EXERCISE 11 IN ALGEBRAIC NUMBER THEORY

(1) (P) Show that the absolute values of the field $\mathbb{Q}(\sqrt{5})$ are given, up to equivalence, as follows.
(i) $|a+b \sqrt{5}|_{1}=|a+b \sqrt{5}|$ and $|a+b \sqrt{5}|_{2}=|a-b \sqrt{5}|$ are the archimedean absolute values.
(ii) If $p=2$ or 5 or a prime $\neq 2,5$ such that $\left(\frac{p}{5}\right)=-1$, then there is exactly one extension of $|\quad| p$ to $\mathbb{Q}(\sqrt{5})$, namely

$$
|a+b \sqrt{5}|_{p}=\left|a^{2}-5 b^{2}\right|_{p}^{1 / 2}
$$

(iii) If p is a prime number $\neq 2,5$ such that $\left(\frac{p}{5}\right)=1$, then there are two extensions of $\left|\left.\right|_{p}\right.$ to $\mathbb{Q}(\sqrt{5})$, namely

$$
|a+b \sqrt{5}|_{\mathfrak{p}_{1}}=|a+b \gamma|_{p}, \quad \text { resp. } \quad|a+b \sqrt{5}|_{\mathfrak{p}_{2}}=|a-b \gamma|_{p},
$$

where γ is a solution of $x^{2}-5=0$ in \mathbb{Q}_{p}.
(2) (i) Show that $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}_{5}$.
(ii) Find all the solutions of $x^{2}=14 \bmod 625$.
(iii) How many roots does $f(x)=x^{3}-x-2$ have $\bmod 2^{10}$?
(3) $\left(P^{*}\right)$ Show that for a \mathfrak{p}-adic field K, every subgroup of finite index in K^{*} is both open and closed.
(4) $\left(P^{*}\right)$ Show that the maximal unramified extension of \mathbb{Q}_{p} is obtained by attaching all the roots of unity of order prime to p. Notice that this infinite extension still has discrete valuation. See Proposition (7.12).
(5) $\left(P^{*}\right)$ Let ζ be a primitive p^{m}-th root of unity. Then one has:
(i) $\mathbb{Q}_{p}(\zeta) / \mathbb{Q}_{p}$ is totally ramified of degree $\phi\left(p^{m}\right)$, where ϕ is the Euler totient function.
(ii) $G\left(\mathbb{Q}_{p}(\zeta) / \mathbb{Q}_{p}\right) \simeq\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}$.
(iii) $\mathbb{Z}_{p}[\zeta]$ is the valuation ring of $\mathbb{Q}_{p}(\zeta)$.
(iv) $1-\zeta$ is a prime element of $\mathbb{Z}_{p}[\zeta]$ with norm p.
(v) Let \mathfrak{p} be the unique maximal ideal. What is the image of $v_{\mathfrak{p}}\left(Z_{p}[\zeta]\right)$?
(6) (P^{*}) Using questions (4) and (5) above, what can you say about the structure of $G\left(\mathbb{Q}_{p}^{a b} / \mathbb{Q}_{p}\right)$, where $\mathbb{Q}_{p}^{a b}$ denotes the maximal abelian extension of \mathbb{Q}_{p} in its algebraic closure?

