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Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a
module over the ring D(X) of differential operators on X.

A D-module M given by generators and relations can be
thought of as a system of PDE. A solution of M is a D-module
homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators my ... my. Define
Fi(D(X)) to be the space of differential operators of degree i
and Fj(M) := Fi(D(X))(m; ... my). Define

SS(M) := supp(grr(M)) C T*X.

For a distribution £ on X(R) define
SS(€) .= SS(D(X)¢) = ﬂ Zeros(symbol(d)).
de=0
A distribution (or a D-module) ¢ is called holonomic if
dim(SS(¢)) = dim X.
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Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, Hy, Ho C G be spherical
subgroups (i.e. H; \ G/B is finite). The following system of
equations on a distribution & on G is holonomic:
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Main results

Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, Hy, Ho C G be spherical
subgroups (i.e. H; \ G/B is finite). The following system of
equations on a distribution & on G is holonomic:

@ ¢ is left Hy invariant
@ ¢ is right Hy invariant

@ ¢ is eigen w.r.t. the center 3(u(g)) of the universal
enveloping algebra of the Lie algebra of G.

Corollary

Let (r, V) be an admissible representation of G(R) and
vi € (V)M va e (V). Let ¢ be the corresponding spherical
character:

(&, f) == (m" ()1, va).

Then ¢ is a holonomic distribution.
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Applications to the spherical character

Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front
set of any spherical character of an admissible representation
of G(F) is included in a conic subvariety of T*G of middle
dimension. If F = R then the subvariety is Lagrangian.
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Applications to the spherical character

Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front
set of any spherical character of an admissible representation
of G(F) is included in a conic subvariety of T*G of middle
dimension. If F = R then the subvariety is Lagrangian.

Any spherical character of an admissible representation of
G(F) is smooth in a Zariski open dense set.

Dmitry Gourevitch Holonomicity of spherical characters



Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.




Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.

Theorem (Bernstein, Kashiwara, Aizenbud, G., Minchenko)

Let X, Y be smooth algebraic varieties and M be a family of
Dx-modules parameterized by Y. Suppose that M, is holonomic.
Then dim Hom(M,,, §*(X)) is bounded when y ranges over Y.




Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.

Theorem (Bernstein, Kashiwara, Aizenbud, G., Minchenko)

Let X, Y be smooth algebraic varieties and M be a family of
Dx-modules parameterized by Y. Suppose that M, is holonomic.
Then dim Hom(M,,, §*(X)) is bounded when y ranges over Y.

Corollary (Aizenbud, G., Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with
finitely many orbits. Let & be an algebraic G-equivariant bundle on X
and x be a character of g. Then,

dim S*(X, £)8 < o.

Moreover, it remains bounded when we change x or tensor € with a
representation of g of a fixed dimension.
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Theorem (Kobayashi, Krétz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed
subgroup, and b be the Lie algebra of H.
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Let G be a real reductive group, H be a Zariski closed
subgroup, and b be the Lie algebra of H.

@ IfH is a spherical subgroup then there exists C € N such

that dim(7*)"X < C for any 7 € Irr(G) and any character x
of b.
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Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krétz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed
subgroup, and b be the Lie algebra of H.

@ /fH is a spherical subgroup then there exists C € N such
that dim(7*)"X < C for any 7 € Irr(G) and any character x
of b.

© If H is a real spherical subgroup then, for every irreducible
admissible representation € Irr(G), and natural number
n € N there exists C, € N such that for every
n-dimensional representation T of b we have

dim Homy(m, 7) < Ch.
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Corollaries for homologies

Theorem (Aizenbud, G., Krétz, Liu)

Let a real algebraic group G act on a real algebraic manifold X
with finitely many orbits. Let £ be an algebraic G-equivariant
bundle on X and x be a tempered character of G. Then, the
homology Ho(g, S(X, €) ® x)) is separated and is
non-degenerately paired with S*(X,£)%X. lLe.

gS(X, &)@ x c (X, &) @ x

is closed and has finite codimension.
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Theorem (Aizenbud, G., Krétz, Liu)

Let a real algebraic group G act on a real algebraic manifold X
with finitely many orbits. Let £ be an algebraic G-equivariant
bundle on X and x be a tempered character of G. Then, the
homology Ho(g, S(X, €) ® x)) is separated and is
non-degenerately paired with S*(X,£)%X. lLe.

gS(X, &)@ x c (X, &) @ x

is closed and has finite codimension.

Let G be a real reductive group, H be a real spherical subgroup,
and b be the Lie algebra of H. Let x be a tempered character of
H. Then for any admissible representation = of G, Hy(h, 7 ® x)
is separated and is non-degenerately paired with (7*)b X,
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Geometric formulation

Theorem (A., Gourevitch, Minchenko 2015)

Let

S={ge G xegxehi, ad(g)(x) € bs, x is nijpotent} =

=GxNNJCNG g, g
geG

Then

dim S = dim G.
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The group case

Assume H; = H, = H, diagonally embedded in G = H x H.
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The group case

Assume H; = H, = H, diagonally embedded in G = H x H.
Translating the problem to H = G/H we obtain:

S ={g € H,x € h"|Ad(g)(X) = X, X € Ny} = HxNun | ) CNfy610.6
geH
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Translating the problem to H = G/H we obtain:

S ={g € H,x € h"|Ad(g)(X) = X, X € Ny} = HxNun | ) CNfy610.6
geH

passing to the Lie algebra

S ' ={g e h,x €b|[x,g] =0, x is nilpotent}
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The group case

Assume H; = H, = H, diagonally embedded in G = H x H.
Translating the problem to H = G/H we obtain:

S ={g € H,x € h"|Ad(g)(X) = X, X € Ny} = HxNun | ) CNfy610.6
geH

passing to the Lie algebra
S ={g e h,x €bl|[x,g] =0, x is nilpotent}

So
S'c U CNZd(G)x,x

XENH
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Springer resolution and Steinberg theorem

Let B be the flag variety.
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Let B be the flag variety. T*B = {B € B, x € b}. We have a
natural map p : T*B — N. ltis called the Springer resolution.
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Springer resolution and Steinberg theorem

Let B be the flag variety. T*B = {B € B, x € b}. We have a
natural map p : T*B — N. ltis called the Springer resolution.

Theorem (Steinberg 1976)

Vn € N we have dim G, — 2dim ' () = tkG.
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|dea of the proof

T*Bx T*B
\ g,X)— x/f/
N xN
J/res
b x b3

Passing to the fiber of 0 € b x h} we get:

1 XNf)z

Where
Ny, =N nbjand L= {(B,X) € T"B|X € bi"} = Uyes CNEXX
The estimate on dim S follows from the Steinberg theorem and:

dimL; =dimB.



