EXERCISE 11 IN ALGEBRAIC NUMBER THEORY

- (1) (P) Show that the absolute values of the field $\mathbb{Q}(\sqrt{5})$ are given, up to equivalence, as follows.
 - (i) $|a + b\sqrt{5}|_1 = |a + b\sqrt{5}|$ and $|a + b\sqrt{5}|_2 = |a b\sqrt{5}|$ are the archimedean absolute values.
 - (ii) If p = 2 or 5 or a prime $\neq 2$, 5 such that $\left(\frac{p}{5}\right) = -1$, then there is exactly one extension of $| |_p$ to $\mathbb{Q}(\sqrt{5})$, namely

$$|a + b\sqrt{5}|_p = |a^2 - 5b^2|_p^{1/2}.$$

(iii) If p is a prime number $\neq 2$, 5 such that $\left(\frac{p}{5}\right) = 1$, then there are two extensions of $| |_p$ to $\mathbb{Q}(\sqrt{5})$, namely

$$|a + b\sqrt{5}|_{\mathfrak{p}_1} = |a + b\gamma|_p$$
, resp. $|a + b\sqrt{5}|_{\mathfrak{p}_2} = |a - b\gamma|_p$,

where γ is a solution of $x^2 - 5 = 0$ in \mathbb{Q}_p .

- (2) (i) Show that $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}_5$.
 - (ii) Find all the solutions of $x^2 = 14 \mod 625$.
 - (iii) How many roots does $f(x) = x^3 x 2$ have mod 2^{10} ?
- (3) (P^*) Show that for a \mathfrak{p} -adic field K, every subgroup of finite index in K^* is both open and closed.
- (4) (P^*) Show that the maximal unramified extension of \mathbb{Q}_p is obtained by attaching all the roots of unity of order prime to p. Notice that this infinite extension still has discrete valuation. See Proposition (7.12).
- (5) (P^*) Let ζ be a primitive p^m -th root of unity. Then one has:
 - (i) $\mathbb{Q}_p(\zeta)/\mathbb{Q}_p$ is totally ramified of degree $\phi(p^m)$, where ϕ is the Euler totient function.
 - (ii) $G(\mathbb{Q}_p(\zeta)/\mathbb{Q}_p) \simeq (\mathbb{Z}/p^m\mathbb{Z})^{\times}.$
 - (iii) $\mathbb{Z}_p[\zeta]$ is the valuation ring of $\mathbb{Q}_p(\zeta)$.
 - (iv) 1ζ is a prime element of $\mathbb{Z}_p[\zeta]$ with norm p.
 - (v) Let \mathfrak{p} be the unique maximal ideal. What is the image of $v_{\mathfrak{p}}(Z_p[\zeta])$?

(6) (P^*) Using questions (4) and (5) above, what can you say about the structure of $G(\mathbb{Q}_p^{ab}/\mathbb{Q}_p)$, where \mathbb{Q}_p^{ab} denotes the maximal abelian extension of \mathbb{Q}_p in its algebraic closure?