Invariant Distributions and Gelfand Pairs

D. Gourevitch

http://www.math.ias.edu/~dimagur

Gelfand Pairs

Definition

A pair of compact topological groups $(G \supset H)$ is called a **Gelfand pair** if the following equivalent conditions hold:

- L²(G/H) decomposes to direct sum of **distinct** irreducible representations of G.
- for any irreducible representation ρ of $G \dim \rho^H \leq 1$.
- for any irreducible representation ρ of G dimHom_H(ρ, ℂ) ≤ 1.
- the algebra of bi-H-invariant functions on G, $C(H \setminus G/H)$, is commutative w.r.t. convolution.

Definition

A pair of compact topological groups $(G \supset H)$ is called a **strong Gelfand pair** if one of the following equivalent conditions is satisfied:

- the pair $(G \times H \supset \Delta H)$ is a Gelfand pair
- for any irreducible representations ρ of G and τ of H

$$dimHom_H(\rho|_H, \tau) \leq 1.$$

• the algebra of Ad(H)-invariant functions on G, C(G//H), is commutative w.r.t. convolution.

Harmonic analysis:

 Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.

- Harmonic analysis: (SO(3,ℝ), SO(2,ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:

- Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis:
 (S_n, S_{n-1}) is a strong Gelfand pair basis for irreducible representations of S_n

- Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis: (S_n, S_{n-1}) is a strong Gelfand pair basis for irreducible representations of S_n The same for $O(n, \mathbb{R})$ and U(n).

- Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis: (S_n, S_{n-1}) is a strong Gelfand pair basis for irreducible representations of S_n The same for $O(n, \mathbb{R})$ and U(n).
- Classification of representations:

- Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis: (S_n, S_{n-1}) is a strong Gelfand pair basis for irreducible representations of S_n The same for $O(n, \mathbb{R})$ and U(n).
- Classification of representations: $(GL(n,\mathbb{R}),O(n,\mathbb{R}))$ is a Gelfand pair the irreducible representations of $GL(n,\mathbb{R})$ which have an $O(n,\mathbb{R})$ -invariant vector are the same as characters of the algebra $C(O(n,\mathbb{R})\backslash GL(n,\mathbb{R})/O(n,\mathbb{R}))$.

- Harmonic analysis: (SO(3, ℝ), SO(2, ℝ)) is a Gelfand pair spherical harmonics.
- Gelfand-Zeitlin basis: (S_n, S_{n-1}) is a strong Gelfand pair basis for irreducible representations of S_n The same for $O(n, \mathbb{R})$ and U(n).
- Classification of representations: $(GL(n,\mathbb{R}),O(n,\mathbb{R}))$ is a Gelfand pair the irreducible representations of $GL(n,\mathbb{R})$ which have an $O(n,\mathbb{R})$ -invariant vector are the same as characters of the algebra $C(O(n,\mathbb{R})\setminus GL(n,\mathbb{R})/O(n,\mathbb{R}))$. The same for the pair $(GL(n,\mathbb{C}),U(n))$.

Gelfand trick

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma(g_1g_2)=\sigma(g_2)\sigma(g_1)$ and $\sigma^2=Id$) and assume $\sigma(H)=H$. Suppose that $\sigma(f)=f$ for all bi H-invariant functions $f\in C(H\backslash G/H)$. Then (G,H) is a Gelfand pair.

Gelfand trick

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma(g_1g_2) = \sigma(g_2)\sigma(g_1)$ and $\sigma^2 = Id$) and assume $\sigma(H) = H$. Suppose that $\sigma(f) = f$ for all bi H-invariant functions $f \in C(H \setminus G/H)$. Then (G, H) is a Gelfand pair.

Proposition (Gelfand)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma(g_1g_2)=\sigma(g_2)\sigma(g_1)$) and $\sigma^2=Id$ and assume $\sigma(H)=H$. Suppose that $\sigma(f)=f$ for all Ad(H)-invariant functions $f\in C(G//H)$. Then (G,H) is a strong Gelfand pair.

Sum up

Classical examples

Pair	Anti-involution
$(G \times G, \Delta G)$	$(g,h)\mapsto (h^{-1},g^{-1})$
$(O(n+k),O(n)\times O(k))$	
$(U(n+k),U(n)\times U(k))$	$g\mapsto g^{-1}$
$(GL(n,\mathbb{R}),O(n))$	$g\mapsto g^t$
(G,G^{θ}) , where	
G - Lie group, θ - involution,	$oldsymbol{g}\mapsto heta(oldsymbol{g}^{-1})$
$G^{ heta}$ is compact	
(G,K), where	
G - is a reductive group,	Cartan anti-involution
K - maximal compact subgroup	

Non compact setting

Setting

In the non compact case we will consider complex <u>smooth</u> <u>admissible representations</u> of <u>algebraic reductive</u> groups over local fields.

Non compact setting

Setting

In the non compact case we will consider complex <u>smooth</u> <u>admissible representations</u> of <u>algebraic</u> <u>reductive</u> groups over local fields.

Definition

A local field is a locally compact non-discrete topological field. There are 3 types of local fields:

- ullet Archimedean: ${\mathbb R}$ and ${\mathbb C}$
- p-adic: \mathbb{Q}_p and their finite extensions
- positive characteristic: $\mathbb{F}_q((t))$

Non compact setting

Setting

In the non compact case we will consider complex <u>smooth</u> <u>admissible representations</u> of <u>algebraic</u> <u>reductive</u> groups over local fields.

Definition

A local field is a locally compact non-discrete topological field. There are 3 types of local fields:

- ullet Archimedean: ${\mathbb R}$ and ${\mathbb C}$
- p-adic: \mathbb{Q}_p and their finite extensions
- positive characteristic: $\mathbb{F}_q((t))$

Definition

A linear algebraic group is a subgroup of GL_n defined by polynomial equations.

Reductive groups

Examples

 GL_n , semisimple groups, O_n , U_n , Sp_{2n} ,...

Reductive groups

Examples

 GL_n , semisimple groups, O_n , U_n , Sp_{2n} ,...

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Reductive groups

Examples

 GL_n , semisimple groups, O_n , U_n , Sp_{2n} ,...

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Fact

Reductive groups are unimodular.

Smooth representations

Definition

Over Archimedean F, by smooth representation V we mean a complex Fréchet representation V such that for any $v \in V$ the map $G \to V$ defined by v is smooth.

Smooth representations

Definition

Over Archimedean F, by smooth representation V we mean a complex Fréchet representation V such that for any $v \in V$ the map $G \to V$ defined by v is smooth.

Definition

Over non-Archimedean F, by smooth representation V we mean a complex linear representation V such that any $v \in V$ has open stabilizer.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_c^\infty(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^\infty(M))^*$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^*(M)$ of Schwartz distributions on M.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_c^{\infty}(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^{\infty}(M))^*$ of distributions on M. Sometimes we will also consider the space $S^*(M)$ of Schwartz distributions on M.

Definition

An ℓ -space is a Hausdorff locally compact totally disconnected topological space. For an ℓ -space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ be the space of distributions on X.

Gelfand Pairs

Definition

A pair of reductive groups $(G \supset H)$ is called a **Gelfand pair** if for any irreducible admissible representation ρ of G

$$dimHom_{H}(\rho,\mathbb{C}) \cdot dimHom_{H}(\widetilde{\rho},\mathbb{C}) \leq 1$$

usually, this implies that

$$dimHom_H(\rho,\mathbb{C}) \leq 1$$
.

Gelfand-Kazhdan distributional criterion

Theorem (Gelfand-Kazhdan,...)

Let σ be an involutive anti-automorphism of G and assume $\sigma(H) = H$.

Suppose that $\sigma(\xi) = \xi$ for all bi H-invariant distributions ξ on G. Then (G, H) is a Gelfand pair.

Definition

A pair of reductive groups (G, H) is called a **strong Gelfand pair** if for any irreducible admissible representations ρ of G and τ of H

$$dimHom_{H}(\rho, \tau) \cdot dimHom_{H}(\widetilde{\rho}, \widetilde{\tau}) \leq 1$$

usually, this implies that $dimHom_H(\rho,\tau) \leq 1$.

Definition

A pair of reductive groups (G, H) is called a **strong Gelfand pair** if for any irreducible admissible representations ρ of G and τ of H

$$dimHom_{H}(\rho,\tau) \cdot dimHom_{H}(\widetilde{\rho},\widetilde{\tau}) \leq 1$$

usually, this implies that $dimHom_H(\rho, \tau) \leq 1$.

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Definition

A pair of reductive groups (G, H) is called a **strong Gelfand pair** if for any irreducible admissible representations ρ of G and τ of H

$$dimHom_{H}(\rho, \tau) \cdot dimHom_{H}(\widetilde{\rho}, \widetilde{\tau}) \leq 1$$

usually, this implies that $dimHom_H(\rho, \tau) \leq 1$.

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. $\sigma(H)=H$. Suppose $\sigma(\xi)=\xi$ for all distributions ξ on G invariant with respect to conjugation by H. Then (G,H) is a strong Gelfand pair.

Rep. theory:
$$\forall \rho \dim \rho^H \leq 1$$
 \Leftrightarrow Algebra:
$$C(H \setminus G/H)$$
 is commutative
$$\exists \sigma \text{ s.t. } f = \sigma(f)$$
 $\forall f \in C(H \setminus G/H)$ Geometry:
$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ s.t. } \xi = \sigma(\xi)$$

$$\forall f \in C(H \setminus G/H)$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ s.t. } \xi = \sigma(\xi)$$

$$\forall \xi \in S^*(G)^{H \times H}$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ s.t. } \xi = \sigma(\xi)$$

$$\forall \xi \in S^*(G)^{H \times H}$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

$$\exists \sigma \text{ that preserves } H \text{ double cosets}$$

closed

H double cosets

 $\exists \sigma$ that preserves

H double cosets

Non – compact case

Results on Gelfand pairs

Pair	p-adic	char <i>F</i> > 0	real
$(GL_n(E), GL_n(F))$	Flicker	Flicker	
$(GL_{n+k}, GL_n \times GL_k)$	Jacquet-	Aizenbud-	Aizenbud-
	Rallis	Avni-G.	G.
$(O_{n+k},O_n\times O_k)$ over $\mathbb C$			
(GL_n, O_n) over $\mathbb C$			
(GL_{2n}, Sp_{2n})	Heumos-	Heumos-	Aizenbud-
	Rallis	Rallis	Sayag
$\left(GL_{2n}, \left\{ \begin{pmatrix} g & u \\ 0 & g \end{pmatrix} \right\}, \psi\right)$	Jacquet-		Aizenbud-
((3/)	Rallis		GJacquet

Results on strong Gelfand pairs

Pair	p-adic	char F > 0	real
(GL_{n+1},GL_n)	Aizenbud-	Aizenbud-	Aizenbud-G.
	G	Avni-G.	Sun-Zhu
$(O(V \oplus F), O(V))$	Rallis-	?	
$(U(V \oplus F), U(V))$	Schiffmann	?	Sun-Zhu

- ullet real: $\mathbb R$ and $\mathbb C$
- p-adic: \mathbb{Q}_p and its finite extensions.
- char F > 0: $\mathbb{F}_q((t))$.

Results on strong Gelfand pairs

Pair	p-adic	char F > 0	real
(GL_{n+1},GL_n)	Aizenbud-	Aizenbud-	Aizenbud-G.
	G	Avni-G.	Sun-Zhu
$(O(V \oplus F), O(V))$	Rallis-	?	
$(U(V \oplus F), U(V))$	Schiffmann	?	Sun-Zhu

- ullet real: $\mathbb R$ and $\mathbb C$
- p-adic: \mathbb{Q}_p and its finite extensions.
- char F > 0: $\mathbb{F}_q((t))$.

Remark

The results from the last two slides are used to prove splitting of periods of automorphic forms.

