representation τ of h we have

dim Homh(π, τ) ≤ Cn.

(ii) If H is a spherical subgroup and we consider only one-dimensional τ then the space is
universally bounded, i.e. there exists C ∈ N such that dim(π∗)h,χ ≤ C for any π ∈ Irr(G)
and any character χ of h.

Corollary F. Let G be a real reductive group, H be a Zariski closed reductive subgroup, and
h be the Lie algebra of H .

(i) If the diagonal ∆H is a real spherical subgroup in G×H then for every π ∈ Irr(G) and
τ ∈ Irr(H) we have finite multiplicities, i.e.

dim Homh(π, τ) <∞.

(ii) If the diagonal ∆H is a spherical subgroup inG×H then the multiplicities are universally
bounded, i.e., there exists C ∈ N such that for every π ∈ Irr(G), τ ∈ Irr(H) we have

dim Homh(π, τ) ≤ C.

This corollary follows from Theorem E since Homh(π, τ) lies in the space of ∆h-invariant
functionals on the completed tensor product π⊗̂τ̂ ∈ Irr(G×H) (see [AG09a, Corollary A.0.7
and Lemma A.0.8]). All symmetric pairs satisfying the conditions of the corollary were classi-
fied in [KM14].

The inverse implications for Theorem E and Corollary F are proven in [KO13].
An advantage of Theorem E(i) over [KO13; KS] is that Cn does not depend on τ . On the

other hand, the results on multiplicities in [KO13; KS] are slightly stronger than Theorem E
since they allow H to be any closed Lie subgroup and consider maps from the Harish-Chandra
space of π to τ . In addition, [KO13, Theorem B] implies that ifH ⊂ G is an algebraic spherical
subgroup there exists C ∈ N such that dim Homh(π, τ) ≤ C dim τ, for every π ∈ Irr(G) and
every finite-dimensional continuous representation τ of H . It is easy to modify our proof of
Theorem E(ii) to show the boundedness of multiplicities for any π ∈ Irr(G) and any τ of a
fixed dimension, but the proof that the bound depends linearly on this dimension would require
more work.

Our methods are different from the methods of [KO13], which in turn differ from the ones
of [KS], and the bounds given in the three works are probably very different.

1.4. The non-Archimedean case. Theorem B and Corollary C hold over arbitrary fields of
characteristic zero. They are useful also for p-adic local fields F , since the analogs of Propo-
sitions 1.1.4 and 1.1.5 hold in this case, see [AGS, Theorem A and Corollary F]. Namely, we
have the following theorem.

Theorem 1.4.1 ([AGS]). Let G be a reductive group defined over a non-Archimedean field
F of characteristic 0 and let ξ be a relative character of a smooth admissible representation
with respect to two spherical subgroups H1, H2 ⊂ G. Let S and U be the sets defined in
Proposition 1.1.4 and Corollary C. Then

(i) The wave front set of ξ lies in S.
(ii) The restriction of ξ to U is given by a locally constant function.

1.5. Related results. In the group case, i.e. the case whenG = H×H andH1 = H2 = ∆H ⊂
H × H , Theorem A essentially becomes the well-known fact that characters of admissible
representations are holonomic distributions.
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As we mentioned above, Theorem E was proven earlier in [KO13; KS] using different meth-
ods. An analog of Theorem E(i) over non-Archimedean fields is proven in [Del10] and [SV,
Theorem 5.1.5] for many spherical pairs, including arbitrary symmetric pairs.

The group case of Corollary C, Proposition 1.1.5, and Theorem 1.4.1(ii) is (the easy part of)
the Harish-Chandra regularity theorem (see [HC63; HC65]). Another known special case of
these results is the regularity of Bessel functions, see [LM; AGK; AG].

1.6. Future applications. Our proof of Theorem E(ii) does not use the Casselman embedding
theorem (Theorem 4.1.3). This gives us hope that it can be extended to the non-Archimedean
case. The main difficulty is the fact that our proof heavily relies on the theory of modules over
the ring of differential operators, which does not act on distributions in the non-Archimedean
case. However, in view of Theorem 1.4.1 we believe that this difficulty can be overcome.
Namely, one can deduce an analog of Theorem E(ii) for many spherical pairs from the following
conjecture .

Conjecture 1.6.1. Let G be a reductive group defined over a non-Archimedean field F of char-
acteristic 0 and let H1, H2 ⊂ G be its (algebraic) spherical subgroups. Let χi be characters of
Hi. Fix a character λ of the Bernstein center z(G).

Then the space of distributions which are:
(1) left (H1, χ1)-equivariant,
(2) right (H2, χ2)-equivariant,
(3) (z(G), λ)-eigen,

is finite-dimensional. Moreover, this dimension is uniformly bounded when λ varies.

Note that Theorem B and Theorem 1.4.1(i) imply that the dimension of (the Zariski closure
of) the wave front set of a distribution that satisfies (1-3) does not exceed dimG. In many
ways the wave front set replaces the singular support, in absence of the theory of differential
operators (see, e.g., [Aiz13; AD; AGS; AGK]). Thus, in order to prove Conjecture 1.6.1, it is
left to prove analogs of Theorems 1.2.1 and 3.2.2 for the integral system of equations (1-3).

1.7. Structure of the paper. In §2, we prove Theorem B using a theorem of Steinberg [Ste76]
concerning the Springer resolution.

In §3, we prove an effective version of Theorem 1.2.1, and then adapt it to algebraic families.
We also derive Theorem D.

In §4, we derive Theorem E from Theorem B and §3. We do that by embedding the multi-
plicity space into a certain space of relative characters.

In Appendix A, we prove Lemma 3.1.1 which computes the pullback of the D-module of
distributions with respect to a closed embedding. We use this lemma in §3.

1.8. Acknowledgements. We thank Eitan Sayag and Bernhard Kroetz for fruitful discussions.
We thank Joseph Bernstein for telling us the sketch of his proof of Theorem 1.2.1.

A.A. and D.G. will always be grateful to Joseph Bernstein for introducing them to the amaz-
ing world of algebra, for sharing his knowledge, his approaches to problems and his philosophy
for already more than half of their lives, and for being a shining example forever.

2. PROOF OF THEOREM B

It is enough to prove the theorem for a reductive group G defined over an algebraically
closed field of characteristic 0. Since S includes the zero section of T ∗G ∼=G × g∗, we have
dimS ≥ dimG. Thus, it is enough to prove that dimS ≤ dimG. Let B denote the flag variety
of G and N ⊂ g∗ denote the nilpotent cone. Since G is reductive, we can identify

T ∗B ∼= {(B,X)∈ B × g∗ |X ∈ (LieB)⊥}.
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Recall the Springer resolution µ : T ∗B → N defined by µ(B,X) = X and consider the
following diagram.

(1) T ∗B × T ∗B
µ×µ

)) ))

G×N

α
uu

N ×N
res

��

h∗1 × h∗2

Here, α is defined by α(g,X) = (X,Ad∗(g−1)X), and res is the restriction. Passing to the
fiber of 0 ∈ h∗1 × h∗2, we obtain the following diagram.

(2) L1 × L2

µ′

)) ))

S

α′vv

Nh1 ×Nh2

Here, Nhi := N ∩ h⊥i and Li := {(B,X) ∈ T ∗B |X ∈ h⊥i }.We need to estimate dimS. We
do it using the following lemma.

Lemma 2.0.1 (See §2.1 below). Let ϕi : Xi → Y , i = 1, 2, be morphisms of algebraic
varieties. Suppose that ϕ2 is surjective. Then there exists y ∈ Y such that

dimX1 ≤ dimX2 + dimϕ−11 (y)− dimϕ−12 (y).

By this lemma, applied to φ1 = α′ and φ2 = µ′, it is enough to estimate the dimensions of
Li and of the fibers of µ′ and α′.

Lemma 2.0.2. We have dimL1 = dimL2 = dimB.

Proof. Since Hi has finitely many orbits in B, it is enough to show that Li is the union of the
conormal bundles to the orbits of Hi in B. Let B ∈ B, and b = LieB, and identify TBB ∼= g/b.
Then TB(Hi · B) ∼= hi/(b ∩ hi) and the conormal space at B to the Hi-orbit of B is identified
with b⊥ ∩ h⊥i . �

Let (η,Ad∗(g)η) ∈ Im(α′). The fiber (α′)−1(η,Ad∗(g)η) is isomorphic to the stabilizer Gη,
and the dimension of the fiber (µ′)−1(η,Ad∗(g)η) is twice the dimension of the Springer fiber
µ−1(η). Recall the following theorem of Steinberg (conjectured by Grothendieck):

Theorem 2.0.3 ([Ste76, Theorem 4.6]).

dimGη − 2 dimµ−1(η) = rkG.

Using Lemma 2.0.1, we obtain for some (η, ad∗(g)η):

dimS ≤ dim(L1 × L2) + dim(a′)−1(η, ad∗(g)η)− dim(µ′)−1(η, ad∗(g)η) =

= 2 dimB + dimGη − 2 dimµ−1(η) = 2 dimB + rkG = dimG.

�
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2.1. Proof of Lemma 2.0.1. Recall that, for a dominant morphism ϕ : X → Y of irreducible
varieties, there exists an open dense U ⊂ Y such that dimX = dimY + dimϕ−1(y) for all
y ∈ U (see, e. g., [Mum99, Theorem 1.8.3]). Let Z be an irreducible component of X1 of
maximal dimension and W ⊂ Y be the Zariski closure of ϕ1(Z). Since W is irreducuble, there
exists an open dense U ⊂ W such that

(3) dimX1 = dimZ ≤ dimW + dimϕ−11 (y)

for all y ∈ U . Let V ⊂ U be an open dense subset such that ϕ−12 (V ) intersects those and
only those irreducible components C1, . . . , Cj of ϕ−12 (W ) that map dominantly to W . Note
that j > 0 since ϕ2 is surjective. Moreover, without loss of generality, we may assume that,
for every 1 ≤ i ≤ j, all fibers over V of the restriction of ϕ2 to Ci are of the same dimension.
Since one of these dimensions has to be equal to dimϕ−12 (V ) − dimV , we have, that there is
an 1 ≤ i ≤ j such that, for all y ∈ V ,
(4)
dimV = dimCi − dim(ϕ2|Ci

)−1(y) ≤ dimϕ−12 (V )− dimϕ−12 (y) ≤ dimX2 − dimϕ−12 (y).

Thanks to dimV = dimW , taking any y ∈ V , formulas (3) and (4) imply the statement. �

3. DIMENSION OF THE SPACE OF SOLUTIONS OF A HOLONOMIC SYSTEM

In this section, we prove an effective version of Theorem 1.2.1, and then adapt it to algebraic
families. We also derive Theorem D.

3.1. Preliminaries.

3.1.1. D-modules. In this section, we will use the theory of D-modules on algebraic varieties
over an arbitrary field k of characteristic zero. We will now recall some facts and notions that
we will use. For a good introduction to the algebraic theory of D-modules, we refer the reader
to [Ber] and [Bor87]. For a short overview, see [AG09a, Appendix B].

By a D-module on a smooth algebraic variety X we mean a quasi-coherent sheaf of right
modules over the sheaf DX of algebras of algebraic differential operators. By a finitely gen-
erated D-module on a smooth algebraic variety X we mean a coherent sheaf of right modules
over the sheaf DX . Denote the category of DX-modules byM(DX).

For a smooth affine variety V , we denote D(V ) := DV (V ). Note that the categoryM(DV )
of D-modules on V is equivalent to the category of D(V )-modules. We will thus identify these
categories.

The algebra D(V ) is equipped with a filtration which is called the geometric filtration and
defined by the degree of differential operators. The associated graded algebra with respect to
this fitration is the algebra O(T ∗V ) of regular functions on the total space of the cotangent
bundle of V . This allows us to define the singular support of a finitely generated D-module
M on V in the following way. Choose a good filtration on M , i.e. a filtration such that the
associated graded module is a finitely-generated module over O(T ∗V ), and define the singular
support SS(M) to be the support of this module. One can show that the singular support does
not depend on the choice of a good filtration on M .

This definition easily extends to the non-affine case. A finitely generated D-module M on
X is called smooth if SS(M) is the zero section of T ∗X . This is equivalent to being coherent
over OX and to be coherent and locally free over OX . The Bernstein inequality states that, for
any non-zero finitely generated M , we have dimSS(M) ≥ dimX . If the equality holds then
M is called holonomic.

For a closed embedding i : X → Y of smooth affine algebraic varieties, define the functor
i! : M(DY ) → M(DX) by i!(M) := {m ∈ M | IXm = 0}, where IX ⊂ O(Y ) is the ideal
of all functions that vanish on X . It has a left adjoint functor i∗ : M(DX) →M(DY ), given
by tensor product with i!(DY ). The functor i∗ is an equivalence of categories betweenM(DX)
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and the category of DY -modules supported in X . Both i∗ and i! map holonomic modules to
holonomic ones.

If V is an affine space then the algebraD(V ) has an additional filtration, called the Bernstein
filtration. It is defined by deg(∂/∂xi) = deg(xi) = 1, where xi are the coordinates in V . This
gives rise to the notion of Bernstein’s singular support, that we will denote SSb(M) ⊂ T ∗V ∼=
V ⊕ V ∗. It is known that dimSS(M) = dimSSb(M).

We will also use the theory of analytic D-modules. By an analytic D-module on a smooth
complex analytic manifold X we mean a coherent sheaf of right modules over the sheaf DAn

X

of algebras of differential operators with analytic coefficients. All of the above notions and
statements, except those concerning the Bernstein filtration, have analytic counterparts. In
addition, all smooth analytic D-modules of the same rank are isomorphic.

3.1.2. Distributions. We will use the theory of distributions on differentiable manifolds and the
theory of tempered distributions on real algebraic manifolds, see e.g. [Hör90; AG08]. For a real
algebraic manifold X , we denote the space of distributions on X by D′(X) := (C∞c (X))∗ and
the space of tempered distributions (a.k.a. Schwartz distributions) by S∗(X) := (S(X))∗. Sim-
ilarly, for an algebraic bundle E over X we denote D′(X, E) := (C∞c (X, E))∗ and S∗(X, E) :=
(S(X, E))∗. The spaces D′(X) and S∗(X) form (right) D-modules over X . The space D′(X)
is also an analytic D-module. We define the singular support of a distribution to be the singu-
lar support of the D-module it generates. It is well-known that this definition is equivalent to
Definition 1.1.3. We say that a distribution is holonomic if it generates a holonomic D-module.

Lemma 3.1.1 (See Appendix A). Let i : X → Y be a closed embedding of smooth affine real
algebraic varieties. Then

D′(X) ∼= i!(D′(Y )) and S∗(X) ∼= i!(S∗(Y )).

Lemma 3.1.2. Let M be a smooth D(Cn)-module of rank r. Embed the space An(Cn) of
analytic functions on Cn into D′(Rn) using the Lebesgue measure. Then Hom(M,D′(Rn)) =
Hom(M,An(Cn)) and dim Hom(M,D′(Rn)) = r.

Proof. Let MAn := M ⊗O(Cn) An(Cn) and DAn(Cn) := D(Cn)⊗O(Cn) An(Cn) be the analy-
tizations of M and D(Cn). Then

HomD(Cn)(M,D′(Rn)) ∼= HomDAn(Cn)(MAn,D′(Rn)).

Since MAn is also smooth, MAn
∼= An(Cn)r. Thus it is left to prove that

HomDAn(Cn)(An(Cn),D′(Rn)) = HomDAn(Cn)(An(Cn), An(Cn))

and the latter space is one-dimensional. This follows from the fact that a distribution with
vanishing partial derivatives is a multiple of the Lebesgue measure. �

Corollary 3.1.3. If a distribution generates a smooth D-module, then it is analytic.

3.1.3. Lie algebra actions.

Definition 3.1.4. Let X be an algebraic manifold over a field k and g be a Lie algebra over k.
(i) An action of g on X is a Lie algebra map from g to the algebra of algebraic vector fields

on X .
(ii) Assume that X is affine, fix an action of g on X and let E be an algebraic vector bundle

on X . Let M be the space of global regular (algebraic) sections of E . An action of g on E
is a linear map T : g→ Endk(M) such that, for any α ∈ g, f ∈ O(X), v ∈M , we have

T (α)(fv) = (αf)v + fT (α)v.

(iii) The definition above extends to non-affine X in a straightforward way.
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3.1.4. Weil representation.

Definition 3.1.5. Let V be a finite-dimensional real vector space. Let ω be the standard sym-
plectic form on V ⊕ V ∗. Denote by pV : V ⊕ V ∗ → V and pV ∗ : V ⊕ V ∗ → V ∗ the natural
projections. Define an action of the symplectic group Sp(V ⊕ V ∗, ω) on the algebra D(V ) by

(∂v)
g := π(g)(∂v) := pV ∗(g(v, 0)) + ∂pV (g(v,0)), wg := π(g)w := pV ∗(g(0, w)) + ∂pV (g(0,w))

where v ∈ V, w ∈ V ∗, ∂v denotes the derivative in the direction of v, and elements of V ∗ are
viewed as linear polynomials and thus differential operators of order zero. For a D(V )-module
M and an element g ∈ Sp(V ⊕ V ∗), we will denote by M g the D(V )-module obtained by
twisting the action of D(V ) by π(g).

Since the above action of Sp(V ⊕ V ∗) preserves the Bernstein filtration on D(V ), the fol-
lowing lemma holds.

Lemma 3.1.6. For a finitely generated D(V )-module M and g ∈ Sp(V ⊕ V ∗) we have
SSb(M

g) = gSSb(M).

Theorem 3.1.7 ([Wei64]). There exists a two-folded cover p : S̃p(V ⊕ V ∗) → Sp(V ⊕ V ∗)
and a representation Π of S̃p(V ⊕V ∗) on the space S∗(V ) of tempered distributions on V such
that, for any α ∈ D(V ), g ∈ S̃p(V ⊕ V ∗), ξ ∈ S∗(V ), we have

Π(g)(ξα) = (Π(g)ξ)αp(g).

Corollary 3.1.8. We have an isomorphism of D(V )-modules S∗(V )g ∼= S∗(V ) for any g ∈
Sp(V ⊕ V ∗).

In fact, this corollary can be derived directly from the Stone-von-Neumann theorem.

3.1.5. Flat morphisms.

Lemma 3.1.9. Let φ : X → Y be a proper morphism of algebraic varieties over a field k and
M be a coherent sheaf on X . Then there exists an open dense U ⊂ Y such thatM|φ−1(U) is
flat over U .

Proof. By [EGA IV, Théorème II.3.I], the set V of scheme-theoretic points x ∈ X for which
M is φ-flat at x is open in X . Since φ is proper, the set Z := φ(X \ V ) is closed in Y . Note
thatM is flat over U := X \ Z, since φ−1(U) ⊂ V . Moreover, U contains the generic points
of the irreducible components of Y . Hence, U ⊂ Y is dense. �

Lemma 3.1.10 (See, e. g., [Mum74, Corollary on p. 50]). Let φ : X → Y be a proper mor-
phism of algebraic varieties andM be a coherent sheaf on X that is flat over Y . For a point
y ∈ Y , letMy denote the pullback ofM to φ−1(y). Then the function

y 7→ χ(My) =
∞∑
i=0

(−1)i dimk(y) Hi(My)

is locally constant.

Corollary 3.1.11. Let Y be an algebraic variety andM be a coherent sheaf on Y × Pn. Then
there exists an open dense U ⊂ Y such that the Hilbert polynomial2 ofMy does not depend on
y as long as y ∈ U .

2For the definition of Hilbert polynomial see [Har77, Chapter III, Exercise 5.2].
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3.2. Dimension of the space of solutions of a holonomic system.

Definition 3.2.1.

(i) Let M be a finitely generated D-module over an affine space An. Let F i be a good
filtration on M with respect to the Bernstein filtration on the ring DAn . Let p be the
corresponding Hilbert polynomial of M , i.e. p(i) = dimF i for large enough i. Let k be
the degree of p and ak be the leading coefficient of p. Define the Bernstein degree of M
to be degb(M) := k!ak. It is well-known that k and ak do not depend on the choice of
good filtration F i.

(ii) Let M be a finitely generated D-module over a smooth algebraic variety X . Let X =⋃l
i=1 Ui be an open affine cover of X and let φi : Ui ↪→ Ani be closed embeddings.

Denote

deg{(Ui,φi)}(M) :=
l∑

i=1

degb((φi)∗(M |Ui
)).

Define the global degree of M by deg(M) := min deg{(Ui,φi)}(M), where the minimum
is taken over the set of all possible affine covers and embeddings.

In this subsection, we prove

Theorem 3.2.2. Let X be a real algebraic manifold. Let M be a holonomic right D-module.
Then dim Hom(M,S∗(X)) ≤ deg(M).

We will need the following geometric lemmas

Lemma 3.2.3. Let V be a vector space, L ⊂ V be a subspace and C ⊂ V be a closed conic
algebraic subvariety such that L∩C = {0}. Then the projection p : C → V/L is a finite map.

Proof. By induction, it is enough to prove the case dimL = 1. Choose coordinates x1, . . . , xn
on V such that the coordinates x1, . . . , xn−1 vanish on L. Let p be a homogeneous polynomial
that vanishes on C but not on L. Write p =

∑k
i=1 gix

i
n, where each gi is a homogeneous

polynomial of degree k − i in x1, . . . , xn−1. Then xn|C satisfies a monic polynomial equation
with coefficients in O(V/L). �

Lemma 3.2.4. Let W be a 2n-dimensional symplectic vector space, and C ⊂ W be a closed
conic subvariety of dimension n. Then there exists a Lagrangian subspace L ⊂ W such that
L ∩ C = {0}.

Proof. Let L denote the variety of all Lagrangian subspaces of W . Note that dimL = n(n +
1)/2. Let P (C) ⊂ P(W ) be the projectivizations of C and W . Consider the configuration
space

X := {(x, L) ∈ P (C)× L |x ⊂ L}.
We have to show that p(X) 6= L where p : X → L is the projection. Let q : X → P (C) be the
other projection. Note that dim q−1(x) = n(n− 1)/2 for any x ∈ P (C). Thus

dimX = n(n− 1)/2 + n− 1 < n(n+ 1)/2 = dimL,

and thus p : X → L cannot be onto. �

Corollary 3.2.5. Let V be a vector space of dimension n. Consider the standard symplectic
form on V ⊕V ∗. LetC ⊂ V ⊕V ∗ be a closed conic subvariety of dimension n. Let p : V ⊕V ∗ →
V denote the projection. Then there exists a linear symplectic automorphism g ∈ Sp(V ⊕ V ∗)
such that p|gC is a finite map.
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Proof. By Lemma 3.2.4 there exists a Lagrangian subspace L ⊂ V ⊕V ∗ such that L∩C = {0}.
Since the action of Sp(V ⊕V ∗) on Lagrangian subspaces is transitive, there exists g ∈ Sp(V ⊕
V ∗) such that V ∗ = gL and thus gC ∩ V ∗ = {0}. From Lemma 3.2.3 we get that p|gC is a
finite map. �

Proof of Theorem 3.2.2. Let X =
⋃l
i=1 Ui be an open affine cover of X and let φi : Ui ↪→ Ani

be closed embeddings. Clearly

dim Hom(M,S∗(X)) ≤
l∑

i=1

dim Hom(M |Ui
,S∗(Ui)).

By Lemma 3.1.1

Hom(M |Ui
,S∗(Ui)) ∼= Hom(M |Ui

, φ!
i(S∗(Rni)) ∼= Hom((φi)∗(M |Ui

),S∗(Rni)).

Thus it is enough to show that for any holonomic D-module N on an affine space An we have
dim Hom(N,S∗(Rn)) ≤ degb(N).

Let C ⊂ A2n be the singular support of N with respect to the Bernstein filtration. By
Corollary 3.2.5, there exists g ∈ Sp2n such that p|gC is a finite map, where p : A2n → An is the
projection on the first n coordinates. By Corollary 3.1.8 we have

dim Hom(N,S∗(Rn)) = dim Hom(N g,S∗(Rn)g) = dim Hom(N g,S∗(Rn)).

By Lemma 3.1.6 we have SSb(N g) = gC. Let F be a good filtration on N g (with respect to
the Bernstein filtration on D(An)). We see that GrN g is finitely generated over O(An), and
thus so is N g. Thus N g is a smooth D-module. Note that rkO(An)N

g ≤ degbN
g = degbN .

By Lemma 3.1.2 dim Hom(N g,S∗(Rn)) ≤ rkO(An)N
g. �

3.3. Families of D-modules. In this section we discuss families of D-modules on algebraic
varieties over an arbitrary field k of zero characteristic.

Notation 3.3.1. Let φ : X → Y be a map of algebraic varieties and M be a quasi-coherent
sheaf of OX-modules. For any y ∈ Y , denote byMy the pullback ofM to φ−1(y).

Definition 3.3.2. Let X, Y be smooth algebraic varieties.
• If X and Y are affine we define the algebra D(X, Y ) to be D(X)⊗k O(Y ).
• Extending this definition we obtain a sheaf of algebras DX,Y on X × Y .
• By a family of DX-modules parameterized by Y , we mean a sheaf of right modules

over the sheaf of algebras DX,Y on X × Y which is quasicoherent as a sheaf of OX×Y -
modules.
• We call a family of DX-modules parameterized by Y coherent if it is locally finitely

generated as a DX,Y -module.
• For a familyM of DX-modules parameterized by Y and a point y ∈ Y , we callMy

the specialization ofM at y and consider it with the natural structure of a DX-module.
• We say that a coherent familyM is holonomic if every specialization is holonomic.

Theorem 3.3.3. Let X, Y be smooth algebraic varieties and M be a family of DX-modules
parametrized by Y . Then degMy is bounded when y ranges over the k-points of Y .

Proof. Without loss of generality, we can assume that X = An and Y is an affine variety, and
prove that degb(My) is bounded. We will prove this by induction on dimY .

The Bernstein filtration on D(An) gives rise to a filtration on D(An, Y ). Choose a filtration
F on M which is good with respect to this filtration and let N := GrM, considered as a
graded O(A2n × Y )-module. Associate to N a coherent sheaf N on P2n−1 × Y . Let Ny be
the pullback of N under the embedding of P2n−1 into P2n−1 × Y given by x 7→ (x, y). By
definition, the Hilbert polynomial of My with respect to the filtration induced by F is the
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Hilbert polynomial of Ny. By Corollary 3.1.11, there exists an open dense subset U ⊂ Y such
that the Hilbert polynomial of Ny does not depend on y as long as y ∈ U . By the induction
hypothesis, degb(My) is bounded on Y \ U , and thus bounded on Y . �

For an application of this theorem we will need the following lemma.

Lemma 3.3.4. Let a real Lie algebra g act on a real algebraic manifoldX and on an algebraic
vector bundle E on X . Fix a natural number n and let Y be the variety of all representations
of g on Cn. Then there exists a coherent familyM of DX-modules parameterized by Y such
that, for any τ ∈ Y , we have

(1) Homg(τ,S∗(X, E)) = HomDX
(Mτ ,S∗(X)).

(2) The singular support ofMτ (with respect to the geometric filtration) is included in

{(x, φ) ∈ T ∗X | ∀α ∈ g we have 〈φ, α(x)〉 = 0}.

Proof. It is enough to prove the lemma for affine X . Let N be the coherent sheaf of the regular
(algebraic) sections of E (considered as a sheaf of OX-modules). Let N be the pullback of N
to X×Y . LetN ′ := N ⊗OX×Y

DX,Y ⊗CCn, andN ′′ ⊂ N ′ be the DX,Y -submodule generated
by elements of the form

αn⊗ 1⊗ v + n⊗ ξα ⊗ v + n⊗ fα(v),

where α ∈ g, ξα is the vector field on X corresponding to α, and fα(v) ∈ DX,Y ⊗C Cn is the
Cn-valued regular function on X × Y given by fα(v)(x, τ) = τ(α)v. Then M := N ′/N ′′
satisfies the requirements. �

Theorems 3.2.2 and 3.3.3 and Lemma 3.3.4 imply Theorem D.

4. PROOF OF THEOREMS A AND E

In this section, we derive Theorems A and E from Theorem B and §3. We do that by embed-
ding the multiplicity space into a certain space of relative characters.

4.1. Preliminaries. For a real reductive group G, we denote by Irr(G) the collection of ir-
reducible admissible smooth Fréchet representation of G of moderate growth. We refer to
[Cas89; Wal88] for the background on these representations.

Theorem 4.1.1 (See [Wal88, Theorem 4.2.1]). The center z(U(g)) of the universal enveloping
algebra of the Lie algebra of G acts finitely on every admissible smooth Fréchet representation
π of G of moderate growth. This means that there exists an ideal in z(U(g)) of finite codimen-
sion that annihilates π.

Lemma 4.1.2 ([Ada, Theorem 1.2 and Corollary 1.4]). For any real reductive group G, there
exists an involution θ of G such that, for any π ∈ Irr(G), we have π̂ ∼= πθ.

Theorem 4.1.3 (Casselman embedding theorem, see [CM82, Proposition 8.23]). Let G be a
real reductive group and P be a minimal parabolic subgroup of G. Let π ∈ Irr(G). Then
there exists a finite-dimensional representation σ of P and an epimorphism IndGP (σ) � π.

4.2. Proof of Theorem A and Proposition 1.1.4. Theorem A follows from Theorem B and
Proposition 1.1.4.

Proof of Proposition 1.1.4. Let ξ be a relative character of a smooth admissible Fréchet
representation π of G of moderate growth with respect to a pair of subgroups (H1, H2) and
their characters χ1, χ2. By Theorem 4.1.1, there exists an ideal I ⊂ z(U(g)) of finite codi-
mension that annihilates π and thus annihilates ξ. For any element z ∈ z(U(g)), there exists
a polynomial p such that p(z) ∈ I and thus p(z)ξ = 0. This implies that the symbol of any
z ∈ z(U(g)) of positive degree vanishes on the singular support of ξ. It is well-known that the
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joint zero-set of these symbols over each point g ∈ G is the nilpotent cone N (g∗). Since ξ is
(h1 × h2, χ1 × χ2)-equivariant, this implies that the singular support of ξ lies in S. �

4.3. Proof of Theorem E. Part (i) follows immediately from Theorem D and the Casselman
embedding theorem. If G is quasi-split then so does part (ii). For the proof of part (ii) in the
general case, we will need the following lemma.

Lemma 4.3.1. Let G be a real reductive group and H1, H2 be spherical subgroups. Let Y =
Spec(z(U(g)))×Y1 × Y2, where Yi is the variety of characters of hi = LieHi. For any λ ∈
Y (C), define Uλ,χ1,χ2 := S∗(G)h1×h2,(χ1,χ2),(z(U(g)),λ) to be the space of tempered distributions
on G that are left χ1-equivariant with respect to h1, right χ2-equivariant with respect to h2
and are eigendistributions with respect to the action of z(U(g)) with eigencharacter λ. Then
dimUλ,χ1,χ2 is bounded over Y (C).

Proof. Let us construct a family of D(G)-modules M parameterized by Y . For any α ∈ g,
let rα and lα be the corresponding right and left invariant vector fields on G considered as ele-
ments in D(G, Y ). For any β ∈ z(U(g)), αi ∈ hi, let fβ, giαi

be the functions on Y that send
(µ, γ1, γ2) ∈ Y to µ(β), γi(αi) respectively. Let also dβ be the differential operator on G corre-
sponding to β, such that dβξ = βξ for any distribution ξ on G. We consider dβ, rα1 , lα2 , fβ, g

i
αi

as elements of D(G, Y ). Let I ⊂ D(G, Y ) be the ideal generated by rα1−g1α1
, lα2−g2α2

and
fβ−dβ where αi ∈ hi and β ∈ z(U(g)). DefineM := D(G, Y )/I .

It is easy to see that Uλ,χ1,χ2
∼= Hom(M(λ,χ1,χ2),S∗(G)). As in the proof of Proposition

1.1.4, the singular support ofM(λ,χ1,χ2) lies in S, for any λ, χ1, χ2. By Theorem B,M(λ,χ1,χ2)

is holonomic and, therefore, M is holonomic. By Theorem 3.2.2, we have dimUλ,χ1,χ2 ≤
degM(λ,χ1,χ2). By Theorem 3.3.3, degM(λ,χ1,χ2) are bounded. �

Proof of Theorem E(ii). We choose an involution θ as in Lemma 4.1.2, let H1 := H, H2 :=
θ(H), and define the spaces Uλ as in Lemma 4.3.1.

Now let π ∈ Irr(G) and let χ be a character of h such that (π∗)h,χ 6= 0. Let λ stand
for the infinitesimal character of π. By Lemma 4.1.2, (π̂∗)dθ(h),dθ(χ) 6= 0. Fix a non-zero
φ ∈ (π̂∗)dθ(h),dθ(χ). Then φ defines an embedding (π∗)h,χ ↪→ Uλ,χ,dθ(χ) by ψ 7→ ξψ,φ, where
ξψ,φ is the relative character, which is defined by ξψ,φ(f) := 〈ψ, π(f)φ〉. Thus, dim(π∗)h,χ ≤
dimUλ,χ,dθ(χ), which is bounded by Lemma 4.3.1. �

APPENDIX A. PROOF OF LEMMA 3.1.1

For the proof, we will need the following standard lemmas. Let M be a smooth manifold
and N ⊂M be a closed smooth submanifold.

Lemma A.0.1. Denote IN := {f ∈ C∞c (M) |f |N = 0}. Let J ⊂ IN be an ideal in C∞c (M)
such that

(1) For any x ∈ N , the space {dxf | f ∈ J} is the conormal space to N in M at the point
x.

(2) For any x ∈M \N , there exists f ∈ J such that f(x) 6= 0.
Then J = IN .

Proof. Using partition of unity, it is enough to show that, for any f ∈ IN and x ∈ M , there
exists f ′ ∈ J such that f coincides with f ′ in a neighborhood of x. For x /∈ N this is obvious,
so we assume that x ∈ N . We prove the statement by induction on the codimension d of
N in M . The base case d = 1 follows, using the implicit function theorem, from the case
N = Rn−1 ⊂ Rn = M , which is obvious.

For the induction step, take an element g ∈ J such that dxg 6= 0. Let

Z := {y ∈M | g(y) = 0} and U := {y ∈M | dyg 6= 0}.
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By the implicit function theorem, U ∩ Z is a closed submanifold of U . Choose ρ ∈ C∞c (M)
such that ρ = 1 in a neighborhood of x and Supp(ρ) ⊂ U . Let f̄ := (ρf)|U∩Z . Let

J̄ := {α|U∩Z |α ∈ J and Suppα ⊂ U}.
By the induction hypothesis, f̄ ∈ J̄ . Thus, there exists f ′′ ∈ J such that f − f ′′ vanishes in a
neighborhood of x in Z. Now, the case d = 1 implies that there exists α ∈ C∞c (M) such that
f − f ′′ coincides with αg in a neighborhood of x. �

Lemma A.0.2. The restriction C∞c (M)→ C∞c (N) is an open map.

Proof. Let K ⊂ M be a compact subset. It is easy to see that there exists a compact K ′ ⊃ K
such that the restriction map C∞K′(M) → C∞K′∩N(N) is onto, using the partition of unity. By
the Banach open map theorem this map is open. Thus, the restriction C∞c (M)→ C∞c (N) is an
open map. �

Let Y be a real algebraic manifold and X be a closed algebraic submanifold. Let i : X → Y
denote the embedding.

Lemma A.0.3. Let ξ be a distribution on X such that i∗ξ is a tempered distribution. Then ξ is
a tempered distribution.

Proof. The map i∗ is dual to the pullback map C∞c (Y ) → C∞c (X). This can be extended to
a continuous map i∗ : S(Y ) → S(X) which is onto by [AG08, Theorem 4.6.1]. The Banach
open map theorem implies that i∗ is an open map. It is easy to see that i∗ξ : S(Y ) → C
vanishes on Ker(i∗), and thus it gives rise to a continuous map S(X) → C, which extends
ξ. �

Lemma A.0.4. Let ξ be a distribution on Y such that pξ = 0 for any polynomial p on Y that
vanishes on X . Then ξ is a pushforward of a distribution on X .

Proof. Let J(X) be the ideal of all polynomials on Y that vanish onX . Let J := J(X)C∞c (Y ).
By Lemma A.0.1 we have J = IX . Thus, ξ vanishes on IX and thus, by Lemma A.0.2, ξ is a
pushforward of a distribution on X . �

Lemma 3.1.1 follows from Lemmas A.0.3 and A.0.4 and the definition of i! for closed em-
bedding of smooth affine varieties.
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[KS] Bernhard Krötz and Henrik Schlichtkrull. “Multiplicity bounds and the subrepresentation
theorem for real spherical spaces”. In: Transactions of the American Mathematical Society
(to appear). arXiv: 1309.0930 [math.RT].

http://arxiv.org/abs/1405.2540
http://dx.doi.org/10.1007/s11856-012-0088-y
http://ncatlab.org/nlab/files/BernsteinDModule.pdf
http://ncatlab.org/nlab/files/BernsteinDModule.pdf
http://dx.doi.org/10.4153/CJM-1989-019-5
http://dx.doi.org/10.4153/CJM-1989-019-5
http://dx.doi.org/10.1215/S0012-7094-82-04943-2
http://dx.doi.org/10.1090/S0002-9947-09-04925-3
http://www.numdam.org/numdam-bin/feuilleter?id=PMIHES_1966__28_
http://www.numdam.org/numdam-bin/feuilleter?id=PMIHES_1966__28_
http://dx.doi.org/10.2307/2374101
http://projecteuclid.org/euclid.bams/1183525024
http://projecteuclid.org/euclid.bams/1183525024
http://dx.doi.org/10.1090/S0002-9947-1965-0180631-0
http://dx.doi.org/10.1090/S0002-9947-1965-0180631-0
http://dx.doi.org/10.2977/prims/1195192011
http://dx.doi.org/10.3792/pja/1195518268
http://dx.doi.org/10.1007/BFb0068143
http://dx.doi.org/10.1007/BFb0068143
http://dx.doi.org/10.1007/s00031-014-9265-x
http://dx.doi.org/10.1007/s00031-014-9265-x
http://dx.doi.org/10.1016/j.aim.2013.07.015
http://dx.doi.org/10.1016/j.aim.2013.07.015
http://arxiv.org/abs/1309.0930


16 REFERENCES
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