EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

(1) (P) The field \mathbb{Q}_{p} of p-adic numbers has no non-trivial automorphisms.
(2) (P) (i) The sequence $1,1 / 10,1 / 10^{2}, \cdots$ does not converge in \mathbb{Q}_{p}, for any p. (P) (ii) For every $a \in \mathbb{Z},(a, p)=1$, the sequence $\left\{a^{p^{n}}\right\}_{n \in \mathbb{N}}$ converges in \mathbb{Q}_{p}.
(3) $\left(P^{*}\right)$ Let $\epsilon \in 1+p \mathbb{Z}_{p}$, and let $\alpha=a_{0}+a_{1} p+a_{2} p^{2} \cdots$ be a p-adic integer. Let $s_{n}=a_{0}+a_{1} p+\cdots+a_{n-1} p^{n-1}$. Show that the sequence $\epsilon^{s_{n}}$ converges to a number ϵ^{α} in $1+p \mathbb{Z}_{p}$. Show that this turns $1+p \mathbb{Z}_{p}$ into a multiplicative \mathbb{Z}_{p}-module.
(4) (P) The fields \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic, unless $p=q$.
(5) $\left(P^{*}\right)$ The algebraic closure of \mathbb{Q}_{p} has infinite degree.

