EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

- (1) (P) The field \mathbb{Q}_p of *p*-adic numbers has no non-trivial automorphisms.
- (2) (P) (i) The sequence 1, 1/10, $1/10^2$, \cdots does not converge in \mathbb{Q}_p , for any p. (P) (ii) For every $a \in \mathbb{Z}$, (a, p) = 1, the sequence $\{a^{p^n}\}_{n \in \mathbb{N}}$ converges in \mathbb{Q}_p .
- (3) (P^*) Let $\epsilon \in 1 + p\mathbb{Z}_p$, and let $\alpha = a_0 + a_1p + a_2p^2 \cdots$ be a *p*-adic integer. Let $s_n = a_0 + a_1p + \cdots + a_{n-1}p^{n-1}$. Show that the sequence ϵ^{s_n} converges to a number ϵ^{α} in $1 + p\mathbb{Z}_p$. Show that this turns $1 + p\mathbb{Z}_p$ into a multiplicative \mathbb{Z}_p -module.
- (4) (P) The fields \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic, unless p = q.
- (5) (P^*) The algebraic closure of \mathbb{Q}_p has infinite degree.